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ABSTRACT
Nonalcoholic fatty liver disease (NAFLD) is a risk factor for liver cancer and prevalence varies by 
ethnicity. Along with genetic and lifestyle factors, the gut microbiome (GM) may contribute to 
NAFLD and its progression to advanced liver disease. Our cross-sectional analysis assessed the 
association of the GM with hepatic adiposity among African American, Japanese American, White, 
Latino, and Native Hawaiian participants in the Multiethnic Cohort. We used MRI to measure liver 
fat and determine nonalcoholic fatty liver disease (NAFLD) status (n = 511 cases) in 1,544 
participants, aged 60–77 years, with 12–53% overall adiposity (BMI of 17.8–46.2 kg/m2). The GM 
was measured by 16S rRNA gene sequencing and, on a subset, by metagenomic sequencing. 
Alpha diversity was lower overall with NAFLD and in certain ethnicities (African Americans, 
Whites, and Latinos). In models regressing genus on NAFLD status, 62 of 149 genera (40%) 
exhibited a significant interaction between NAFLD and ethnicity stratified analysis found 69 
genera significantly associated with NAFLD in at least one ethnic group. No single genus was 
significantly associated with NAFLD across all ethnicities. In contrast, the same bacterial metabolic 
pathways were over-represented in participants with NAFLD regardless of ethnicity. Imputed 
secondary bile acid and carbohydrate pathways were associated with NAFLD, the latter of which 
was corroborated by metagenomics, although different genera in different ethnicities were 
associated with these pathways. Overall, we found that NAFLD was associated with altered 
bacterial composition and metabolism, and that bacterial endotoxin, assessed by plasma lipopo-
lysaccharide binding protein (LBP), may mediate liver fat-associated systemic inflammation in 
a manner that seems to vary by ethnicity.
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Introduction

Nonalcoholic fatty liver disease (NAFLD) is esti-
mated to affect >30% of the US population and 
is closely associated with elevated risk for cardi-
ovascular disease, metabolic syndrome, type 2 
diabetes (T2D), and overall malignancy. 
Metabolic disorders, including NAFLD – hepatic 
manifestations of obesity – now contribute more 
to the risk of hepatocellular carcinoma (HCC) 
than any other etiologies for this cancer in the 
US.1 Multiple risk factors for NAFLD include 

ethnicity, genetics, diet, and the gut microbiome 
(GM) and its metabolites.2 Setiawan et al.3 found 
that NAFLD was the most common etiology for 
chronic liver disease (CLD) in all five ethnic 
groups in the Multiethnic Cohort Study (MEC); 
however, the proportion of NAFLD-associated 
CLD varied across ethnic groups. Obesity, espe-
cially visceral adiposity which varies across eth-
nicity, was associated with NAFLD.4 Diet and 
diet quality also varying across ethnic groups, 
was associated with NAFLD5,6 and may play 
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a role in ethnic differences in risk of CLD, which 
have also been associated with different patterns 
of dietary intake.7,8

The gut-liver axis, whereby the liver is 
exposed to gut microbial metabolites and endo-
toxins (i.e., gram-negative bacterial cell wall 
material), may promote inflammation in the 
development of NAFLD. GM composition and 
microbial metabolic pathways,9–11 may influ-
ence host metabolism, oxidative stress, and sys-
temic and liver inflammation. Previous studies 
have identified reduced bacterial diversity with 
NAFLD but have not identified consistently 
specific bacterial genera associated with 
NAFLD, although this discrepancy may be due 
to small sample sizes and heterogeneous study 
populations.9,10,12–15 This has limited the 
potential to develop biomarkers of ectopic fat 
related to disease risk stratified along ethnicity.4 

Despite evidence that NAFLD varies across 
ethnicities,4,16 the variation in how the GM is 
associated with NAFLD has not been investi-
gated across ethnic groups.

Our aim was to examine, in a cross-sectional 
subset of the Multiethnic Cohort, the associa-
tions between NAFLD and GM composition 
and bacterial metabolic pathways. This analysis 
took advantage of a relatively large sample of 
the cohort’s five ethnic groups and the state-of- 
the-art measurements of liver at and NAFLD 
using MRI It affords the opportunity to mea-
sure the association between the microbiome 
structure and function that may link pathophy-
siologic pathways to potential clinical 
relevance17in treating the racial/ethnic disparity 
in the severity of NAFLD.

Materials/subjects and methods

Study population

The MEC study has followed 215,000 Hawaii 
and Los Angeles residents of African 
American, Japanese American, white, Latino, 
and Native Hawaiian origin since 1993–1996.18 

The Multiethnic Cohort – Adiposity Phenotype 
Study (MEC-APS) examined 1,861 healthy MEC 

participants, including men and postmenopau-
sal women aged 60–77 years, of the five main 
MEC ethnic groups.4 The recruitment was stra-
tified by sex, ethnicity and six body mass index 
(BMI) categories to balance distribution across 
a wide range of BMI in each sex-ethnic group. 
Between 2013 and 2016, participants visited the 
two affiliated clinical centers in Honolulu, 
Hawaii, or Los Angeles, California, to undergo 
a whole-body dual-energy X-ray absorptiometry 
(DXA) and abdominal magnetic resonance ima-
ging (MRI) scan, anthropometric and resting 
metabolism measurements, fasting blood and 
stool sample collections, and repeat administra-
tion of the MEC food frequency questionnaire 
(FFQ) covering over 180 food items including 
ethnic-specific foods.5,19 Usual dietary intake 
and the Healthy Eating Index-201020(HEI- 
2010; as a measure of overall diet quality) over 
the past year were estimated from the FFQ.

As detailed in a previous report,4 individuals 
were excluded for current or recent (<2 years) 
smoking, amputation or implants, claustropho-
bia, insulin or thyroid medication, dialysis, and 
serious health conditions such as chronic viral 
hepatitis and dialysis. Also, participation was 
deferred for those with recent history within 6 
months of chemotherapy or radiation therapy 
of the abdomen, antibiotic used, substantial 
weight change (>20 pounds) or colonoscopy as 
well as vaccination within 1 month. We also 
limited the current analysis to nill to moderate 
alcohol drinkers (men <30 g/day, women <20 g. 
day based on FFQ). Our study was based on 
1,544 of the 1,861 MEC-APS participants after 
removing 74 that were missing microbiome 
data, 62 missing liver fat data mostly due to 
motion artifacts, and 181 who reported high 
alcohol use. For adjustment of total adiposity, 
we also removed 15 participants without valid 
DXA measure which resulted in 1,529 partici-
pants in the adjusted analysis including Latinos 
(n = 325) and African Americans (n = 256) 
recruited in Los Angeles and Native Hawaiian 
(n = 246), all whites (n = 316), and Japanese 
Americans (n = 400), as well as one African 
American recruited in Hawaii.
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The study protocol conformed to the ethical 
guidelines of the 1975 Declaration of Helsinki and 
Institutional Review Board reviews were conducted 
by participating institutions. Signed informed con-
sent was obtained from all study participants.

Assessment of liver fat and NAFLD

We measured percent liver fat using abdominal 
MRI and total body fatness using DXA as pre-
viously described4 with a method that has 
shown high accuracy compared to liver 
biopsy.21 NAFLD was defined as percent liver 
fat of >5.5%.22

Blood biomarkers

Venous blood (40 mL) was collected after an 
overnight fast (>8 hours), processed in the 
MEC laboratories in Hawaii and Los Angeles 
to components (plasma, buffy coat, serum), and 
stored at −80°C until shipment for biomarker 
assays at the UH Cancer Center Analytical 
Biochemistry Shared Resource laboratory 
(directed by Dr. Franke). Samples were 
arranged into batches so that each batch 
included approximately equal numbers of men 
and women of each ethnic group and ~10% 
blind QC duplicates. Plasma lipopolysaccharide 
binding protein (LBP) was analyzed using 
a commercial ELISA kit (Cell Sciences, 
CKH113; coefficient of variation (CV): 0.7%; 
intraclass correlation coefficient (ICC) 80%). 
Serum high-sensitivity C-reactive protein 
(CRP), a measure of systemic inflammation 
and alanine amino transferase (ALT), a plasma 
marker of liver dysfunction, were measured as 
previously reported.23 Our assays for CRP and 
ALT had a CV of 13.8% and 4.4% and ICCs of 
88% and 82%, respectively.

Microbiome Analysis

Sample collection
Stool samples were collected at home using 
a collection tube containing 5 mL RNAlater 
(Fisher Scientific) and sterile 5 mm glass beads 
(Ambion) to facilitate sample dispersion in 

RNAlater.24 Participants kept their samples in 
their freezers and brought them to the study 
clinic. At sample collection, participants filled 
out a questionnaire to provide collection time, 
special diets, consumption of probiotic foods in 
the past year, and whether participants were 
treated with an oral, injection, or IV form of 
antibiotics in the past year, and if so, how 
recently.

Sample processing
Stool samples were stored in RNAlater at −80°C at 
study centers and shipped in bulk on dry ice to Fred 
Hutchinson Cancer Research Center (Fred Hutch). 
Stool samples were thawed and homogenized, and 
genomic DNA was extracted.24 Briefly, to optimize 
bacterial genomic DNA extraction, we did bead beat-
ing at 45s (2x) each with samples placed on ice in 
between. Quality control samples, duplicate partici-
pant samples, and processing blanks were used to 
assess variation in library preparation and sequencing 
batches.25

For paired-end sequencing of the V1–V3 
region of the 16S rRNA gene, the 27 F mod 
forward PCR primer sequence was 5°- 
AGRGTTNGATCMTGGCTYAG-3°. The 519 R 
reverse PCR primer sequence was 5°- 
GTNTTACNGCGGCKGCTG-3°. Three PCR 
(20 µl; 20 ng genomic DNA) reactions were 
performed using the HotStarTaq Plus Master 
Mix Kit (QIAGEN) under the following condi-
tions: 94°C for 3 minutes, followed by 28 cycles 
of 94°C for 30 seconds, 53°C for 40 seconds, 
and 72°C for 1 minute, after which a final elon-
gation step at 72°C for 5 minutes was per-
formed. After amplification, quality of the 
PCR products were checked in 2% agarose gel. 
The three PCR products were pooled together 
in equal proportions based on their molecular 
weight and DNA concentrations. Paired-end 
sequencing performed at Molecular 
Diagnostics, LLP (Shallowater, TX) on the 
MiSeq using MiSeq Reagent Kit v3 following 
the manufacturer’s guidelines to obtain 2 × 
300 bp paired-end reads (Illumina, San Diego, 
CA). On a subset of samples chosen from the 
NAFLD vs non-NAFLD groups from each eth-
nicity (n = 30; six from each ethnicity), we 
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performed whole-genome shotgun sequencing 
on an Illumina HiSeq generating 2×150bp 
paired-end reads. FastQ files were exported 
and securely transferred (BaseSpace, Illumina) 
to Fred Hutch for bioinformatic analysis.

Microbiome bioinformatic data processing
To classify bacterial taxonomy, sequences were 
processed using QIIME v.1.826 as previously 
described.25 The filtering strategy for opera-
tional taxonomic units (OTUs) included para-
meters in QIIME to exclude low abundant 
sequences, singletons, and chimeras. Briefly, 
the OTU table was filtered using the QIIME 
script filter_OTUs_from_OTU_table.py with – 
min_count_fraction set to 0.00005. Additional 
OTU entries were filtered out if they were 
detected as chimeras using QIIME’s identify_-
chimeric_seqs.py script with method blast_frag-
ments. Final filtering excluded genera which 
appeared in <10% of the subjects.27 Bacterial 
functional genes were imputed from 16S rRNA 
genes counts that were adjusted for batch (see 
below).27

Sequence reads were processed for bioinfor-
matic analysis of the metagenomes (n = 30) with 
the KneadData v 0.5.1 quality control pipeline, 
which uses Trimmomatic (version 0.36), 
BMTagger filtering, and decontamination algo-
rithms to remove low-quality read bases and 
host (human) reads, respectively.28 

Trimmomatic was run with parameters 
MAXINFO:80:0.5 and MINLEN:50. Functional 
profiling was performed using HUMAnN2 ver-
sion 0.11.229 with reads de-paired and imple-
menting Diamond30 to map reads against 
UniRef90.31 Sequences per gene family were 
counted, normalized for length and alignment 
quality, and linked to pathways using 
MetaCyc.32 Data matrices of the abundance of 
genes, gene families, and genes in metabolic 
pathways were generated. We quantified the 
abundance of the UniRef90 gene families and 
gene names for secondary bile acids 
(Supplemental Table 2) and carbohydrate 

metabolism (Table 3)33 by summing the normal-
ized counts of all genes that mapped to these 
pathways.

Enzymes in carbohydrate metabolism were iden-
tified using the CAZy database (31 July 2019 ver., 
URL http://bcb.unl.edu/dbCAN2/download/ 
Databases/CAZyDB.07312019.fa). A DIAMOND 
(version 0.9.22) database was generated from the 
FASTA file and used to align metagenomics reads, 
where hits were retained if the e-value <10−20. Data 
for statistical analysis were filtered for abundance 
(cells with less than 46 counts which represents the 
25th percentile of non-zero counts were placed to 
zero) and prevalence (variables that had greater 
than or equal to 75% zero counts were removed). 
All sequences follow MIMARKS standard34 and are 
publicly available in the Sequence Read Archive 
(http://www.ncbi.nlm.nih.gov/sra/.)

On unrarefied count data, we applied ComBat- 
seq35 designed to remove unwanted (non- 
biological) variation, while preserving potentially 
relevant variation in sequence count data. This 
was applied by including, for each sample, informa-
tion on sequencing batch along with each partici-
pant’s sex and ethnicity. An additional set of 
quality-control samples run in each batch were 
also used in this process. The resulting adjusted 
counts were used in all subsequent statistical 
analyses.

Statistical Analysis

We examined the association between the GM and 
NAFLD among the 1,529 MEC-APS 
participants.35,36 Results from each significance 
test are reported as a “q” value and statistical sig-
nificance was defined by an FDR cutoff less than 
0.05.37 Analyses were performed using 
R Version 4.0.2.

Participant characteristics
Demographic, anthropometric, health, lifestyle, 
and dietary measures were examined overall and 
by NAFLD status (Table 1, Figure 1e, and 
Supplemental Figures 5E–9E). These were 
assessed using t-tests for continuous variables 
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and chi-squared tests for categorical variables as 
were the subset of participants for which we did 
metagenomic sequencing (Supplemental 
Table 4).

Alpha and beta diversity
Linear regression was used to model Shannon 
alpha diversity by NAFLD status and its inter-
action with ethnicity, adjusted for sex and total 
adiposity (from DXA) and in similar models 
stratified by ethnic groups. To quantify the 
extent to which various demographics, 

anthropometric, health, diet, and lifestyle mea-
sures were associated with the overall gut 
microbiota composition, we implemented 
perMANOVA38 using weighted UniFrac dis-
tances between pairs of taxon abundance vec-
tors (Supplemental Table 5).39

Phyla and Genera
Beta-binomial regression models were fit, mar-
ginally, for each genus and phylum using the 
R package ‘corncob.’40 The observed count of 
each taxon and the sample’s sequencing depth 

Table 1. MEC-APS participant characteristics by NAFLD status (liver fat>5.5%).
NAFLD status

No 
(N = 1033)

Yes 
(N = 511) P a

Total 
(N = 1544)

Demographics
Ethnicity, n (%) <0.001b

Japanese American 222 (21) 178 (35) 400 (26)
African American 219 (21) 38 (7) 257 (17)
White 249 (24) 67 (13) 316 (20)
Latino 182 (18) 143 (28) 325 (21)
Native Hawaiian 161 (16) 85 (17) 246 (16)

Sex – Female, n (%) 533 (52) 267 (52) 0.809b 801 (52)
Age (years) 69.3 (2.8) 69.0 (2.7) 0.03 69.2 (2.7)
Education (years) 15.0 (2.6) 14.4 (2.9) <0.001 14.8 (2.7)
Born in US, n (%) 888 (86) 416 (82) 0.022 1304 (85)
Mother born in US, n (%) 845 (82) 395 (78) 0.042 1240 (81)
Father born in US, n (%) 806 (78) 358 (70) < 0.001 1164 (76)
Lived in US 26+ years, n (%) 952 (93) 458 (90) 0.087 1410 (92)
Primary language English, n (%) 988 (96) 468 (92) 0.001 1456 (94)
Anthropometrics
% Liver Fat 3.2 (1.1) 10.7 (4.8) < 0.001 5.6 (4.6)
Height (cm) 165 (10) 163 (10) < 0.001 165 (10)
Weight (kg) 73 (15) 81 (16) < 0.001 76 (16)
Total Fat Massc (kg) 32.9 (8.2) 35.1 (6.7) <0.001 33.7 (7.8)
BMI (kg/m2) 26.5 (4.5) 30 (4.5) < 0.001 28 (5.0)
Waist circumference (cm) 94 (12.5) 101.9 (10.9) < 0.001 96.5 (12.5)
Health and Treatment
Diabetes history, n (%) 114 (11) 132 (26) < 0.001 246 (16)
Hypertension medication use, n (%) 375 (36) 255 (50) < 0.001 630 (41)
Probiotic use, n (%) 104 (10) 42 (8) 0.243 146 (9)
Diet
Energy Intake (kcal/day) 1805 (834) 1839 (892) 0.46 1816 (854)
% Energy from Fat 33.5 (6.6) 34.7 (6.0) < 0.001 33.9 (6.2)
% Energy from Protein 16 (3) 17 (3) 0.008 17 (3)
Dietary Fiber (g/1000 kcal/day) 13.3 (4.4) 11.9 (3.9) <0.001 12.9 (4.3)
Saturated Fat (% of total fat) 32.9 (4.8) 33.8 (4.2) <0.001 33.2 (4.7)
Polyunsaturated Fat (% of total fat) 25.2 (4.1) 24.1 (3.7) <0.001 24.8 (4.0)
Monounsaturated Fat (% of total fat) 41.9 (2.8) 42.0 (2.5) 0.54 42.0 (2.7)
Healthy Eating Index 2010 (aHEI-2010) 69.7 (10.1) 66.3 (9.7) < 0.001 68.6 (10.1)
Asian fermented foods, n (%) 250 (24) 167 (33) < 0.001 417 (27)
Dairy fermented foods, n (%) 463 (45) 227 (44) 0.882 690 (45)
Vegetarian diet, n (%) 28 (3) 11 (2) 0.511 39 (3)
Lifestyle
Sitting (hours/day) 8.0 (3.4) 8.4 (3.5) 0.012 8.1 (3.4)
Alcohol (g/day) 4.5 (6.7) 3.1 (5.9) <0.001 4.0 (6.5)
Moderate/vigorous activity (hours/day) 1.7 (1.5) 1.3 (1.2) < 0.001 1.5 (1.4)
Smoking (pack years) 4 (9) 5 (10.5) 0.049 0.08 4 (9.5)

Continuous variables reported as mean (standard deviation). Categorical variables reported as n (%). 
at-test used, unless noted 
bPearson’s Chi-squared test 
cTotal fat mass was missing in 15 participants (12 No NAFLD and 3 Yes NAFLD)
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were used to model the population proportion 
of each taxon relative to covariates. The beta 
component models the probability parameter of 
the binomial distribution to better account for 
the overdispersion and contains mean and 
overdispersion components for each taxon. For 
genera present in at least 5% of the entire 
participants, we first modeled each taxon by 
including a NAFLD-ethnicity interaction term, 

adjusted by sex and percent total fat for both 
mean and overdispersion components. Since 
this interaction was significant in 62 out of 
149 genera (Supplementary Table 1B), we con-
cluded there is strong evidence for ethnic- 
specific associations between NAFLD status 
and taxon abundance and refitted these models 
stratified by each of the five ethnic groups. In 
analyses stratified by ethnicity, we only modeled 

Figure 1. Overview of the microbiome in NAFLD in the MEC-APS study. 1A.) Distribution of individuals with and without NAFLD. 1B.) 
Variation in the microbiome between individuals with and without NAFLD illustrated by a PCOA of weighted Unifrac metric. 1 C.) 
Vector overlay of the demographic, anthropometric, health, diet, and lifestyle variables. 1D.) Alpha diversity in subjects with and 
without NAFLD by ethnicity and 1E.) Variation in the microbiome explained by the demographic anthropometric, health, diet, and 
lifestyle variables using perMANOVA analysis.
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those genera present in at least 25% of each 
group. We used a likelihood ratio test to assess 
differences in mean proportions by NAFLD 
status.

The association of microbial metabolic pathways with 
liver fat
Linear regression was used to model percent 
liver fat, as the dependent variable, by 
piCRUST-imputed metabolic pathways.27 

Pathway counts were adjusted for batch using 
ComBat-seq and each sample was normalized 
using the centered-log ratio (CLR).41 CLR 
values were standardized (mean 0 and standard 
deviation 1) for comparison of pathway coeffi-
cients across models. Models were adjusted for 
total adiposity, sex, and self-reported ethnicity. 
We fit additional models stratified by sex and 
ethnicity adjusted only for total adiposity.

In a subset of 27 samples that were assessed 
using metagenomic sequencing, we tested 
whether the relative abundance of sequenced 
genes in six metagenomic pathways differed by 
NAFLD status using a Wilcoxon rank-sum test. 
We similarly tested 146 glucosyl hydrolase 
enzymes.

Mediation analysis
Mediation analysis was used to assess whether 
the association between percent liver fat and 
a marker of systemic inflammation (CRP) was 
mediated by LBP. For this analysis, we used 
1,326 participants having non-missing, non-zero 
measures of CRP. In models stratified by ethni-
city, we estimated direct and indirect effects by 
regressing log(CRP) on percent liver fat, with 
and without LBP, and regressing of LBP 
onto percent liver fat. Bootstrapped confidence 
intervals were used to evaluate the direct, indir-
ect, and mediating effects.42,43 All models were 
adjusted for sex and percent total fat mass.

Results

Participant characteristics by NAFLD status

As reported previously,4 the prevalence of NAFLD 
varied widely by ethnicity, especially higher in 
Japanese Americans and lower in African 

Americans than in other groups (Table 1). As 
expected, NAFLD cases, compared to non-cases, 
had higher mean levels of percent liver fat, total 
fat mass, BMI, waist circumference, higher preva-
lence of diabetes history and hypertension medica-
tion use. NAFLD cases and non-cases had similar 
intake of probiotics and total energy, but cases had 
higher percent energy from fat, protein, and satu-
rated fats and lower levels of energy-adjusted diet-
ary fiber and overall diet quality, determined with 
a HEI-2015 score. A sedentary lifestyle and smok-
ing were significantly higher in participants with 
NAFLD whereas alcohol intake and activity were 
higher in participants without NAFLD. Mean 
plasma LBP, CRP, and ALT concentrations were 
greater in the NAFLD group overall and within 
each ethnic group, although significance varied by 
ethnicity (Table 2).

Gut microbiome

Microbiome sequencing averaged 33,422 16S 
rRNA gene sequences per sample with an aver-
age length of 499 bp. We identified 10 phyla, 152 

Table 2. Plasma Concentrations of LBP, CRP and ALT in MEC- 
APS participants by NAFLD status, overall and stratified by 
ethnicity.

NAFLD status

No Yes Total P

All N = 1033 N = 511 N = 1544
LBP 22.4 (8.0) 24.5 (8.3) 22.2 (8.5) < 0.001
CRP 1.60 (2.2) 2.25 (2.8) 1.82 (2.4) < 0.001
ALT 19.6 (11.0) 26.1 (14.3) 21.7 (12.6) < 0.001

Japanese American N = 222 N = 178 N = 400 q a

LBP 21.2 (7.5) 22.6 (8.0) 21.8 (7.8) 0.865
CRP 0.8 (1.5) 1.4 (1.8) 1.1 (1.6) 0.101
ALT 21.0 (9.6) 28.9 (16.0) 24.5 (13.4) <0.001

African American N = 219 N = 38 N = 257
LBP 22.9 (9.3) 25.7 (9.9) 23.3 (9.4) 0.163
CRP 2.5 (2.9) 4.1 (5.1) 2.7 (3.4) 0.051
ALT 18.9 (12.9) 21.4 (9.3) 19.3 (12.5) 0.295

White N = 249 N = 67 N = 316
LBP 22.2 (8.4) 25.1 (7.5) 22.8 (8.3) 0.396

CRP 1.4 (1.7) 2.9 (3.2) 1.7 (2.2) <0.001
ALT 19.1 (9.0) 27.3 (15.2) 20.8 (11.1) <0.001

Latino N = 182 N = 143 N = 325
LBP 22.4 (7.7) 25.2 (8.4) 23.6 (8.2) 0.049
CRP 2.0 (2.3) 2.7 (2.6) 2.3 (2.5) 0.132
ALT 19.1 (10.1) 25.0 (13.6) 21.7 (12.1) <0.001

Native Hawaiian N = 161 N = 85 N = 246
LBP 21.7 (7.5) 24.2 (7.9) 22.6 (7.7) 0.227
CRP 1.3 (1.9) 2.0 (2.5) 1.5 (2.2) 0.191
ALT 19.8 (13.3) 23.5 (11.4) 21.1 (12.7) 0.024

Variables reported as mean (standard deviation). 
at-test used 
*Models were adjusted for ethnicity, sex, total fat mass, and batch. 
Abbreviations and Units: LBP, lipopolysaccharide binding protein (mg/mL); 

CRP, C-reactive protein (mg/L) and ALT, alanine aminotransferase (U/L).
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genera, and 1,311 OTUs. We sampled metagen-
omes in a subset of participants (n = 27) which 
averaged 20.3 M reads ± 2.8 M reads per sample 
before quality filtering and 20.2 M reads ± 2.9 M 
reads afterward, with a mean of 0.5% of the 
reads removed including human and poor qual-
ity reads. Sequence length was 148 bp ± 14 bp 
before QC, and 143 bp ± 19 bp after QC. Three 
of the original 30 samples were removed from 
the metagenomic analysis due to participant’s 
high alcohol consumption leaving a total of 27 
samples of which 13 were in the non-NAFLD 
category and 14 were in the NAFLD category 

and mapping rate of high-quality reads was 
similar across ethnic groups (Supplemental 
Table 6).

We modeled the association of alpha diversity 
(Shannon Index) with NAFLD in the entire sample 
with adjustment for sex, total fat mass, ethnicity, 
and the interaction of NAFLD with ethnicity. 
Alpha diversity was inversely associated with 
NAFLD status overall (p = 0.034). There was 
a significant interaction of ethnicity and NAFLD 
and in stratified analysis among African Americans 
(p < 0.001), whites (p = 0.017) and Latinos (p = 
0.034) (Figure 1d; Supplemental Figures 5D–9D).

Figure 2. Heatmap of regression coefficients for association with NAFLD resulting from beta-binomial regression models of genera 
counts stratified by self-report ethnicity. Genera significantly enriched or depleted in individuals with NAFLD are shown. Coefficients 
are adjusted for sex, and total fat mass. Red = positive, blue = negative.
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We tested the association of overall gut 
microbial composition (beta diversity) with 
NAFLD status using perMANOVA38 with 
respect to weighted UniFrac,39 including terms 
for sex, total fat mass, ethnicity, and the inter-
action of NAFLD with ethnicity. We observed 
a significant ethnicity−by−NAFLD interaction 
(p = 0.014) which explained 0.44% of the varia-
bility. Microbial beta diversity was associated 
with NAFLD among all participants (q < 0.05) 
(Figure 1b and 1e). Self-reported ethnicity 
(2%), percent liver fat (0.74%), NAFLD 
(0.55%), and dietary fiber (0.4%), and saturated 
fat (0.04%) were among the variables that 
explained the most the overall variation in the 
microbiome (Figure 1e). In ethnicity stratified 
results (Supplemental Figures 5–9), NAFLD and 
% liverfat explained a significant but small 
amount of variation in the overall microbiome 
composition (Supplemental Figures 5–9 A-F).

Over all participants, at the phylum-level, we 
observed associations with seven out of 10 phyla 
and 62 out of 149 genera (Supplemental Table 1A 
and 1B). Fusobacteria (p < 0.0001), Bacteroidetes 
(p < 0.0001), and Proteobacteria (p < 0.0001) were 
positively associated with NAFLD. At the genus 
level, 14 genera were positively associated with 
NAFLD (all q < 0.01) and 48 genera (all q < 0.01) 
were inversely associated with NAFLD 
(Supplemental Table 1B).

We observed a significant interaction between 
NAFLD status and ethnicity in phyla 
(Supplemental Figure 1). Proteobacteria were 
positively associated with African American sub-
jects with NALFD and Actinobacteria were posi-
tively associated with white subjects with 
NAFLD. Fusobacteria was inversely associated 
with NAFLD in Blacks and positively associated 
in whites. Tenericutes were inversely associated 
with NAFLD in African Americans, whites, and 
Latinos. Firmicutes and Synergistetes were inver-
sely associated with NAFLD in African 
Americans and whites. The prevalence and 
abundance of genera (Supplemental Table 1B; 
Supplemental Figures 5–9). Genera were signifi-
cantly positively associated with liver fat in at 

least one ethnic group (as summarized in 
Figure 2; Supplemental Table 1B), although 
only R. gnavus group (Japanese Americans, 
whites, and Latinos) and Enterobacter (Japanese 
Americans, African Americans, and whites)44 

were found in common across three ethnicities. 
Megamonas was enriched in Hawaiians and 
depleted in African Americans with NAFLD. 
Alloprevotella was increased in whites but 
decreased in Latinos, and Klebsiella was enriched 
in whites and decreased in Native Hawaiians. 
Christensenellaceae was negatively associated 
with African American subjects with NAFLD. 
Among those genera that differed significantly 
in abundance by NAFLD status within a single 
ethnic group, Aggregatibacter45–47 and 
Lachnoclostridium were enriched in Latinos 
with NAFLD, Blautia was enriched in Japanese 
Americans, and Parasutterella was enriched in 
Native Hawaiians. The prevalence and abun-
dance of Fusobacterium varied across ethnic 
groups (Supplemental Table 1B and 
Supplemental Figure 4).

Several genera were inversely associated with 
NAFLD although there were some divergent pat-
terns for genera within families across ethnicities 
(Figure 2; Supplemental Table 1B). We found 
that among the genera in the Lachnospiraceae 
family, Coprococcus-2 was decreased in Japanese 
Americans and whites whereas Lachnospira was 
decreased African American and whites, and 
Lachnospiraceae UCG-003 was decreased in 
Japanese Americans and African Americans 
with NAFLD. In the Ruminococcaceae, some 
genera were unique to an ethnic group: five 
unique genera only in Japanese Americans, two 
genera unique to Native Hawaiians and one gen-
era each in Latinos, African Americans, and 
whites. In the Bacteroidetes, Prevotella-1 and 
Prevotella-7 were decreased in Japanese 
American and African American participants, 
respectively, and an uncultured Prevotellaceae 
was decreased in both. Coprobacter was 
decreased in whites, an uncultured genera in 
the Muribaculaceae in whites, and Odoribacter 
in African Americans. The most common genera 
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that were significantly inversely associated with 
NAFLD were the Bacteroides pectinophilus group 
in Japanese Americans, African Americans, and 
Native Hawaiians and Ruminococcaceae UCG- 
005 in Japanese Americans, Latinos, and Native 
Hawaiians. In the Family Erysipelotrichaceae, 
Catenibacterium was decreased in Japanese 
American and Latino participants with NAFLD 
whereas Erysipelatoclostridium was decreased in 
Native Hawaiians and Japanese Americans.

ALT, a measure of liver damage, was asso-
ciated with genera in a beta binomial regres-
sion stratified by ethnicity and adjusted for sex 
and total adiposity (Supplemental Table 7). 
R. gnavus was significantly positively associated 
with ALT in three ethnicities: Japanese 
Americans, whites, and Latinos. Klebsiella was 
significantly positively associated with ALT in 
whites and Native Hawaiians. Megamonas was 
inversely associated with ALT in African 
Americans and positively associated in Native 
Hawaiians. Several single genera in the 

Lachnospriaceae, Ruminococcaeae, and 
Christensenellaceae were negatively associated 
with ALT in a specfic ethnicity.

Microbial metabolic pathways were associated 
with liver fat (Figure 3; Supplemental Table 5, 
Supplemental Figure 2). Among all participants, 
we found a positive association of liver fat with 
imputed bacterial functional genes involved in 
secondary bile acid metabolism and carbohy-
drate metabolism. Japanese American males 
showed a positive association with carbohydrate 
metabolism and Native Hawaiian females 
showed a positive association with secondary 
bile acids metabolism (conjugate metabolism of 
taurine and C1 amino acids) and other pathways 
associated with branched chain amino acids and 
fatty acid synthesis.48,49

Metagenomic sequencing of functional genes 
on a subset of participants (n = 27; 
Supplemental Table 4) showed that microbial 
carbohydrate enzymes involved in the degrada-
tion of hemicellulose was significantly higher in 

Figure 3. Heatmap of the association between imputed microbial functional pathways with percent liver fat by sex and ethnicity in the 
MEC-APS (n = 1529). The colors represent the magnitude of the pathway standardized coefficient in the linear model of the natural log 
of percent liver fat on each pathway, adjusted for sex, ethnicity, total fat mass, and sequencing batch. The gene counts were inferred 
from piCRUST and pathways summarized by summing all counts in the pathway and then normalized for the total number of 
sequences per sample, which were then standardized for the model. Asterisks indicate a BH corrected p value less than 0.1. (Also see 
Supplemental Table 5.).
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participants with NAFLD (Supplemental 
Figure 2) and GH43_34, (β-xylosidase, α- 
L-arabinofuranosidase, Supplemental Figure 2; 
q < 0.1). This enzyme is found in the genera 
Blautia (GenBank: QBE95338.1, GenBank: 
ANU78801.1) and Lachnoclostridium (GenBank: 
ANU49904.1), that were significantly enriched in 
the individuals with NAFLD cases (Supplemental 
Figure 2).

In the mediation models, plasma LBP concen-
trations mediated 22% (95% CI: 10–34%; p < 
0.001) of liver fat’s effect on CRP. When we 
stratified the mediation models by ethnicity, 
plasma LBP concentrations in Latinos mediated 
44% (95% CI: p < 0.01) of liver fat’s association 
with CRP. We initially considered whether LBP 
modified the association of liver fat with CRP 
within ethnicities by fitting a linear model con-
taining the interaction of liver fat and LBP. We 
found no evidence for this and concluded that 
LBP mediates, rather than modifies, the effect of 
liver fat on CRP.50

Discussion

In the MEC-APS, where we previously reported 
substantial ethnic differences in the propensity 
for NAFLD,4 our findings reported here suggest 
that the GM may contribute in part to the dif-
ferences. We found that the microbial measures 
of alpha diversity, microbiome composition, and 
novel pathophysiologic links through gut bacter-
ial metabolic pathways and endotoxin, were 
associated with NAFLD, the degree to which 
often differed by ethnicity. Participants with 
NAFLD had significantly lower alpha diversity 
overall and in 3 out of 5 ethnic groups, indivi-
dually. No single genus was associated with 
NAFLD across all ethnicities, although different 
genera associated with production of secondary 
bile acids were found in common in at least 
three ethnicities. Carbohydrate metabolism and 
endotoxin-mediated inflammation were signifi-
cantly higher in individuals with NAFLD. 
Ethnic-specific genera that ferment 

carbohydrates to acetate, a precursor for lipo-
genesis, were enriched in NAFLD subjects, sug-
gesting common pathophysiologic links in the 
microbiome contribute to NAFLD.

Dysbiosis associated with decreased diversity 
of the microbiome starts early in simple liver 
steatosis and may lay the foundation for pro-
gression to inflammation and fibrosis.51,52 Here, 
we observed that not only did individuals with 
NAFLD, independently of their total fat mass, 
have a lower diversity of the gut microbiome 
(independent of host total fat mass) 
(Figure 1d), but this association was especially 
strong among African Americans, Whites, and 
Latinos (Supplemental Figures 6D and 9D, 
respectively). Others have shown an inverse 
association between alpha diversity and 
NAFLD.14,53,54

Bacterial carbohydrate metabolism that may 
impact lipogenesis is altered in NAFLD.10 Our 
findings suggest a pathophysiologic shift in the 
microbiome that supported lipogenesis in 
NAFLD. Increased carbohydrate metabolism 
was accompanied by the ethnic-specific enrich-
ment of genera that ferment carbohydrates to 
acetate55,56 (Blautia in Japanese Americans, 
Escherichia-Shigella in African Americas and 
whites, and Klebsiella in whites) and an enrich-
ment of enzymes carbohydrate metabolism by 
acetate producing Blautia, enriched with 
NAFLD in Japanese Americans with NAFLD (q 
< 0.01) (Figure 2, Supplemental Figure 2). In 
contrast, there was a reduction in butyrate path-
ways and genera (Ruminococcus and 
Lachnospiraceae;Coprococcus) in whites with 
NAFLD as others have found9,13,57 (Figure 3; 
Supplemental Table 5). Bacterially produced 
acetate impacts hepatic lipogenesis not only 
directly, as a fatty acid precursor, but indirectly 
as well.58,59 Lipoprotein lipase (LPL) is inhibited 
by fasting induced adipocyte factor (FIAF) that 
is produced in hepatocytes and when there is 
a shift in the gut bacteria that ferment carbohy-
drates to acetate, it increases lipid storage in the 
liver.58–61

GUT MICROBES e1965463-11



13Adults with NAFLD have altered bile acid 
metabolism as shown in small case control stu-
dies and in larger, although ethnically homoge-
nous, cohort studies.54,62,63 Imputed secondary 
bile acid synthesis pathways were significantly 
increased in all participants with NAFLD 
(Figure 3; Supplemental Table 5). In an ethnic- 
specific manner, ALT, a clinical measure of liver 
dysfunction, was positively associated with sec-
ondary bile acid producing bacteria and support 
this microbial-driven pathophysiologic link to 
NAFLD (Figure 2). Positive associations between 
ALT and certain genera have been noted in 
other studies.10, 14 Secondary bile acids have 
been identified as antagonists of the farnesoid 
X receptor (FXR), involved in lipid metabolism 
and glucose homeostasis (reviewed in64) and 
may lead to predisposition to liver injury and 
form the pathophysiological basis for clinical 
therapies.65 Therefore, a GM that produces sec-
ondary bile acids could enhance lipid accumula-
tion in the liver through reduced liver FXR 
activation. The R. gnavus group and Escherichia- 
Shigella have members that convert primary to 
secondary bile acids.66 In our study, R. gnavus 
was positively associated with NAFLD in 
Latinos, Japanese Americans, and whites whereas 
Escherichia-Shigella, was significantly enriched in 
African Americans with NAFLD. 
Lachnoclostridium and Blautia, involved in the 
7α-dehydroxylation of primary bile acids to sec-
ondary bile acids,67–70 were positively associated 
with NAFLD overall (Supplemental Tables 1B), 
and in Latinos or Japanese Americans, respec-
tively (Figure 2). Enrichment of carbohydrate 
metabolizing enzymes in Lachnoclostridium was 
shown in Latinos (q = 0.03) (Figure 2, 
Supplemental Figure 2). Microbial metabolism 
of taurine and glycine involved in the deconju-
gation of primary bile acids with NAFLD was 
enriched in Native Hawaiian women71–76 as was 
Parasutterella. This genus has been associated 
with secondary bile acid metabolism and reduc-
tion in tauro-conjugated bile acids in pre-clinical 
models.77 Multiple unique genera impact bile 
acid metabolism and suggest that novel treat-
ments such as FXR agonists may be altered in 

advanced disease across multiple ethnicities 
although currently this has only been tested in 
preclinical models.78–80

Endotoxin (or lipopolysaccharide, LPS) from 
gram negative bacteria binds to LBP and activates 
toll-like receptor 4 (TLR4) in the liver, releasing pro- 
inflammatory cytokines and chemokines through 
the NFk-B inflammation cascade and may be an 
important contributor to the progression from 
NAFLD to inflammation-based liver disease.52,81– 

83 In individuals with NAFLD, we observed enrich-
ment of endotoxin-producing bacteria in 
Enterobacteriaceae, Pasteurellaceae, and 
Veillonellaceae (Supplemental Table 1B), although 
different genera were positively associated with 
NAFLD in different ethnic groups (Figure 2, 
Supplemental Table 1B). The abundance of 
Pasteurellaceae was a predictor of morality linked 
to acute-on-chronic liver failure in a longitudinal 
study of 42 Chinese subjects.78 Additionally, we 
showed that overall systemic inflammation (as 
measured by CRP) was associated with NAFLD 
and, among Latinos, this was potentially mediated 
through the LBP pathway. Other investigators 
could differentiate mild/moderate NAFLD from 
advanced fibrosis with inflammation by an increase 
in endotoxin-producing β-Proteobacteria, espe-
cially Escherichia coli, Enterobacter, 
Aggregatibacter, and Klebsiella, as we found in 
Japanese Americans, African Americans, and 
whites.11,44 Additionally, Sookoian et al. showed 
that LPS was enriched in individuals with liver 
steatosis in Latinos70 and we found 
Aggregatibacter, an endotoxin producing bacteria, 
was significantly more prevalent in Latinos with 
NAFLD (Supplemental Table 1B). Megamonas, 
a member of the Veilonellaceae that also produces 
endotoxin, was also significantly prevalent and 
positively associated with NAFLD in Native 
Hawaiians (Supplemental Table 1B) suggesting 
a novel pathway linked to systemic inflammation 
in NAFLD unique to this ethnic group.

Oral bacteria have been implicated in inflamma-
tion-based diseases (e.g., cardiovascular disease, T2D, 
colorectal cancer (CRC), and NASH).84,85 We 
observed a higher abundance Fusobacterium, 
Aggregatibacter, and Alloprevotella in participants 
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presenting with NAFLD, which varied by ethnicity 
(Figure 2). In our study, Alloprevotella was signifi-
cantly increased in whites with NAFLD and others 
have Alloprevotella enriched in liver biopsies in sub-
jects with NAFLD.70 Aggregatibacter has been asso-
ciated with NAFLD and altered glucose 
metabolism.46,47 Fusobacterium was significantly 
decreased in African Americans with NAFLD 
(Figure 2, Supplemental Figure 4). In contrast, whites 
with NAFLD showed a significant enrichment in 
Fusobacterium and a higher percentage of whites 
had Fusobacterium in their stool (Figure 2, 
Supplemental Figure 4). Fecal enrichment in stool of 
the oral pathogen Fusobacterium, has been associated 
with NAFLD and with inflammation and fibrosis in 
NASH.12,61,86 The clinical relevance of Fusobacterium 
may be as an alterable prognostic marker linked to 
prevention through changes in periodontal and oral 
hygiene.87

The GM from healthy individuals have high 
diversity bolstered by butyrate producing bacteria, 
a key energy source of gut epithelium.88 In our 
study, the butyrate-producing genera of the 
Lachnospiraceae and Ruminococcaceae were diverse 
but these patterns were unique to different ethnic 
groups. The Bacteroides pectinophilus group, which 
degrade complex carbohydrates found in fiber, was 
significantly increased in Native Hawaiians, 
Japanese Americans, and African Americans with-
out NAFLD. The Christensenellaceae R-7 group was 
depleted in NAFLD in African Americans but 
enriched in whites.89 Several large human popula-
tion studies have found Christensenella were 
enriched in healthy weight individuals and inversely 
associated with NAFLD.90,91 Christensenellaceae 
and members of this consortia has also been asso-
ciated with a lean phenotype in humans and mouse 
models of obesity, a shift in SCFA metabolism,92 

and members of the Christensenellaceae are one of 
the most strongly heritable bacterial groups.89,93

A major strength of this study is the broad 
representation of ethnicity, sex, and BMI and 
corresponding well-curated metadata, including 
the state-of-the-art MRI measurement of liver fat 
used both to determine NAFLD status and to 
analyze as a continuous variable, comprehensive 

bacterial profiling, and metagenomic analysis. 
While our diverse study population supports 
the generalizability of the findings, given the 
older age of the individuals, the results may 
not be generalizable to younger individuals. We 
did not include medication use in our models 
which may independently alter NAFLD. 
Although some of our subjects with NAFLD 
may have been using metformin to control 
T2D,94 a recent meta-analysis suggests that 
while weight and glucose control were improved 
with metformin, it did not substantially impact 
liver disease, studies suggest that metformin does 
not alter NAFLD status.95 Additionally, subjects 
were excluded from the MEC APS if they had 
cancer and other bowel diseases. Therefore, sub-
jects using chemotherapy drugs shown to impact 
NAFLD would have been excluded and reduce 
the probability of this bias.95 In this study, we 
did not assess liver fibrosis that may have differ-
ent associations with GM than steatosis. 
Although our results are suggestive of several 
candidate bacteria and pathways for NAFLD 
etiology, our single timepoint analysis does not 
provide strong causal inferences that the asso-
ciated GM traits affect temporal changes in liver 
fat. Additionally, we had smaller sample sizes 
when stratified by ethnicity. Longitudinal studies 
are needed, especially in different ethnic groups, 
to establish the role of the microbiome in the 
development of fatty liver and the transition to 
more inflammatory and fibrotic liver diseases. 
Further, extending beyond our GM analysis, 
the application of metagenomic sequencing 
approaches that allow genomic reconstruction 
will identify different species and strains that 
may impact NAFLD.

We have observed that aspects of the GM 
composition and metabolism are associated 
with NAFLD, overall and in ethnic-specific man-
ners among generally healthy older adults. 
Additionally, systemic inflammation may be 
mediated in part by the microbiome and varies 
by ethnicity. Microbial-associated mechanisms 
may provide insight into the development of 
NAFLD. Once replicated in other studies, 
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ethnic-specific microbial composition and patho-
physiologic pathways can provide the basis for 
targeted therapies, such as narrow spectrum 
antibiotics,96 diet,6,97 fecal transplants98,99 or 
phage therapies,100 for future clinical treatment 
specific to the microbiome. Microbiome- 
mediated pathways may provide an actionable 
ethnic-specific target to reduce inflammation 
and reduce the transition from simple steatosis 
to advanced disease.
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