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Sepsis is not only a significant cause of mortality worldwide but has particularly dev-
astating effects on the central nervous system of survivors. It is therefore crucial to 
understand the molecular structure, physiology, and events involved in the pathogenesis 
of sepsis-associated encephalopathy, so that potential therapeutic advances can be 
achieved. A key determinant to the development of this type of encephalopathy is mor-
phological and functional modification of the blood–brain barrier (BBB), whose function 
is to protect the CNS from pathogens and toxic threats. Key mediators of pathologic 
sequelae of sepsis in the brain include cytokines, including TNF-α, and sphingolipids, 
which are biologically active components of cellular membranes that possess diverse 
functions. Emerging data demonstrated an essential role for sphingolipids in the pul-
monary vascular endothelium. This raises the question of whether endothelial stability in 
other organs systems such as the CNS may also be mediated by sphingolipids and their 
receptors. In this review, we will model the structure and vulnerability of the BBB and 
hypothesize mechanisms for therapeutic stabilization and repair following a confrontation 
with sepsis-induced inflammation.

Keywords: sepsis-associated encephalopathy, lipopolysaccharides, sphingosine, blood–brain barrier, 
inflammation mediators

iNTRODUCTiON AND OveRview

Sepsis is a leading cause of morbidity and mortality worldwide. In 2016, consensus guidelines honed 
the definition of sepsis to refer to “life threatening organ dysfunction caused by a dysregulated host 
response to infection” (1). If attempts to suppress inflammation and restore perfusion are unsuc-
cessful, septic shock with organ dysfunction may result. Breaching of the blood–brain barrier (BBB) 
leads to significant alteration of consciousness and reduction in neurocognition. Involvement of the 
CNS results in sepsis-induced brain dysfunction, which is manifested clinically by a neuropsychiatric 
continuum starting in an acute confusional state and ultimately coma (2, 3). With the exclusion of 
drug-induced and other metabolic etiologies, this syndrome is termed “sepsis-associated encepha-
lopathy (SAE)” and is the most common form of encephalopathy occurring in critical care settings 
(4–7). Although the encephalopathy of sepsis shares several overlapping features with delirium, 
including its rapid onset and marked deterioration in cognition—delirium may be considered a 
subgroup, which involves hyperactive and hypoactive changes in awareness and consciousness (8). 
In the literature, SAE is widely understood as the presence of diffuse cerebral dysfunction in the 
presence of sepsis but in the absence of CNS infection and other forms of encephalopathy (9, 10).  
It is usually manifested by disturbances of the sleep–wake cycle, impaired consciousness, mild cogni-
tive dysfunction, overt delirium, and coma (4).
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The impact of SAE on public health is significant. It is respon-
sible for short-term morbidity, increased length of hospital stay, 
long-term physical and cognitive impairment, and poses a large 
economic burden to health-care systems (11, 12). Mortality in 
SAE when it occurs as a manifestation multiple organ dysfunc-
tion and is estimated at 70% (9). Its psychological toll on families 
and caregivers cannot be calculated.

In the critically ill patient, SAE is often compounded iatro-
genically by sedative-hypnotic use and neuromuscular blockade. 
Bedside diagnostic tests such as electroencephalography (EEG) 
and somatosensory-evoked potential are commonly employed 
to assist with diagnosis (5, 13, 14), while scoring tools such as 
the Glasgow Coma Scale (7), the CAM-ICU, and Richmond 
Agitation and Sedation Scale are cost-effective and valuable for 
measuring dynamic clinical changes (13). Brain MRI may show 
white matter lesions in the centrum semiovale, multiple ischemic 
strokes, and decreased in brain volume (9). While MRI may be 
negative in confirmed SAE, EEG abnormalities may be present 
even preceding the onset of symptoms in 50% of cases. On EEG, 
“slowing” in the theta range on EEG is correlated with SAE in 
the mild stage, where severe cases manifest with delta waves, 
triphasic waves, and burst suppression (9, 15).

PATHOLOGiC STATeS

The pathogenesis of encephalopathy in sepsis is complex and 
incompletely understood. Microcirculatory dysfunction, under-
perfusion, and necrosis of peripheral organs yield a systemic 
inflammatory state involving leukocyte—particularly micro-
glial—activation, lysosomal exocytosis, cytokine release, and 
free-radical generation (2, 5, 16). Nitric oxide (NO)-mediated 
oxidative damage of the hippocampus and cerebral cortex was 
shown in animal models of sepsis, while antioxidant and neuro-
protective mediators such as heat shock protein and superoxide 
dismutase are diminished (2, 10). Neurotransmission is relayed 
along vagal afferents from the periphery to the nucleus tractus 
solitarius in the brainstem in a neurally mediated inflammatory 
reflex (4). Since glial cells and CNS neurons rely on amino acid, 
glucose, and oxygen metabolism for the production of ATP and 
neurotransmission, the catabolic conditions of sepsis devastate 
their bioenergetic capability (17). Our current understanding 
of the pathogenesis of SAE is multifactorial, involving cytokine 
effects, mitochondrial dysfunction, neurotransmitter alterations, 
and hypoxia leading to oxidative damage, ischemia, and cellular 
death (17). Observations of pathologic findings have included 
disseminated cerebral microabscesses (18), “multifocal necrotiz-
ing leukoencephalopathy” (19, 20), and a reduced functional 
density of cerebral vessels (21).

STRUCTURe AND FUNCTiON  
OF THe BBB

Protecting the brain is a physical barrier at its interface with the 
circulatory and immune systems (22). This separation of the 
CNS and spinal cord from peripheral organs was first observed 
by the injection of “vital” dyes by Ehrlich in 1885 and was first 

labeled “blood–brain barrier” (BBB) by Lewandowsky in 1900. 
In a landmark in vitro study by Reese and Karnovsky, horseradish 
peroxidase circulated through peripheral vasculature but did not 
pass through cerebral endothelial cells into the CNS (23–29). 
The primary constituent of the BBB is the brain microvascular 
endothelial cell (BMVEC), which is strategically located in close 
apposition to perivascular pericytes, astrocyte foot process, and 
macroglia (25, 28, 30–32). Diffusion is made readily possible 
by its short distance of only 8–20 μm from CNS neurons (33). 
The BMVEC is linked to pericytes and astrocytes by a common 
basement membrane composed of extracellular matrix proteins: 
collagen, elastin, fibronectin, laminin, and proteoglycans (28, 34). 
Canaliculi and fenestrae are sparse between these cells— limiting 
movement of fluids and further preventing capillary leakage 
(28). Focal adhesions, consisting of transmembrane proteins 
from the selectin, integrin, and immunoglobulin families tether 
the BMVEC to the basement membrane (25). Of these, integrins 
participate in angiogenesis and maintaining vascular integrity 
(25, 35), while the focal adhesion complex relays mechanical 
forces from the cytoskeleton to surrounding adhesive and 
contractile structures (25, 36). Structural support is provided by 
cellular adhesion molecules (CAMs), which are expressed at the 
basement membrane’s apical surface, and tight junctions, which 
bind adjacent endothelial cells, limit diffusion, and paracellular 
permeability (25, 28, 33). Primary constituents are the transmem-
brane proteins such as junctional adhesion molecules, claudins, 
and the adaptor cytoplasmic proteins zonula occludens-1–3 
which connect to the actin cytoskeleton and serve as a scaffold 
as well as mediate cell–cell interactions (25, 33, 35, 37, 38). The 
high-electrical resistance of 1,500–2,000 Ω/cm2 of tight junctions 
prevents intracellular and transcellular movement of molecules 
(39, 40). Neighboring astrocytes and microglia modify tight 
junction assembly via cytokine release. Additionally, astrocytes 
exert local influence on barrier development by wnt/B-catenin-
mediated signaling (32, 41). Pericytes or vascular smooth muscle 
cells surround the BBB capillary endothelium and have structural, 
synthetic, and regulatory function (25, 42). They synthesize 
proteins of the basement membrane, especially proteoglycans 
and laminal proteins. Spatially, they cover nearly one-third of its 
surface area (25, 43) and provide structural integrity to the barrier 
(25, 44). Extracellular peptidases and nucleosidases lyse proteins 
and ATP, whereas monoamine oxidase and cytochrome p450 
work intracellularly to inactivate neurotoxic compounds (33, 45). 
Together in a milieu of extracellular matrix, these neighboring 
cells and structural elements function in coordinated fashion as 
part of a neurovascular unit (32).

TRANSPORT ACROSS THe BARRieR

The BBB’s ability to maintain homeostasis in the CNS is deter-
mined by its ability to govern the means, rate, and regulation 
of transport of ions, small molecules, immune cells, cytokines, 
chemokines, and exogenous compounds (32). Under physiologic 
conditions, nutrients and essential molecules are facilitated entry 
into the CNS, whereas wastes, toxins, neurologically active agents, 
and pathogens are excluded from entering (33). Ions, water, and 
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FiGURe 1 | Proposed mechanism for neurocognitive dysfunction in the CNS 
in sepsis. On the CNS side of blood–brain barrier, TNF-α drives multiple 
pathways for neuronal injury, induces apoptosis via NO, caspase pathways, 
and leads to cerebral edema.
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upregulated by TNF-α, and ligand binding at TLR2/6 was shown 
to mediate tight junction disruption. TNF-α induced changes in 
the barrier result in depolymerization of actin and the generation 
of intercellular gaps in the endothelial cytoskeleton (67). Qin et al. 
(68) demonstrated that an intraperitoneal injection of LPS initi-
ated TNF-α production independently of circulating TNF-α, and 
that this occurred contemporaneously with microglial activation 
in substantia nigra, hippocampus, and cortex, while other media-
tors of inflammation were shown to be increased, such as MCP-1, 
IL-1β, and NF-kB. O’Carroll et  al. (69) recent work supported 
these findings, showing that in endothelial cell culture, both TNF-
α and IL-1β increase expression of leukocyte adhesion molecules, 
including ICAM-1 and V-CAM-1, chemokines MCP-1 (CCL-2), 
and RANTES (CCL-5), resulting in barrier dysfunction and 
decreased transendothelial electrical resistance. TNF-α was also 
found to increase barrier permeability by activation of protein 
kinase-6, resulting in cell–cell interactions involving VE-cadherin 
internalization (70).

In the BBB, TNF-α acts directly on the endothelial capil-
laries and may also diffuse into brain parenchyma in areas of 
brain where there is no barrier, such as the circumventricular 
organs (63). TNF receptor 1, also termed p55, is abundant in 
the brain and constitutively expressed in astrocytes (53, 63, 71).  
In inflammatory states, including sepsis, TNF-α binds to TNF-R1 
(49). This interaction is facilitated by the cytosolic TNF receptor-
associated death domain that recruits TNF receptor-associated 
factor 2. TNR-receptor associated factor 2 (TRAF-2) is an adaptor 
protein of TNF receptor that mediates anti-apoptotic signals. 

small molecules traverse by paracellular diffusion, whereas larger, 
hydrophilic compounds such as amino acids and glucose require 
specific transport systems for transcellular migration (25, 26, 
30, 33, 37). As conceptualized in a recent review by Banks, the 
BBB possesses four essential and independent functions with 
regard to response to inflammatory and infectious stimuli. Its 
structural barrier coexists with responder, transporter, and secre-
tor  functions—together contributing to homeostatic control of 
molecular transport (28). “Adsorptive” and “receptor-mediated 
endocytosis” are principal means of active transport of protein 
across barrier cells and utilize vesicles. Specific transport proteins 
exist at the plasma membranes, such as GLUT-1, and ATP-binding 
cassette (ABC) transporters. p-GP (46) is an ABC transporter that 
functions as an efflux pump involved in drug delivery, detoxifica-
tion, and is implicated in mechanisms of drug resistance (25, 37, 
47). Also at the endothelial cell membrane, patches of cholesterol 
and glycosphingolipids known as lipid rafts are produced from 
intracellular cholesterol-binding proteins caveolin. This process 
starts with the formation of 60–80 nm invaginations termed cave-
olae which then form “clathrin-coated pits.” At the BBB, caveolae 
participate in receptor translocation, vesicular trafficking, and 
cellular signal transduction such as IL-1β-dependent NF-kB 
activation (25, 26, 48–52).

MOLeCULAR MeCHANiSMS: 
COMPLeMeNT, CYTOKiNeS, AND 
MeCHANiSM OF BBB DiSRUPTiON

Activation of the complement system is critical in the innate 
immune system’s defense against infection and has been clearly 
demonstrated in the development of inflammation and neuronal 
dysfunction that precedes SAE (53–56). Once the complement 
cascade is activated by endotoxin, C5a acts upon cerebral 
endothelium, microglia, and brain parenchymal neurons. In 
studies modeling ischemia–reperfusion injury, C3a and C5a 
function as leukocyte chemoattractants (57). Endothelial cells 
and microglia subsequently become activated, secreting TNF-α 
and IL-B (57, 58), ultimately leading to ROS production, brain 
edema, and severe CNS neuronal injury (Figure 1).

During such neuroinflammatory states such as trauma, 
ischemia, and sepsis, cytokines play a key role in the pathogenesis 
of injury. Semmler et  al. showed that the chemokine MCP-1, 
and cytokines IL-1-β, TGF-β, and TNF-α were all upregulated 
in whole brain lysates, along with inducible nitric oxide (iNOS) 
(59). These findings are pertinent with respect to the effects of 
sepsis in the CNS, since iNOS mediates oligodendrocyte injury 
(60), and nitric oxide production was shown to induce apoptosis 
in astrocytes via BAX- and p-53-dependent pathways (61).

During a septic insult, IL-1β and TNF-α are elevated systemi-
cally (62–64). Cytokine interactions modify the barrier via tight 
junction stability and endothelial permeability (48, 65). Pattern 
recognition receptors known as Toll Like Receptors (TLR’s) are 
expressed on cerebral endothelial cells where they function as 
essential mediators in the response to pathogens and associated 
proteins, including LPS (66).  At the BBB endothelium, TLR-2 is 
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Xia et al. (72) showed that signal transduction leading to anti-
apoptosis is mediated by sphingolipids, involving the physical 
interaction between TNF-α, TNF-R, and TRAF-2 (Figure  2). 
Simultaneously, TNF transport across the endothelial cell mem-
brane can be facilitated by invaginations in the membrane referred 
to as caveolae that undergo endocytosis at the BBB (48, 49, 73). 
Intracytoplasmic signaling is mediated through RhoA and RAC, 
and ultimately transcription is facilitated via NF-kB yielding anti-
apoptotic and pro-apoptotic proteins. Apoptosis occurs via acti-
vation of the caspase-mediated death receptor pathway (53, 74, 
75), in which activated microglia are active participants (76). The 
interaction between LPS, TNF-α, TNF-R, and the consequences 
for SAE was elucidated in a murine model of SAE by Alexander 
et al. (53). The authors found that with comparison to a TNF R1 
double knockout population under the same conditions, LPS 
resulted in a TNFR-1-dependent increase in astrocyte activation 
and AQP channel-mediated brain edema (53, 61).

THe eSSeNTiAL ROLe FOR THe 
HiPPOCAMPUS iN SAe AND  
PATHOLOGiC CORReLATiON wiTH 
ALZHeiMeR DiSeASe (AD)

The hippocampus has been shown to be a key site of involve-
ment for inflammatory mediators and altered synaptic function 
and plays a key role in the pathogenesis of SAE (Figure 3). LPS 
administration is strongly linked to the disruption of both mem-
ory (77–79) and learning (80). Lynch et  al. (81) demonstrated 
that LPS directly inhibits long-term potentiation in the dentate 
gyrus of the hippocampus, and Imamura et al. (82) demonstrated 
a parallel association with IL-1B. Cholinergic neurotransmission 
is implicated directly in cognition, and its inhibition was shown 
to be associated with worsening delirium (83). Furthermore, 
blood brain barrier disruption is associated with hippocampal 
lesions associated with cognitive impairment (84, 85). Using 
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FiGURe 3 | Cross talk between LPS and TNF receptor signaling: The 
blood–brain barrier (BBB) plays an integral role in the mechanism of 
neurocognitive injury in sepsis associated encephalopathy. 
Lipopolysaccharide decreases barrier functional integrity via structural 
changes in tight junctions and modifications in transendothelial transport. 
Sphingosine-1-phosphate (S-1-P) or an analogue is proposed to reinforce 
barrier integrity, potentially attenuating the neurocognitive sequelae of 
sepsis-associated encephalopathy.
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hippocampal CA1 pyramidal neurons from brain exposed to LPS 
for 7 days, Hellstrom et al. (86) investigated the mechanism of 
synaptic dysfunction in a model of LPS neurotoxicity and found 
that the exposed population had lower membrane resistance, 
higher action potential threshold, and slower frequency of action 
potential discharge.

POTeNTiAL FOR SPHiNGOLiPiDS AS 
THeRAPeUTiC TARGeT FOR SAe

How can we move from this mechanistic understanding toward 
therapy for SAE? Management pillars of sepsis include fluid 
administration and antibiotics, and their early administration 
may prevent end-organ damage. Recent studies have explored 
non-pharmacologic interventions such as IVIG, magnesium, 
steroids, high dose vitamins (87), and monoclonal antibodies 
(2). For example, after administration of IVIG, rodents that had 
undergone cecal ligation and perforation had a decreased mortal-
ity and decrease BBB permeability with comparison to controls 
(88). Once they develop, the neuropsychiatric manifestations of 
SAE remain difficult to treat and are generally limited to sup-
portive care for manifestations of delirium (2). Advances in our 
understanding of the sphingolipid signaling in the brain (89) 
have provided a new avenue for the development of therapeutic 
drug targets in SAE. Sphingolipids are biologically active family 
of lipids found in cell membranes throughout multiple organ 
systems. They are essential in mediating vascular permeability, 
cellular signaling, survival, and apoptosis (90–93). One such 
sphingolipid, sphingosine-1-phosphate (S-1-P) has been found 
to play an integral role in angiogenesis and membrane stability, 
immune cell trafficking, as well as cell proliferation, differen-
tiation, survival, and oncogenesis (94–99). In the “sphingolipid 
rheostat,” sphingosine is produced when sphingomyelinase 
catalyzes the production of ceramide from sphingomyelin, after 

which it is acted upon by ceramidase (90, 96). Sphingosine is 
phosphorylated to form S-1-P by sphingosine kinase-1 (SphK), 
a cytosolic 42  kDa lipid kinase with high concentration in the 
brain, heart, lung, and spleen (90, 96). At the endothelial interface, 
S-1-P is released by activated platelets (98) and is a ligand for the 
G-protein-coupled receptors encoded by the endothelial differ-
entiation gene family (100), now termed (S-1-P)1–5. S-1-P also 
acts as a second messenger, participating in signal transduction 
(101), such as on oligodendrocytes, where S-1-P is a ligand at the 
S1P5 receptor. Downstream effects include calcium regulation, 
cell proliferation, migration, junctional assembly, and prevention 
of apoptosis (98, 100, 102, 103).

Sphingosine-1-phosphate has a mechanistic and therapeutic 
role in sepsis-induced endothelial dysfunction and is active on 
astrocytes, neurons, and glia during inflammatory states (104), 
as well as the BBB endothelium. Garcia et al. found that vascular 
endothelial permeability is decreased by the effects of S-1-P 
(100). When bound to its receptor and coupled to Gi/α, S-1-P 
promotes signal transduction by kinases p38 MAP kinase and 
ERK1\2. In murine lung endothelium, this results in an increase 
in barrier integrity via adherens junction assembly and cytoskel-
etal cortical actin filament rearrangement and is manifested 
by increased transendothelial resistance (98, 100, 102, 105).  
Peng et  al. (97) investigated S-1-P’s effects on endothelium in 
a murine sepsis model. They introduced LPS intraperitoneally, 
after which dye and albumin extravasation and other markers 
of transendothelial cell migration were measured in the murine 
lung. It was observed that vascular leakage and inflammatory cell 
diapedesis were attenuated significantly both by S-1-P and its 
analog FTY-720 (97). This work supported previous conclusions 
(98, 100, 106), indicating that sphingosine 1 phosphate actively 
promotes endothelial membrane stability. It was demonstrated 
that S 1 P is abundantly produced via phosphorylation by sphingo-
sine kinase in activated platelets, and once released, acts as ligand 
on sphingosine receptors. Subsequently, GTPases Rho and Rac are 
activated along with protein kinase C, resulting in both increase 
in intracellular calcium and transcription of actin resulting in 
cytoskeletal modification—an essential step given that actin is a 
critical mediator of barrier stability (100, 107, 108). Both S-1-P and 
its analog, FTY-720 has reconstitutional activity at the endothelial 
capillary under conditions of LPS-induced inflammation (97) 
(Figure 2). Endothelial integrity is strengthened by formation of 
an actin ring and modification of actin-binding proteins. Our lab  
(109, 110) demonstrated that inhibition of sphingomyelin syn-
thase (SMS)—and thus sphingomyelin signaling, on lipid rafts 
in the pulmonary endothelium, resulted in barrier endothelial 
integrity during LPS-mediated inflammatory insult. After treat-
ment with the SMS inhibitor D609, we observed cytoskeletal 
rearrangement as evidenced by increased peripheral actin, and 
interaction of actin and myosin to form a cortical actin ring.

Sphingolipids in the CNS
What we have learned about sepsis-induced modifications of the 
endothelium in lung may be applicable to other organ systems. 
Sphingolipids play an active role in central nervous system at 
the BBB and the cellular level and can be linked to pathological 
states. For example, under experimental conditions, Cannon 
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et al. (47) showed that the sphingosine analog FTY-720 influences 
p-glycoprotein-mediated drug uptake at the BBB via a single 
pathway involving both TNF/TNF-R and sphingosine signaling. 
In a Parkinson disease model, Martinez et al. (111) demonstrated 
that in the substantia nigra, dopaminergic neurons are suscepti-
ble to caspase-mediated cytotoxicity, and that this pathway is also 
dependent on both TNF and ceramide. Their study also showed 
an attenuation of the cytotoxic effect by inhibiting sphingomyeli-
nase. Additionally, Psyzko et al. showed that the oxidative stress 
response in dopaminergic cells in a PD model was ameliorated 
by S-1-P, SphK-1, and FTY-720p (112). Sphingolipid signaling 
in sepsis-induced inflammation in the CNS was investigated by 
Grin’kina et al. (91) using SphK knockout mice. After intracerebral 
injection of LPS in the SphK−/− population, significant pathologic 
changes were noted with comparison to the wild-type popula-
tion, including an increase in ventricle size, doubling of degree of 
leukoaraiosis, and increase in white matter rarefactions, together 
indicating loss of white matter (113). Dysfunction of resident cells 
of the CNS was significant in the SphK−/− group were reflected by 
reactive microgliosis, GFAP overexpression (indicating astrocyte 
activation), and loss of oligodendrocytes (91).

FTY-720, also known as Fingolimod, is currently approved 
in the management of multiple sclerosis, where it has been 
well demonstrated to be an immunomodulator hampering 
T-cell migration in lymphoid tissue (104, 114). It also holds 
significant potential to utilize the sphingolipid rheostat, 
with the goal of treating other CNS conditions—including 
SAE. Specifically, as a sphingosine analog, Fingolimod, acts 
upon S-1-P receptors to modify endothelium by decreasing 
its permeability (115). Brinkmann et  al. (116) showed that 
S-1-P prevents VEGF-mediated vascular permeability, and 
that both S-1-P and phosphorylated FTY-720 strengthened 
endothelial cell–cell junction assembly. It is also an antagonist 
at the S-1-P1 receptor on non-lymphoid cells in multiple 
organ systems and has also been shown to traverse the BBB 
(104, 117). Further bolstering its utility in SAE is that fact 
that S-1-P receptors are nearly ubiquitous in the CNS, where 
they are present on oligodendrocytes, astrocytes, and neurons, 
functioning as key mediators of normal neural function and  
repair (104, 118, 119). For example, S-1-P’s actions on oligo-
dendrocytes lead to remyelination (118, 120), and FTY-720 and 
its metabolite FTY-720-P were shown to prevent excitotoxicity-
mediated death in cortical neurons (121). Furthermore, Kanno 
et al. showed that S-1-P/Sph-K signaling in the hippocampus 
was associated with enhanced synaptic strength and improved 
outcomes in memory and learning tasks (122).

In parallel with SAE, AD is manifested by severe cognitive 
dysfunction, in which neuroinflammation, lipid dysregula-
tion, and plaque formation are well-described mechanisms 
of development and progression of the disease (123). 
Ceramide levels are significantly increased in Alzheimer brain  
(123, 124), which impairs glycolysis, promotes oxidative stress, 
and ultimately leads to A-beta peptide production (125), imply-
ing a critical role for sphingolipids in the pathogenesis. Since 
severe cognitive dysfunction and the sphingolipid rheostat are 

shared features of SAE and AD, it is useful to look at the recent 
preclinical successes of FTY-720 in models of AD as a potential 
launch point for therapeutic discovery for SAE, especially since 
the hippocampus as a primary location of pathology for both 
diseases. In addition, the fact that BBB dysfunction is implicated 
in both cognitive decline (84) and septic encephalopathy (126) 
render it a particularly ideal target for FTY-720. For one, there 
is a relative decrease in S-1-P content in AD affected brain 
(127), implying that S-1-P agonism may be valuable in treat-
ment. Based on the concept that ceramide levels are inversely 
proportional to sphingosine in AD (128) plus the potentially 
neuroprotective property of FTY-720, Asle-Rousta et  al. (123) 
investigated the effectiveness of this compound in a rodent AD 
model. The authors found that chronic administration of FTY-
720 significantly abrogated the A-beta42-induced neuronal 
loss in the CA1 region of the hippocampus in the study group 
with comparison to the controls. Aytan et al. (129) showed in 
transgenic mice that Fingolimod administration decreased 
amyloid beta plaque density, attenuated microglial activation, 
and significantly reduced astrocytosis in the hippocampus. 
Furthermore, Kolahdooz et  al. (127) sought to evaluate the 
ability of two different S-1-P agonists, FTY-720 and SEW7821 
on neuroinflammation and LPS-induced memory impairment. 
The authors found that FTY-720 but not SEW administration 
significantly decreased LPS-induced memory deficits, and that 
both agents restored LPS-induced changes in sphingomyelin 
metabolizing enzymes such as SphK-1.

In summary, the common pathobiologic correlation between 
SAE and AD together with the success of FTY-720 and its analogs 
reinforce a promising role for S-1-P in therapeutic development, 
while further studies in this area are clearly warranted.

CONCLUSiON

Sepsis-associated encephalopathy remains an enigmatic 
clinical problem despite deep understanding as to the molecular 
mechanisms of its development. Significant correlations can be 
made between SAE and AD focusing on the hippocampus, thus 
providing a mechanistic framework with which we can approach 
cognitive dysfunction in sepsis. Utilizing our knowledge of 
sphingolipid rheostat, FTY-720, or an analogous sphingolipid 
compound may hold the key to stabilizing CNS endothelium and 
preventing neuroinflammatory injury. If we are successful, we 
can prevent the often tragic long-term sequelae of SAE includ-
ing cognitive disability, functional dependency, and chronic 
institutionalization. The health and quality of life of our aging 
population is at stake.
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