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Abstract

Infectious cDNA clones of RNA viruses are important research tools, but flavivirus cDNA clones have proven difficult to
assemble and propagate in bacteria. This has been attributed to genetic instability and/or host cell toxicity, however the
mechanism leading to these difficulties has not been fully elucidated. Here we identify and characterize an efficient cryptic
bacterial promoter in the cDNA encoding the dengue virus (DENV) 59 UTR. Following cryptic transcription in E. coli, protein
expression initiated at a conserved in-frame AUG that is downstream from the authentic DENV initiation codon, yielding a
DENV polyprotein fragment that was truncated at the N-terminus. A more complete understanding of constitutive viral
protein expression in E. coli might help explain the cloning and propagation difficulties generally observed with flavivirus
cDNA.
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Introduction

Flaviviruses are single-stranded positive-sense RNA viruses

belonging to the family Flaviviridae. These arthropod-borne viruses

are responsible for a wide range of diseases, including Japanese

encephalitis, yellow fever and tick-borne encephalitis. Dengue viruses

(DENV) are the causative agents of dengue fever (DF), dengue

hemorrhagic fever (DHF) and dengue shock syndrome (DSS) [1,2].

Approximately 50–100 million DENV infections occur each year [2],

resulting in 250,000 cases of DHF/DSS. The development of an

effective DENV vaccine strategy has been difficult, because there is

only short-lived cross-protection among the four DENV serotypes,

and antibody dependent enhancement of DENV infections leads to

the more severe forms of the disease [3,4]. Full-length infectious

cDNA clones of all four DENV serotypes would greatly enhance the

development of tetravalent DENV vaccines.

As with other RNA viruses, flavivirus genome-length infectious

cDNA clones are important tools for the genetic analysis of virus

replication and pathogenesis, drug design and vaccine development.

However, constructing and propagating flavivirus cDNA infectious

clones in bacteria has proven difficult [5], presumably due to host

cell toxicity and/or genetic instability [6]. To overcome these

difficulties, flavivirus cDNA clones have been prepared in low copy

number plasmids, bacterial artificial chromosomes, yeast plasmids,

or by propagating sub-genomic fragments that could be assembled

in vitro to produce complete genomes [5,7,8,9,10]. Even successful

flavivirus infectious cDNA clones constructed in low-copy number

plasmids remain deleterious to E. coli, leading to slow growth and

poor DNA yields [5]. Stabilizing spontaneous nonsense mutations

were often found in the regions encoding structural proteins in

constructs containing the cDNA of Japanese encephalitis virus (JEV)

[11]. The genetic instability of JEV cDNA clones has been

attributed to unintentional transcription from phage or bacterial

promoters in the vectors used. Similarly, spontaneous genetic

rearrangements were observed in E. coli when cDNA encoding the

59 fragment of the West Nile virus (WNV) genome was cloned in the

direct orientation downstream from bacterial promoters, but not in

the opposite orientation, suggesting that the characteristic flavivirus

genetic instability was caused by viral gene product toxicity to the

bacterial cells [12].

Expression of toxic viral gene products presumably requires

unexpected transcription in E. coli, yet no bacterial promoter

activity from within the cloning vectors or the viral cDNA itself has

been identified. In this study, we identify and characterise a cryptic

bacterial promoter within the cDNA encoding the dengue virus

(DENV) 59 untranslated region (UTR). In a reporter construct,

this promoter leads to the efficient expression of a DENV

polyprotein fragment fused to the green fluorescent protein (GFP).

To our knowledge, this is the first report of a specific cryptic

promoter within flavivirus cDNA. An efficient cryptic promoter in

the DENV cDNA, which might be a common feature among

mosquito borne flaviviruses, might help explain the difficulty of

establishing infectious DENV cDNA clones.

Results

59 DENV2 cDNA sequence drives cryptic expression of
viral protein in E coli

The plasmid pT7-D2-GFP was constructed by inserting a T7

promoter sequence, cDNA encoding the 59 1–170 nt of DENV
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serotype 2 (DENV2) and the GFP sequence into a pUC18

vector (Figure 1A). The DENV2 cDNA sequence includes the

complete 59 UTR (DENV nt 1–95) and the 59 portion of the

DENV2 open reading frame that codes for the N-terminal 25

amino acids of the capsid protein. The GFP sequence was

cloned in frame with the authentic DENV2 start codon. Thus,

mRNA transcribed from this construct would be expected to

produce a fusion protein in eukaryotic cells consisting of the N-

terminal 25 amino acids of the DENV2 polyprotein fused to

GFP. Compenent DH5a E. coli cells (Promega) transformed

Figure 1. Expression of D2-GFP fusion protein in E. coli (DH5a) is driven by a cryptic promoter in the cDNA encoding the 59 1–170 nt
of DENV2 RNA genome. (A) Schematic for the constructs of pT7-D2-GFP, pD2-GFP and pT7-GFP. (B) Florescence microscopy images of E. coli cells
transformed with these plasmids. (C) Western blot analyses of transformed E. coli lysates employing 6F3.1 anti-dengue 2 virus core protein
monoclonal antibody. (D) Western blot analyses of transformed E. coli lysates employing the anti-GFP antibody.
doi:10.1371/journal.pone.0018197.g001
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with pT7-D2-GFP fluoresced under UV illumination in the

absence of IPTG induction. To control for strain variation,

these transformations were repeated using MAX EfficiencyH
Stabl2TM competent cells (Invitrogen). No difference in protein

expression was observed between cell types (data not shown).

Therefore, only data produced from the DH5a strain are

reported for these and subsequent transformation experiments.

As the pUC18 vector did not contain a constituent bacterial

promoter, this observation suggested that the cDNA encoding

the 59 end of the DENV genome contained an efficient cryptic

prokaryotic transcriptional promoter.

To evaluate this hypothesis, two plasmids based on pT7-D2-

GFP were constructed. The DENV2 cDNA sequence was deleted

in pT7-GFP, while the T7 promoter sequence was deleted in

pD2-GFP. E. coli transformed with plasmids containing the

DENV2 cDNA sequence (pT7-D2-GFP or pD2-GFP) fluoresced

strongly, while cells transformed with plasmids lacking this

sequence (pT7-GFP or the pUC18 vector-only control) did not

fluoresce (Figure 1B). These data show that the expression of GFP

was not due to leaky transcription by the T7 promoter or from

unexpected promoter activity in the vector itself, and that the

DENV2 sequence is responsible for the observed GFP expression.

To confirm that the GFP fluorescence arose from the expression

of the expected fusion protein, D2-GFP, proteins from lysates of

transformed E. coli were resolved by SDS-PAGE, blotted, and

probed with either a monoclonal antibody that recognised the

DENV capsid protein [13] (Figure 1C) or one that recognised

GFP (Figure 1D). Both antibodies recognised a protein of about

28 kDa in lysates of E. coli cells transformed with either pT7-D2-

GFP or pD2-GFP, while no proteins were detected in lysates of

cells transformed with plasmids lacking the DENV2 cDNA

sequence (pT7-GFP or pUC vector). These data suggested that a

cryptic transcriptional promoter in the 59 170 nt of DENV2

cDNA led to the efficient expression of an authentic DENV2

protein sequence in E. coli. Although there was no evidence of

leaky T7 promoter activity, subsequent experiments used

constructs that lacked a T7 promoter unless in vitro transcription

was required.

A cryptic prokaryotic promoter is located in the cDNA
encoding DENV2 nt 68–86, and the resulting mRNA does
not require a Shine-Dalgarno sequence for translation
initiation

The BPROM promoter prediction program (SoftBerry,

Mount Krisco, NY) identified potential 235 and 210 bacterial

promoter elements at DENV2 cDNA nt positions 53

(TCAACG) and 72 (TTTTTAAT), respectively, which share

sequence homology with the wild type E. coli promoter elements

(Figure 2A). All four DENV serotypes contain similar, but not

Figure 2. Cryptic promoter sequence analysis. (A) The cDNA sequence encoding the 59 terminal 170 nt of the DENV2 RNA genome. The
putative 210 and 235 cryptic promoter elements and the putative Shine-Dalgarno sequences (red) are aligned with their corresponding E. coli wild
type elements (blue). The cDNA encoding the authentic DENV2 start codon (97AUG) and the in-frame alternate start codon (139AUG) are underlined.
The predicted transcription initiation site is at the cDNA encoding DENV2 nt 87. (B) Fluorescent microscopy images of E. coli cells transformed with
deletion mutant plasmids that result in truncations of 50 nt, 67 nt and 85 nt from the 59 end of DENV2 RNA, respectively.
doi:10.1371/journal.pone.0018197.g002
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identical, sequences in this T-rich region. Based on these

predictions, the start of cryptic transcription should be at or

about DENV2 cDNA nt position 87, which is 10 nt upstream

from the authentic DENV2 start codon (97AUG). Attempts to

use 59 RACE to locate the transcriptional start site more

precisely were unsuccessful.

To determine whether the putative cryptic promoter elements

were functioning in E. coli, 50, 67 or 85 bp were removed from the

59 end of the DENV2 cDNA in pD2-GFP to produce the plasmids

pD50D2-GFP, pD67D2-GFP and pD85D2-GFP, respectively.

The predicted 235 and 210 elements were both present in the

parental plasmid (pD2-GFP) and in pD50D2-GFP, while the 235

element was absent in pD67D2-GFP, and both the 235 and the

210 elements were absent in pD85D2-GFP. Deleting the first

50 bp or 67 bp of DENV2 cDNA had no effect on D2-GFP

expression in transformed E. coli, while deleting bp 1–85 abolished

D2-GFP expression altogether (Figure 2B).

To characterise the role that transcription played in this

observation, the amount of GFP mRNA produced in E. coli was

determined by quantitative RT-PCR (Table 1). E. coli transformed

with pD50D2-GFP and pD67D2-GFP yielded approximately the

same amount of GFP mRNA as E. coli transformed with the

parental pD2-GFP plasmid. By contrast, the GFP mRNA yield in E.

coli transformed with pD85D2-GFP was reduced by three orders of

magnitude relative to the parental plasmid. Thus, the putative 210

element of the cryptic promoter sequence appeared to be essential

for function, while the putative 235 element did not.

To determine if the efficiency of cryptic transcription correlated

with sequence within the DENV2 nt 68–86 region, the presumed

210 element (DENV2 nt 72–79) in pD2-GFP was mutated, and

the yields of GFP mRNA produced in E. coli transformed with

these plasmid constructs were assayed by quantitative RT-PCR

(Table 1). The yield of GFP mRNA was reduced by an order of

magnitude when the wild type 210 element, TTTTTAAT (pD2-

GFP), was mutated to TTGTTAAT (pD2-74G-GFP), and by two

orders of magnitude when it was mutated to TTGCGAAT (pD2-

74GCG-GFP). Such modulation of transcription efficiency is

consistent with a cryptic bacterial promoter in this region.

To compare the expression of D2-GFP in bacterial cells and in

eukaryotic cells, D2-GFP RNA was transcribed from pT7-D2-

GFP in vitro and transfected into BHK cells. Expression of D2-

GFP was assessed by Western blot analyses of lysates of either

transformed E. coli or RNA-transfected BHK cells. The

molecular weight of the fusion protein expressed in BHK cells,

estimated by electrophoretic mobility to be about 30 kDa, was

approximately 1.5 kDa larger than the fusion protein expressed

in E. coli (Figure 3A, compare lanes 1 and 3), suggesting that

translation had initiated in E. coli downstream from the initiation

site employed in BHK cells. DENV2 normally initiates

translation in eukaryotes by a scanning mechanism [14,15] at

the first AUG encountered on the mRNA (97AUG, Figure 2A).

Initiation from the AUG at nt 139 (139AUG) of the DENV2

RNA, which is in frame with 97AUG, would yield a D2-GFP

protein of a size consistent with the 28 kD band observed in the

western blot of E. coli lysates. To determine if 139AUG was used

to initiate translation in E. coli, an A139T mutation was

introduced into pT7-D2-GFP that would convert the 139AUG

methionine (Met) codon to a 139UUG leucine codon in the

resulting mRNA. BHK cells transfected with RNA transcribed

from pT7-D2-GFP-139T expressed a D2-GFP fusion protein of

the same size as the protein expressed in BHK cells that had been

transfected with RNA from pT7-D2-GFP (Figure 3A, compare

lanes 3 and 4). However, a D2-GFP fusion protein was not

observed in E. coli transformed with this plasmid (pT7-D2-GFP-

139T) (Figure 3A, lane 2), confirming that translation in E. coli

required the 139AUG.

Since both 97AUG and 139AUG are predicted to be present in

mRNA transcribed by the DENV2 cryptic promoter, 139AUG is

likely to be in a more favourable context than 97AUG for translation

initiation in bacteria. While there is no wild type Shine-Dalgarno (SD)

sequence encoded in the 59 DENV2 cDNA, the 116–121 nt

(AGGCGA) sequence is the most similar (Figure 2A). To determine

if this region functions as a SD sequence, the AGG at DENV2 cDNA

nt 116–118 in pD2-GFP was mutated to TCC (pD2-116TCC-GFP).

E. coli transformed with either pD2-GFP or pD2-116TCC-GFP

fluoresced strongly under UV illumination (Figure 3B), indicating

that the DENV2 nt 116–118 is not required for bacterial translation.

Constitutive transcription from the 59 DENV2 cDNA
cryptic promoter leads to efficient protein expression in
E. coli in the absence of IPTG induction

To assess the efficiency of the 59 DENV2 cDNA cryptic promoter

sequence, pD2-GFP expression in E. coli was compared with two

well-characterized GFP expression constructs, pDSW207 and

pDSW208 (17), which promote GFP expression in E. coli using

modified trc promoters that are relatively strong and weak inducible

promoters, respectively. In the absence of IPTG, the D2-GFP fusion

protein was efficiently expressed in E. coli transformed with pD2-

GFP, while no GFP expression was detected in cells transformed

with either pDSW207 or pDSW208 (Figure 4). When induced with

IPTG, D2-GFP protein expression in E. coli transformed with pD2-

GFP under the control of the pUC18 lac promoter increased

approximately 6 to 8 fold relative to uninduced expression, and was

similar to IPTG-induced pDSW207 GFP expression. Constitutively

expressed D2-GFP from pD2-GFP was more efficient than IPTG

induced GFP expression from pDSW208 in E. coli.

Kunjin virus contains a similar but less efficient cryptic
bacterial promoter in the cDNA encoding its 59 UTR

Like DENV, Kunjin virus (KUN) is a mosquito-borne member

of the flavivirus genus, and KUN cDNA clones are relatively more

stable in E. coli than other flavivirus cDNA clones. The cDNA

encoding mosquito-borne flavivirus 59UTRs contain a T-rich

region in a position analogous to the cryptic promoter described

here for DENV2. Such T-rich regions might generally function as

cryptic bacterial promoters of variable efficiencies, depending on

their sequence similarity to the wild type bacterial promoter. To

compare the efficiency of cryptic transcription in E. coli between

flaviviruses with differing known cDNA stabilities, the pKUN-GFP

Table 1. Quantitative detection of GFP gene in total cellular
RNA extracted from E. coli cells transformed with pD2-GFP,
pD2-GFP mutants and pKUN-GFP.

Plasmid Copies of mRNA* P value

pD2-GFP 6.6

pD50D2-GFP 6.5 .0.05

pD67D2-GFP 6.3 .0.05

pD85D2-GFP 3.8 ,0.01

pD2-74G-GFP 5.7 ,0.05

pD2-74GCG-GFP 4.6 ,0.01

pKUN-GFP 5.7 ,0.05

*Log10 copies of GFP gene/mg of total RNA.
doi:10.1371/journal.pone.0018197.t001
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plasmid was constructed by inserting cDNA encoding the 59 1–

170 nt of the Kunjin virus (KUN) genome and the GFP sequence

into a pUC18 vector. As before, the GFP sequence was placed in

frame with the authentic viral initiation codon. Unlike E. coli cells

transformed with pD2-GFP, cells transformed with pKUN-GFP

did not fluoresce under UV light (data not shown). The amount of

GFP protein detected by Western blot in E. coli cells transformed

with pKUN-GFP was 10-fold lower than in cells transformed with

pD2-GFP (Figure 5A). The amount of GFP mRNA detected by

quantitative RT-PCR in E. coli transformed with pKUN-GFP was

also 10-fold lower than the amount of DENV2 mRNA detected in

E. coli transformed with pD2-GFP (Table 1). These data suggest

Figure 3. D2-GFP translation initiates in E coli at an alternate start codon (139AUG) by a Shine-Dalgarno independent mechanism.
(A) Western blots of E. coli (lanes 1 and 2) and BHK (lanes 3 and 4) cell lysates expressing D2-GFP and D2-139T-GFP probed with anti-GFP antibodies.
E. coli was transformed with either pT7-D2-GFP or pT7-D2-139T-GFP. BHK cells were transfected with in vitro transcribed D2-GFP and D2-139T-GFP
RNA. (B) Fluorescent microscopy images of E. Coli cells transformed with either pT7-D2-GFP or pT7-D2-116TCC-GFP.
doi:10.1371/journal.pone.0018197.g003

Figure 4. The efficiency of the DENV cDNA cryptic bacterial promoter. E coli cells transformed with pD2-GFP, pDSW207 or pDSW208 were
cultured at 37uC for 5h in the absence (lanes 1–4) or presence (lanes 5–8) of IPTG. The numbers of bacterial cells in each culture were normalized, and
the cells were pelleted by centrifugation before lysis. Proteins were resolved by SDS-PAGE and analysed by Western blot employing anti-GFP
antibodies. The volume of clarified lysate loaded into each lane is shown.
doi:10.1371/journal.pone.0018197.g004
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that the cryptic promoter in KUN cDNA is less efficient than the

DENV2 cryptic promoter, and confirm that cryptic transcriptional

efficiency played the major role in controlling the amount of viral

protein cryptically produced in transformed E. coli.

Interestingly, two bands were observed in Western blot analyses

of lysates from pKUN-GFP transformed cells, while only a single

band was observed from pD2-GFP transformed cell lysates.

Cryptic transcription and subsequent translation of pKUN-GFP

generated two GFP-containing products in E. coli that differed by

approximately 500 Da (Figure 5A). A multiple sequence alignment

of flavivirus C proteins showed that the Met residue whose codon

is used by DENV2 as an initiation codon in bacteria is conserved

in all other mosquito-borne flaviviruses and in all DENV serotypes

[16] as part of a conserved NMLKR sequence motif. In KUN, this

Met is encoded by 142AUG. An alignment of the KUN and

DENV cDNA sequences used in this work are shown in Figure 5A.

Unlike other mosquito borne flaviviruses, KUN and West Nile

virus (WNV) contain a second Met residue, which is encoded by

157AUG. Translational initiation from the two internal Met

codons would yield proteins that differed by 5 amino acid residues,

which is consistent with the observation of two GFP-containing

protein products in Western blots that differ by about 500 Da. By

contrast, a protein product initiated from the authentic KUN start

codon (97AUG) would be about 1500 Da or 2000 Da larger than

proteins formed from 142AUG or 157AUG, respectively. Site

directed mutagenesis of pKUN-GFP that converted 142AUG to

142UUG in the mRNA eliminated of the larger of the two protein

products (data not shown), confirming that these products were

formed by initiation from the two internal Met codons.

Discussion

This study demonstrates that cryptic prokaryotic promoters

exist in the cDNA coding for the 59UTRs of the DENV2 and

Figure 5. 59 cDNA sequence of Kunjin virus genome also contains an active cryptic bacterial promoter. (A) Western blots of cell lysates
of E. coli cells transformed with pD2-GFP and pKUN-GFP probed with an anti-GFP antibody. (B) A comparison of cDNA sequences encoding the 59

portion of the KUN and DENV2 genomes. The ATGs encoding the authentic viral initiation codons are shown in bold. The ATGs encoding codons
utilised by E. coli for translation initiation are underlined.
doi:10.1371/journal.pone.0018197.g005

Dengue Virus cDNA Cryptic Promoter

PLoS ONE | www.plosone.org 6 March 2011 | Volume 6 | Issue 3 | e18197



KUN genomes that are capable of directing spurious viral protein

expression in E. coli. Similar cryptic promoters are likely to be

present in most mosquito borne flaviviruses, because the cryptic

promoter identified in the DENV 59UTR cDNA resides in a T-

rich region that is highly conserved among DENV serotypes and is

common among members of the flavivirus genus. The 59 UTR

cDNA representing the other Flaviviridae genera, the pestiviruses

and the hepaciviruses, do not contain similar T-rich promoter-like

sequences and do not suffer the same instability as the flaviviruses.

Hepatitis C virus, for example, can be cloned and propagated in E.

coli using high copy number vectors [5]. Even within the flavivirus

genus, the success of strategies to create full length infectious

cDNA clones in E. coli has been highly variable. DENV cDNA

clones are the most difficult among flaviviruses to construct. The

DENV serotype 4 (DENV4) cDNA cloned into the pBR322 low-

copy number plasmid [17] has been described as ‘‘metastable’’,

because bacterial colonies arise containing large deletions or

insertions in the DENV4 sequence [9]. The pANCR low copy-

number plasmid used to successfully establish infectious cDNA for

WNV and JE [18] failed to produce full length infectious cDNA of

DENV serotype 1 (DENV1) [10]. The reason for the differences in

cloning difficulty among flaviviruses is unclear, but it has been

speculated that DENV proteins are more toxic to E. coli than the

viral proteins of other flaviviruses [10]. Alternatively, these

differences might reflect the variable efficiencies of the cryptic

promoters among the flavivirus cDNA. KUN and WNV full

length cDNA, for example, are easier to clone in E. coli than full

length DENV cDNA, which is consistent with our data showing

that the cryptic promoter in the KUN 59 UTR cDNA is less

efficient in E. coli than the analogous cryptic promoter in DENV2

cDNA. All four DENV serotypes contain a sequence in the T-rich

region between DENV nt 68 and 86 that could harbour a cryptic

bacterial promoter. These sequences are similar but not identical,

which might explain the subtle differences in cloning difficulty

among Dengue viruses. A more extensive survey analysis of

flavivirus cDNA clones would be required to fully understand the

generality of the relationship between cryptic promoter efficiency

and genetic stability of flaviviruses in E. coli.

Previous reports have shown that eukaryotic promoters, such as

the cytomegalovirus (CMV) and the Rous sarcoma virus long

terminal repeat (RSV LTR) promoters, are active in E. coli, and

have postulated that leaky activity of these promoters may have

contributed to transcription of viral sequences and subsequent

viral protein expression [19,20]. In most flavivirus cloning

strategies, however, the T7 or SP6 phage promoters are employed

instead, to allow in vitro transcription of viral RNA. Our data show

that the T7 promoter in the vector carrying our reporter construct

did not drive transcription in E. coli, and that the DENV 59 UTR

cDNA sequence was uniquely responsible for the observed

downstream expression of virus derived protein sequence.

Because the DENV reporter constructs used in this study

contained cDNA encoding only the first 170 nt of the DENV2

genome, additional cryptic promoters might exist further downstream

in the full length DENV cDNA that could produce viral products

contributing to toxicity in E. coli. However, early attempts to clone full

length DENV2 cDNA in low copy number plasmids like pBR322

failed because of genetic instability when cDNA encoding the 59

portion of the DENV2 RNA genome was present [21]. Attempts to

clone infectious DENV4 cDNA into low copy bacterial vectors

resulted in insertions and deletions in the E/NS1/NS2A region [9].

Stabilizing nonsense mutations were often found in the regions

encoding structural proteins in constructs containing the cDNA of

Japanese encephalitis virus (JEV) [11]. Thus, collective evidence

suggests that the flavivirus structural proteins, which are located

toward the 59 end of the flavivirus ORF, contribute strongly to the

observed toxicity in E. coli. It is reasonable to suggest that potential

cryptic promoters in downstream cDNA might be less important for

toxicity than cryptic promoters located in the 59 UTR cDNA.

In addition to promoter activity, spurious expression of viral

proteins in E. coli requires efficient translation initiation on the

resultant mRNA. Prokaryotic translation normally utilises the

interaction between the SD sequence in the 59UTR of an mRNA

and the anti-SD sequence in the 39 end of the 16 S ribosomal RNA

[22,23]. However, non-canonical prokaryotic translation initiation

mechanisms that are not dependent on the SD sequence have been

reported. The ribosomal protein S1 (RPS1) can, for example,

interact with an AU-rich sequence within 59UTR to recruit and

assemble the ribosomal initiation complex on mRNA containing

short leader sequences lacking a viable SD sequence [24,25].

Alternatively, the 70 S ribosomal complex can bind directly to

leaderless mRNA and initiate translation [26]. Translation initiation

on mRNAs derived from the DENV or KUN 59UTR cDNA

cryptic promoter, which possess a short 59UTR of about 50 nt but

lack a SD sequence, likely employs the RPS1 mechanism.

The utility of this work is to inform strategies for the effective and

efficient cloning of full length infectious flavivirus cDNA. While the

existing strategies that employ low copy number plasmids or in vitro

genome assembly are useful workarounds, they do not address the

root cause of the toxicity and genetic instability in E. coli. These

measures are also not entirely satisfactory, as they are unwieldy and

often produce low yields of metastable DNA. Simply mutating the

cDNA in the DENV 59 UTR region to knock out the cryptic

promoter, however, would probably be unsuitable, as the flavivirus

59 UTRs play important roles in virus genomic RNA replication

and translation [15,27,28]. They share a high sequence homology

and highly conserved RNA secondary structures, and mutations in

the cDNA encoding the 59 UTRs would likely be deleterious to virus

replication efficiency. However, E. coli unexpectedly utilised a Met

codon located downstream from the authentic DENV start codon to

initiate translation, and a missense mutation at this codon

completely abrogated protein expression from our reporter

construct in E. coli while having no effect on protein expression in

eukaryotic cells. This observation suggests that a similar mutation in

the full length flavivirus cDNA might reduce or prevent spurious

viral protein expression in E. coli and allow cDNA cloning of difficult

or currently inaccessible flavivirus full length genomes. The

contribution of downstream cryptic promoters to E. coli toxicity, if

any, and the effect of mutating the highly conserved Met codon on

virus viability have yet to be evaluated.

Materials and Methods

Mammalian and bacterial cell lines
BHK-21 clone 15 cells were cultured at 37uC in RPMI 1640

media (Gibco, USA) supplemented with 5% v/v foetal calf serum

(FCS) and 100 U/ml penicillin, 100 mg/ml streptomycin and

2 mM glutamine (Gibco, USA) (growth medium). The data

reported here were collected using competent E. coli DH5a cells

(Promega, USA) for plasmid transformation and selected using

ampicillin (100 mg/ml). The cells were cultured in LB media

containing 100 mg/ml of ampicillin at 37uC.

Plasmid Construction
pT7-D2-GFP. A dsDNA fragment containing the T7

promoter and DENV2 1–175 cDNA sequences was generated

by PCR from the plasmid pGEM-D2-DI (GenBank access

number: HM016517.1) using pfx DNA polymerase (Invitrogen,

USA), and the D2-T7-59UTR-NotI-F and D2-175-XbaI-R

Dengue Virus cDNA Cryptic Promoter
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primers (Table S1). The fragment was then ligated into a pUC18

vector, which had been prepared by EcoRI and HindIII

restriction digestion and by blunt ending using the Klenow

fragment. The resultant plasmid, pT7-D2-175, contains a single

SalI restriction enzyme site at nt 165–166 of the DENV2

sequence. A PCR product containing the GFP coding sequence

flanked by SalI restriction sites was amplified from the pDSW208

plasmid [29] using the GFP-SalI-F and GFP-SalI-R primers

(Table S1), and digested with the SalI restriction enzyme. The

pT7-D2-175 plasmid was linearised by SalI restriction digestion.

The pT7-D2-GFP construct was then constructed by inserting and

ligating the GFP PCR product into the linearised pT7-D2-175

plasmid.
pD2-GFP, pT7-GFP, pD50D2-GFP, pD67D2-GFP and

pD85D2-GFP. The D2-59UTR-Not1-F, T7-GFP-Not1-F, D2-

59-51-Not1-F, D2-59-68-Not1-F and D2-59-86-Not1-F forward

primers (Table S1) were used in individual PCR reactions with the

common GFP-XbaI-R reverse primer (Table S1) to amplify

deletion fragments from the pT7-D2-GFP template. The PCR

products were digested with NotI and XbaI restriction enzymes to

generate the appropriate overhanging sequences. The fragments

were then ligated into a pUC-T7-D2-GFP plasmid that had been

digested with the NotI and XbaI restriction enzymes.
pD2-GFP-74G, pD2-GFP-74GCG, pT7-D2-GFP-139T and

pT7-D2-116TCC-GFP. Mutations of pD2-GFP and pT7-D2-

GFP were made using QuickChangeH Site-Directed Mutagenesis

Kit (Stratagene, USA) following the manufacturer’s instructions.

The primers used for mutagenesis are listed in Table S1.
pKUN-GFP. A 1–173 nt cDNA sequence fragment of the

Kunjin virus genome was amplified by PCR from the pAKUN/

FLSDX2A plasmid [30] using the KUN-59UTR-NotI-F and

KUN-173-SalI-R primers (Table S1), and was digested with the

NotI and SalI restriction enzymes. This fragment was ligated into

the backbone of the pD2-GFP plasmid, which had been prepared

by digestion with NotI and SalI restriction enzymes.

All plasmids were transformed into E. coli by heat shock

followed by ampicillin selection on LB plates overnight at 37uC.

Colonies were screened using colony PCR, and the inserts in the

plasmids were confirmed by sequencing.

Cell Imaging
E. coli was transformed with the indicated constructs and

cultured overnight in LB medium at 37uC in the presence of

ampicillin. A drop of cells was spread on a micro slide and fixed

with 4% v/v paraformaldehyde in PBS buffer. The cells were

gently washed twice with PBS and then mounted in 50% v/v

glycerol-PBS. The images were obtained by florescence micros-

copy (Leica AF6000).

RNA transcription and transfection
The plasmids pT7-D2-GFP and pT7-D2-GFP-139T were

linearised by Xba1 restriction enzyme digestion and transcribed

using the T7 MEGAscript transcription system (Ambion, USA).

Transfection of BHK cells was performed by electroporating

56106 cells in 0.5 mL PBS buffer with 10 mg of in vitro transcribed

RNA in a Gene Pulser XceII (Bio-Rad, USA) at 125 V, using 2

pulses of 25 ms each. Following electroporation, the cells were

diluted in fresh growth medium and transferred to a 25 cm2 tissue

culture flask at 37uC. The growth medium was replaced with fresh

medium at 24 h post-electroporation and incubated for an

additional 24 h. The cells were then lysed in 1 ml SDS-PAGE

loading buffer prior to PAGE and western blotting.

Western blot
E. coli cells were cultured for 24 h and harvested by

centrifugation at 5000 g for 5 min. The cell pellets were lysed

by heating in SDS-PAGE loading buffer at 95uC for 10 min.

Where IPTG induction was employed, the overnight culture was

diluted (1:100) in fresh LB medium and grown at 37uC for 2 h

prior to adding IPTG (final concentration 2 mM). The cells were

incubated for a further 5 h at 37uC before harvesting.

Proteins from the cell lysates were resolved on 12% SDS-PAGE

gels and transferred onto nitrocellulose membranes. The mem-

branes were blocked with 4% v/v milk in PBS buffer at room

temperature for 1 h and then probed with monoclonal anti-

dengue capsid protein antibody (6F3.1) [13] or anti-GFP antibody

(Sigma-Aldrich, USA). The peptide sequence determinant that is

essential for epitope recognition by 6F3.1 was shown by

octapeptide scanning to be 16LKR18 [13], and is predicted to be

present in all DENV2 protein products that initiate translation at

either the canonical DENV start codon or the downstream in

frame AUG. The bands were detected by enhanced chemilumi-

nescence (Perkin Elmer) using species-specific secondary antibod-

ies conjugated to horseradish peroxidase (DAKO, Denmark).

Quantitative RT-PCR
Total RNA was extracted from E. coli bacteria using Pure-

LinkTM RNA Mini Kit (Invitrogen) following the manufacturer’s

instructions. RNA was reverse transcribed in vitro for 1 h at 50uC
using Expand reverse transcriptase (Roche, Germany) using

random oligonucleotide primers. Quantitative real-time PCR

was performed on a Roter-Gene-6000 real-time PCR instrument

(Corbett, Australia) using Light Cycle FastStart DNA Master Plus

SYBR green I (Roche, Switzerland). Cycling conditions were 1

cycle of 95uC for 10 min followed by 35 cycles of 95uC for 10 sec,

58uC for 10 sec and 72uC for 25 sec. GFP RNA was quantified

using primers SalI-GFP-F and GFP-362-R (Table S1). Results

were normalized using the bacterial 16 S rRNA housekeeping

gene that was amplified using the primers Bac-16S-F and Bac-16S-

R (Table S1) as described elsewhere [31]. The results are reported

in Table 1 as the log10 of the normalized copy number. Student’s

T test was used to compare the pKUN-GFP and the pD2-GFP

mutant constructs with the unmodified pD2-GFP.

Supporting Information

Table S1 Complete list of primer sequences used for amplifica-

tion or site directed mutagenesis.

(DOCX)
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