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Abstract. Acquired resistance to tyrosine kinase inhibitors 
(TKIs) limits the duration of antitumor effects and impairs the 
survival of patients with oncogene‑driven non‑small cell lung 
cancer (NSCLC). At present, little is known about the immuno‑
modulatory ability of TKIs during the entire treatment period, 
including the drug‑sensitive and drug‑resistant periods. The 
present review aimed to comprehensively explore the dynamic 
changes in the tumor microenvironment (TME) during TKI 
treatment in NSCLC. Previous clinical and preclinical studies 
from medical and health databases related to NSCLC are 
reviewed. During the response period, cytotoxic immune 
cells accumulate in the TME and contribute to the formation 
of an inflammatory microenvironment. During the resistance 
period, the number of immunosuppressive cells increases, as 
does the expression of immune checkpoint proteins, which are 
critical mechanisms for tumor progression. The combination 
of targeted therapy and immunotherapy has been explored in 
multiple studies, and preliminary data showed controversial 
results. Extensive studies are needed to confirm the criteria 
of the selected patient subgroups and the toxicity profiles of 
EGFR TKIs and immune checkpoint inhibitors (ICIs). At 
present, the reagents targeting other immune cells, cytokines 
and related pathways remain underexplored compared with the 
revolutionary effect of ICIs in lung cancer. In the future, the 
precisely selected regimens for combination treatment should 
be further investigated in carefully designed xenograft models 
and clinical trials.
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1. Introduction

Lung cancer remains the leading cause of cancer‑related death 
worldwide. During the last decade, the treatment paradigm for 
non‑small cell lung cancer (NSCLC) has been significantly 
changed by targeted tyrosine kinase inhibitors (TKIs) based on 
molecular features (1). However, the limited response prevents 
patients from receiving the benefits of the targeted therapy. For 
example, in the case of EGFR, most patients gain resistance to 
gefitinib and erlotinib within a median period of 14 months (2). 
Overcoming the dilemma of recurrent resistance to TKIs is 
challenging. PD‑1/PD‑L1 inhibitors are gaining attention 
for the treatment of NSCLC. Published clinical data have 
shown that immune checkpoint inhibitors (ICIs) exhibit little 
antitumor efficacy in NSCLC with oncogene mutations (3,4). 
Accumulating evidence has demonstrated that the response 
rate of ICI is closely associated with the immune microenvi‑
ronment (5). Changes in the tumor immune microenvironment 
during TKI treatment remain unclear. Therefore, a better 
understanding of the tumor microenvironment (TME) during 
targeted treatment is required to provide clues for functional 
treatment strategies (6,7).

The present review summarizes the last 10 years of research 
into the immune alterations occurring before and after resis‑
tance to targeted therapy in NSCLC. Furthermore, the present 
review summarizes how different components of the TME 
contribute to TKI resistance as well as to the disease relapse 
and discusses combination strategies to achieve long‑lasting 
responses in patients with NSCLC.

2. Short‑term effects on the TME

EGFR inhibitors. Numerous immune cells coexist in the TME, 
including T and B lymphocytes, macrophages, polymorpho‑
nuclear cells, mast cells, natural killer cells, dendritic cells 
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and myeloid‑derived suppressor cells (MDSCs). These cell 
clusters can infiltrate into the TME and alter it after targeted 
therapy (6). 

During the response period to TKIs, CD8+ T cells and 
dendritic cells expand, while immunosuppressive cells such 
as Foxp3+ regulatory T cells (Tregs) and M2‑like polarization 
of macrophages are inhibited. T‑cell infiltration in the TME 
is elevated by TKIs  (8). Increased lymphocyte infiltration 
generates a local inflammatory TME. For example, skin rash 
is a common side effect of EGFR‑TKIs. EGFR‑TKIs have 
been reported to alter the levels of circulating cytokines and 
lymphocytes (9). A significant increase in peripheral natural 
killer cells and interferon‑γ (IFN‑γ) levels is observed after 
4 weeks of gefitinib treatment. In addition, erlotinib and gefi‑
tinib improve the susceptibility of cancer cells to natural killer 
cells (10). EGFR inhibitors induce the expression of major 
histocombatibility complex (MHC) class I and II molecules 
and promote T cell‑mediated tumor death (11). Circulating 
interleukin 6 (IL‑6) levels are significantly decreased, which 
might predict better progression‑free survival  (7). EGFR 
TKIs decrease pro‑inflammatory cytokines such as CC 
chemokine ligand (CCL)2, CCL5, C‑X‑C motif chemokine 
ligand (CXCL)8, CXCL10, and IFN‑γ‑induced protein 10, and 
increase the level of IFN‑γ (9,12).

In mouse models with sensitive EGFR mutations, erlotinib 
increases the infiltration of T lymphocytes and natural killer 
cells other than B cells. Dendritic cells and macrophages 
with increased MHC class II expression may enhance 
antigen‑presenting activity. The levels of immune checkpoints 
in the TME were reduced (13). Several EGFR downstream 
signaling pathways [IL‑6/Janus kinase (JAK)/STAT3, NF‑κB, 
and phospho‑ERK1/2/phospho‑c‑Jun] regulate PD‑L1 expres‑
sion in tumor cells (3,7). An NSCLC specimen study illustrated 
that PD‑L1 expression was downregulated after 4 weeks of 
gefitinib treatment (14). EGFR TKI treatment led to a decrease 
in PD‑1, cytotoxic T lymphocyte‑associated antigen 4 and 
T  cell immunoglobulin and mucin domain‑containing 
protein 3 expression in T cells in mouse models (8). EGFR 
TKIs and anti‑PD‑1 antibody combination treatment produced 
no synergistic antitumor effect in an in  vitro co‑culture 
system (3). Reduced expression of immune checkpoints within 
the TME may explain these clinical observations (15).

ALK inhibitors. ALK inhibitors have been reported to increase 
T‑lymphocyte infiltration. Recently, whole‑exome and RNA 
sequencing indicated that immune‑related genes were altered 
in response to ALK TKI treatment. Antigen presentation 
genes, IFN‑γ signaling genes, inhibitory checkpoint genes, 
and stimulatory checkpoint genes increased apparently after 
response to ALK TKIs (Table I) (16). 

In conclusion, short‑term exposure to TKIs not only 
eliminates tumor cells, but also modulates immune‑mediated 
cytotoxicity in the TME during the initial response period. 
One study provided a rationale for the potential combina‑
tion of erlotinib and immunotherapies for the treatment of 
lung carcinomas in first‑line treatment (17). However, other 
pre‑clinical studies confirmed that synergistic effects of 
EGFR‑TKIs combined with anti‑PD‑1 antibody were not 
present in an in vitro co‑culture system (3). According to the 
latest edition of the National Comprehensive Cancer Network 

guidelines for NSCLC (18), PD‑1/PD‑L1 inhibitor may not be 
recommended for EGFR+/ALK+ NSCLC due to the negative 
results generated in a retrospective study (19). Therefore, TKI 
monotherapy is preferred for oncogene‑driven NSCLC in the 
first‑line treatment.

3. Long‑term effects on the TME

After the long‑term use of TKIs, the positive therapeutic 
response is reversed, especially when resistance emerges. 
Under the selective pressure of targeted therapy, certain 
tumor cells evade the host immunity through a variety of 
intrinsic mechanisms. Multiple signaling pathways and related 
molecules comprise the complexity of the TME. In summary, 
a wide range of immunosuppressive mechanisms may evolve 
the acquired resistance to TKIs (20,21).

EGFR inhibitors. A decrease in cytotoxic T cell populations 
was observed in EGFR inhibitor‑resistant lung adenocarci‑
noma when compared with that in the initial biopsy from an 
identical patient (22). Some resistant tumors are deficient for 
MHC class I as a result of decreased mRNA levels and related 
genes (23). Thus, targeted treatment may influence different 
aspects of tumor antigen presentation and T‑cell effector func‑
tion. Mitogen‑activated protein kinase is the most common 
compensatory signaling pathway responsible for the develop‑
ment of acquired resistance (24). In the examination of tumor 
biopsies, cytotoxic T cells are found to decrease after TKI 
resistance and T‑cell infiltration. Tregs are the main compo‑
nent of the TME. Conversely, the number of macrophages, 
especially those expressing indoleamine 2,3‑dioxygenase 1 
(IDO1), increase with disease progression (25).

MDSCs are immature myeloid cells that mainly inhibit 
T‑cell activation; they help create a favorable environment for 
tumor survival. In an in vivo study an increased percentage 
of MDSCs was detected during long‑term use of EGFR‑TKI 
in mouse models  (8,26). Recruitment and expansion of 
MDSCs were detected in the serum of patients with NSCLC 
who achieved EGFR TKI resistance, compared with the 
baseline  (27). In the TME, MDSCs impair host antitumor 
immunity and the effect of immunotherapy (28). 

PD‑L1 expression levels in tumor cells were found to 
notably increase after gefitinib treatment in a subset of 
patients (29). PD‑L1 is a well‑known immune checkpoint 
gene, and knockout of PD‑L1 helps to restore the function 
of human cytotoxic T lymphocytes  (30,31). The histo‑
logical transformation of the tumor and metastasis sites 
affects the PD‑L1 expression levels after resistance (32). 
In one study, paired analysis indicated that tumors with 
TPS ≥50% increased from 14 to 28% after acquired resis‑
tance, especially obvious in the EGFR T790M‑negative 
tumor  (31). High expression levels of PD‑L1 have been 
reported to be a negative prognostic marker  (33) and 
although lung cancer cells develop resistance to EGFR 
TKIs, EGFR phosphorylation is still suppressed in the 
resistant cells. However, the downstream ERK signaling 
is reactivated upon drug resistance, leading to PD‑L1 
restoration  (34,35). Several studies have revealed that 
PD‑L1 is a downstream target of the EGFR pathway, 
which is interceded via the IL‑6/JAK/STAT3, NF‑κB, 
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and phospho‑ERK1/2/phospho‑c‑Jun pathways (3,36‑38). 
Single‑cell RNA sequencing of biopsy samples showed that 
immunosuppressive genes, such as IDO1, kynureninase and 
quinolinate phosphoribosyltransferase levels were elevated 
in TKI‑resistant tumors compared with those in naïve 
tumors (25). Dynamic changes are shown in Figure 1.

ALK inhibitors. Limited data have been reported on the impact 
of ALK inhibitors on the TME after resistance in ALK‑positive 
NSCLC. A preclinical study explored the changes in the 
tumor immune microenvironment in mouse models. The 
results indicated that ALK‑positive NSCLC was as an 
immune ‘desert’ before the initiation of targeted therapy (39). 
After resistance to ceritinib the immunogenic features of 
TME changed, including increased PD‑L1 expression levels, 
increased number of functionally impaired CD8+ T cells, 
antigen‑presenting cells, Tregs and MDSCs, and increased 
IFN‑γ secretion. RNA sequencing analysis revealed increased 
transcription of IFN‑γ‑related genes, Treg‑related genes and 
immune suppressive macrophage‑related genes. However, 

whole‑exome sequencing revealed no obvious difference in 
tumor mutation burden and T cell receptor clonality between 
untreated and resistant ALK‑positive tumors (39). Thus, due to 
the lack of immunogenicity and impaired antitumor immunity, 
ICIs are expected to be less effective in ALK‑TKI‑resistant 
tumors.

In conclusion, along with the emergence of acquired resis‑
tance, the TME begins to gain immunosuppressive features, 
such as the presence of inhibitory ligands, restoration of the 
MDSCs and Tregs, impaired functions of tumor‑infiltrating 
lymphocytes, decreased antigen presentation, increased 
level of IFN‑γ and increased immune checkpoint molecules 
(Table I) (8). Subsequently, immune evasion and T‑cell exhaus‑
tion lead to disease progression (40). The potential mechanisms 
that are involved in these changes include: i) The reactivation 
of EGFR downstream signaling pathways; ii) the secretion of 
tumor‑related exosomes by EGFR‑mutated cells; and iii) the 
induction of MHC expression. The change in the TME indi‑
cates the possibility of initiating combination strategies in 
resistant patients.

Table I. Alterations in tumor microenvironment before and after tyrosine kinase inhibitor resistance.

Function category	 Immune component	 iEGFR sensitive	 iEGFR resistance	 iALK resistance

Immune cells	 CD8 + T cells 	 Increase (8,16,25)	 Stable (16)	 Increase (16),
			   Decrease (31)	 Decrease (39)
	 NK cells	 Increase (7,8,14,16)	 Stable (16)	 Increase (16)
	 B cells 	 Increase (16)	 NA	 NA
	 MDSCs	 NA	 Increase (8)	 NA
	 Dendritic cells	 Increase (8)	 NA	 NA
	 M2‑macrophage	 Decrease (8,25)	 Increase (25)	 Increase (39)
	 Regulatory T cells 	 Decrease (8)	 NA	 Increase (39)
Antigen presentation genes 	 CALR 	 NA	 Decrease (16)	 Decrease (16)
	 CANX 	 NA	 Decrease (16)	 Decrease (16)
	 PDIA3 	 NA	 Decrease (16)	 Decrease (16)
	 MHC‑I	 Increase (11)	 Decrease (23)	 NA
	 MHC‑II 	 Increase (11)	 NA	 NA
Immune checkpoints	 STAT5B 	 NA	 Increase (16)	 Increase (16)
	 PD‑1 	 NA	 Increase (16)	 Increase (16)
	 BTLA 	 NA	 Increase (16)	 Increase (16)
	 CD27 	 NA	 Increase (16)	 Increase (16)
	 PD‑L1	 Decrease (3,36)	 Increase (29,31,36)	 Increase (39)
Inflammatory cytokines	 IL‑4	 NA	 NA	 Increase (39)
	 IL‑6	 Decrease (7,14) 	 NA	 NA
	 IL‑10	 Increase (8)	 NA	 NA
	 CCL‑2	 Increase (8)	 NA	 NA
	 CCL‑5	 Increase (9,12)	 NA	 NA
	 CXCL8 	 Increase (9)	 NA	 NA
	 CXCL10	 Increase (9)	 NA	 NA
	 IFN‑γ	 Increase (7,39)	 Increase (16)	 Increase (16)
Mutational load 		  Decrease (6)	 Increase (6,31)	 Decrease (16)

iEGFR, EGFR inhibitors; iALK, ALK inhibitors; MDSCs, myeloid‑derived suppressor cells; CCL, CC chemokine ligand; CXCL, C‑X‑C motif 
chemokine ligand; MHC, major histocompatibility complex; PD‑L1, programmed death‑ligand 1; PD‑1, programmed cell death protein‑1; 
BTLA, B‑ and T‑lymphocyte attenuator; CALR, calreticulin; CANX, calnexin; PDIA3, protein disulfide isomerase A3; NA, not applicable; 
NK cells, natural killer cells; IL, interleukin; IFN, interferon. 
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4. Combination treatment strategies

At present, ICIs have achieved great success in the treatment 
area of lung cancer and are considered ideal for combination 
treatment. According to preclinical data, combination of 
EGFR‑TKIs with ICIs showed promising antitumor effect in a 
mouse model (41‑43). Two retrospective studies suggested that 
nivolumab had a favorable response rate in NSCLC, especially 
in EGFR T790M‑negative disease (44).

In first‑line treatment, a phase  Ib study investigated 
the safety and efficacy of durvalumab in combination 
with gefitinib. However, this study was halted due to liver 
dysfunction. The objective response rate was 77.8% (45). The 
KEYNOTE‑021 study evaluated the safety of the combina‑
tion of erlotinib or gefitinib and pembrolizumab. Compared 
with erlotinib, pembrolizumab plus gefitinib increased the 
incidence of toxicity and resulted in treatment discontinuation. 
The overall objective response rate was 41.7% (46). 

In second‑line treatment, the response rate of combination 
therapy between nivolumab and erlotinib was 15% and the 
response lasted as long as 38.2 months. A total of 20% of the 
participants experienced grade three toxicities (47). Long‑term 
analysis of a phase Ib study of erlotinib plus atezolizumab 
showed tolerable adverse effects of combination therapy, 
with a median overall survival time of 32.7 months (48). In 
the TATTON trial, the objective response rate was 42% in the 

osimertinib and durvalumab group. The most common adverse 
events were arm rash, vomiting and diarrhea (49). Another 
phase III trial, CAURAL, reported that 64% (9/14) of partici‑
pants responded to osimertinib and durvalumab. The main 
toxicity presented as a rash (50). Unfortunately, the TATTON 
and CAURAL trials were terminated by AstraZeneca owing 
to the increased incidence of interstitial lung disease  (51). 
Related data were collected from the FAERS database, where 
70 patients with NSCLC were treated with EGFR‑TKI plus 
nivolumab, and the incidence of interstitial pneumonitis was 
25.7% (52). 

Due to the lack of immunogenicity, preclinical and clinical 
data have indicated that PD‑1/PD‑L1 inhibitors combined 
with ALK inhibitors are not superior to ALK inhibitors 
alone, and the incidence of drug‑related hepatotoxicity has 
increased (39,53). However, carefully selected drugs for combi‑
nation therapy, such as avelumab plus lorlatinib, could produce 
antitumor activity with an acceptable safety profile (54).

Recent studies have shown that the response rate to 
PD‑1/PD‑L1 inhibitors is closely associated with PD‑L1 
expression levels, tumor‑infiltrating lymphocytes, gut 
microbiota, and the levels of IFN‑γ, TGF‑β, VEGF‑A, 
IL‑6, IL‑10 and other biomarkers (8,55). In TKI‑resistant 
patients with favorable immune features, there should be 
more confidence in attempting combined therapy with ICIs 
and TKIs.

Figure 1. Alterations in the tumor microenvironment during EGFR‑TKI treatment. TKI, tyrosine kinase inhibitor; MDSCs, myeloid‑derived suppressor 
cells; CCL, CC chemokine ligand; CXCL, C‑X‑C motif chemokine ligand; MHC, major histocompatibility complex; NK cells, natural killer cells; PD‑L1, 
programmed death‑ligand 1; PD‑1, programmed cell death protein‑1; BTLA, B‑ and T‑lymphocyte attenuator; IFN, interferon; IL, interleukin.
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Researchers seek to discover novel combination treatments. 
An in vitro study found that inhibition of EGFR signaling 
and IL‑8 signaling triggered tumor apoptosis in resistant lung 
cancer  (17). Blockade of TGF‑β signaling combined with 
EGFR TKIs decreased the motility of resistant tumor cells 
in the cell culture system (56). Erlotinib plus bevacizumab 
produced a synergy effect in the EGFR‑TKI‑resistant xenograft 
model (57). These studies provide different treatment strategies 
to overcome the acquired resistance to TKIs in NSCLC.

5. Conclusion and future perspectives

It is known that the host immunity undergoes dynamic changes 
following TKI treatment. During the response period, cytotoxic 
immune cells accumulate in the TME and contribute to the 
formation of an inflammatory TME. Once the acquired resis‑
tance develops, immunosuppressive cells as well as immune 
checkpoints begin to increase and function in the TME, which 
is a critical mechanism for tumor progression. Although the 
response rate of ICIs shows negative results in advanced onco‑
gene‑driven NSCLC at frontline treatment, the combination of 
targeted therapy and immunotherapy remains a feasible strategy 
to achieve synergistic effects in selected resistant patients. 
Combination treatment has been explored in multiple studies, 
and preliminary data have shown both positive and negative 
results. Thus, extensive exploration is still needed to confirm the 
selection criteria of patient subgroups and the toxicity profiles 
of EGFR‑TKIs plus ICIs. At present, reagents targeting MDSCs, 
Tregs, IL‑8, TGF‑β and related pathways remain underexplored 
as compared with the revolutionary effect of ICIs in lung cancer. 
In the future, the precisely selected regimens for combination 
therapy should be further investigated in carefully designed 
xenograft models and clinical trials.
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