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Abstract: Methicillin-resistant Staphylococcus spp. (MRS) have been identified in several foods,
including dairy products. Studies are needed about their occurrence and genetic diversity in the
dairy production chain in order to gain a better understanding of their epidemiology and control.
This study therefore focuses on isolating and characterizing MRS strains detected in milk used in
the production of Brazilian artisanal unpasteurized cheeses. To this end, samples were collected
from bovine feces, the hands of milkmen, milking buckets, sieves, unpasteurized milk, whey, water,
artisanal unpasteurized cheeses, cheese processing surfaces, cheese handlers, cheese trays, cheese
molds, and skimmers at five dairy farms located in the state of São Paulo, Brazil. Colonies suggestive
of Staphylococcus spp. were subjected to multiplex PCR to confirm the presence of Staphylococcus aureus
and to detect the mecA gene. Sixteen isolates containing mecA gene were detected in samples from
unpasteurized cheese and from cheese handlers. None of these isolates were positive to enterotoxin
genes. These 16 isolates were subjected to antimicrobial susceptibility tests, which revealed they were
resistant to oxacillin, penicillin, and cefepime. Using gene sequencing, the MRS isolates were identified
as S. haemolyticus, S. hominis, and S. epidermidis. Furthermore, isolates from cheese handlers’ hands and
artisanal unpasteurized cheese presented high genetic similarity by random amplified polymorphic
DNA (RAPD-PCR) analysis, which indicates cross contamination during cheese production. Thus,
we found that people directly involved in milking and cheese processing activities at small dairy
farms are a potential source of contamination of MRS strains in unpasteurized milk and cheese,
representing a risk to public health.

Keywords: antimicrobials; MRS; RAPD; public health; resistance

Key Contribution: Detection of methicillin-resistant Staphylococcus spp. (MRS) from cheese handler’s
hands and artisanal unpasteurized cheese in Brazilian dairy farms

1. Introduction

The uncontrolled use of methicillin led to the emergence of methicillin-resistant Staphylococcus spp.
(MRS), which poses a public health risk. The most widely reported MRS species is Staphylococcus aureus
(MRSA). However, MRS strains have also been reported in veterinary medicine [1], and animal to
human transmission has been described [2], underscoring the need to monitor these microorganisms
and their susceptibility to antimicrobials in order to reduce their risk to public health. MRS strains are
of great importance in public health owing to their opportunistic ability as a cause of mastitis, source of
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zoonotic infection, and reservoir of antimicrobial resistance genes in dairy farms [3]. Even though the
coagulase-positive species (S. aureus) is more pathogenic and directly associated with severe mastitis,
coagulase-negative staphylococci (CoNS) have been increasingly recognized as a cause of clinical and
subclinical mastitis [4]. It occurs because CoNS are highly frequently detected in raw milk samples.
They are widespread in dairy farms environment and the occurrence of methicillin resistance in these
species is frequently higher than in S. aureus [5].

The first researchers to report a fatal MRSA foodborne outbreak were [6], and since then numerous
microbiologists have evaluated the occurrence of methicillin-resistant strains in food and animals [7,8].
The importance of methicillin-resistance in farming and food production stems from the possibility
of zoonotic infection of consumers and workers involved in animal husbandry [9]. Regarding food
safety, MRSA have been identified in samples from food handlers in Brazil [10] and in milk and dairy
products in several studies worldwide. In Mexico, MRSA was detected in 18.1% of artisanal cheese
samples [11] and in Turkey, 30% of milk samples, 18% of clotted cream, and 34% of cheese samples
were contaminated with MRSA [12]. Enterotoxigenic MRSA under favorable conditions can cause
staphylococcal food poisoning owing to the production of enterotoxins in foods, nonetheless the
severity of infection is not related to the antimicrobial resistance profile and outbreaks are not expected
to be more severe than those caused by methicillin-susceptible S. aureus [13]. The enterotoxigenic
potential of CoNS has not been well-established, even though studies have evidenced the presence of
enterotoxin-coding genes and the production of enterotoxins in CoNS [14].

Studies on the epidemiology and genetic diversity of methicillin-resistant staphylococci in the
dairy production chain are important to promote food safety. Such studies contribute to a better
understanding of MRS and to the development of measures to control and prevent their dissemination.
This study therefore focused on isolating MRS at dairy farms and in the production of artisanal
unpasteurized cheese, and aimed to characterize them in terms of their antimicrobial susceptibility,
gene sequencing, and genetic diversity, thereby contributing to the body of knowledge about the
epidemiology of MRS.

2. Results

The 391 isolates yielded 16 mecA positive isolates (MRS), but none of them were identified as
S. aureus species. Three MRS isolates were obtained from cheese handler’s hands and four from
artisanal unpasteurized cheese produced at farm B. In addition, five MRS isolates were obtained from
cheese handler’s hands and four from artisanal unpasteurized cheese produced at farm C. And from
16 mecA positive isolates (MRS), none isolate had enterotoxin genes (sea, seb, sec, sed, see, seg, seh, sei, tst,
eta, pvl, and hlg).

These MRS isolates were sensitive to rifampicin, vancomycin, clindamycin, gentamicin,
and tetracycline; nonetheless they were resistant to several antimicrobials, such as oxacillin, penicillin,
and cefepime. Isolates obtained from farm C were also resistant to ciprofloxacin (Table 1).

Table 1. Resistance of MRS strains to seven different antimicrobials observed at two non-technified
dairy farms that produce artisanal unpasteurized cheese in Brazil.

Farm Sample IsolateS (N)
Antimicrobial Drug

CPM CLO ERI PEN OXA SUT CIP

B
Cheese handlers‘ hands 3 3 (100) 0 1 (33,33) 3 (100) 3 (100) 3 (100) 0

Artisanal cheese 4 2 (50) 0 0 4 (100) 4 (100) 2 (50) 0

C
Cheese handlers‘ hands 5 2 (40) 0 0 5 (100) 5 (100) 5 (100) 5 (100)

Artisanal cheese 4 0 3 (75) 1 (25) 4 (100) 4 (100) 3 (75) 4 (100)

CPM, Cefepime; CLO, Chloramphenicol; ERI, Erythromycin; PEN, Penicillin; OXA, Oxacillin, SUT, Sulfatrim;
CIP, Ciprofloxacin.

The MRS isolates found in this study were identified as S. haemolyticus, S. hominis, and S. epidermidis
by phylogenetic analysis of the rpoB, gap, and tuf genes (Table 2; Figure 1).
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Table 2. Accession numbers of MRS strains from two non-technified dairy farms that produce artisanal
unpasteurized cheese in Brazil, and Staphylococcus spp. strains from the GenBank used in the
phylogenetic analysis.

Staphylococcus Species Strain rpoB gap tuf

Staphylococcus aureus ATCC 35844 AF325894 HM352968 HM352930
Staphylococcus epidermidis CIP 81.55 EU659944 EU659906 EU652794

Staphylococcus haemolyticus CIP81.56 EU659950 EU659920 EU652800
Staphylococcus hominis ATCC700236 MF679108 HM352973 HM352925
Staphylococcus hyicus ATCC 11249 AF325876 FJ578002 CP008747

Staphylococcus pasteuri ATCC 51129 EU659961 HM352972 HM352929
Staphylococcus simiae CCM 7213 EU888127 HM352970 HM352931

Staphylococcus hominis 104H.B MT832255 MT832271 MT832239
Staphylococcus hominis 106H.B MT832256 MT832272 MT832240
Staphylococcus hominis 107H.B MT832257 MT832273 MT832241

Staphylococcus epidermidis 118C.B MT832258 MT832274 MT832242
Staphylococcus hominis 119C.B MT832259 MT832275 MT832243
Staphylococcus hominis 121C.B MT832260 MT832276 MT832244

Staphylococcus epidermidis 122C.B MT832261 MT832277 MT832245
Staphylococcus haemolyticus 167H.C MT832262 MT832278 MT832246
Staphylococcus haemolyticus 168H.C MT832263 MT832279 MT832247
Staphylococcus haemolyticus 169H.C MT832264 MT832280 MT832248
Staphylococcus haemolyticus 170H.C MT832265 MT832281 MT832249
Staphylococcus haemolyticus 171H.C MT832266 MT832282 MT832250
Staphylococcus haemolyticus 178C.C MT832267 MT832283 MT832251
Staphylococcus haemolyticus 179C.C MT832268 MT832284 MT832252
Staphylococcus haemolyticus 180C.C MT832269 MT832285 MT832253
Staphylococcus haemolyticus 181C.C MT832270 MT832286 MT832254
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Figure 1. Bayesian phylogenetic tree of the rpoB, gap and tuf genes concatenated sequences from MRS
isolates identified at two non-technified dairy farms that produce artisanal unpasteurized cheese in
Brazil. H.B: isolates from cheese handler’s hands at farm B; C.B: isolates from artisanal unpasteurized
cheese produced on farm B; H.C: isolates from cheese handler’s hands at farm C; and C.C: isolates
from artisanal unpasteurized cheese produced on farm C.

The MRS strains were clustered according to their species and genetic similarities, related
to common sources of contamination, through RAPD analysis. Two main clusters were formed,
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one composed of S. haemolyticus and S. hominis strains and the other by the two isolates of S. epidermidis
(Figure 2). Isolates from cheese handlers’ hands and artisanal unpasteurized cheese from both Farm B
(107H.B. and 121 C.B.) and Farm C (171 H.C. and 181 H.C.) showed high genetic similarity between
them, which indicates cross contamination during cheese production. The other isolates were grouped
according to their source and the farm from which they were obtained.
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Figure 2. Neighbor-joining dendrogram of MRS isolates from two non-technified dairy farms that
produce artisanal unpasteurized cheese in Brazil. The clusters in red marker indicate genetic similarities
between strains obtained from cheese handler’s hands and from cheese ready for consumption. H.B:
isolates from cheese handler’s hands at farm B; C.B: isolates from artisanal unpasteurized cheese
produced at farm B; H.C: isolates from cheese handler’s hands at farm C; and C.C: isolates from
artisanal unpasteurized cheese produced at farm C.

3. Discussion

The detection of MRS isolates at dairy farms may be attributed to the presence of animals
with clinical mastitis and to the improper use of antimicrobials in their treatment. It is known that
methicillin-resistant staphylococci can occur due to the use of intra-mammary antibiotics to treat
mastitis [15], which may explain the high values found mainly at Farm C. The transmission of
antimicrobial resistant genes from dairy cows to farm workers and residents has been previously
reported [16].

The antimicrobial resistance of Staphylococcus spp. is a serious problem because antimicrobial
resistance genes are transferred to distinct strains and species through the exchange of genetic material.
Antimicrobial-resistant strains are detected in animals and can be transmitted to food containing
animal products [17]. MRSA strains have been found in milk from cows infected with mastitis and
unpasteurized cheese, underscoring the possibility of transmission from cows to dairy products [18,19],
even though MRSA had not been detected in this study. Nonetheless, the coagulase-negative
methicillin-resistant staphylococci has equal importance, as once they are opportunistic pathogens,
with the ability to cause mastitis, they become a source of resistant zoonotic infection and reservoir
of antimicrobial resistance genes in dairy farms [3]. CoNS are widely reported in dairy farms and
have been reported in milk [20], mastitis [21], biofilms [22], milkers’ hands and farm environment [23].
The dissemination of methicillin-resistant staphylococci in cows, humans, and manure has been proven,
indicating the possible transmission of methicillin-resistance to humans in contact with cows and
manure [24].
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None of the 16 MRS isolates had enterotoxin genes and this can be justified by the fact that
they are CoNS and these genes are not so common in these isolates. A study in coagulase-negative
Staphylococcus spp. from buffalo milk and the milking environment in Brazil showed only two strains
positive for the see and eta toxin genes [25]. Also, coagulase-negative Staphylococcus spp. of subclinical
mastitis in sheep also showed only the sec gene related to the production of enterotoxins [26].

The isolates obtained in this study were resistant to important antimicrobials used in human
medicine, as reported in England and Wales, where coagulase-negative, methicillin-resistant
staphylococci strains encountered in dairy farms were also resistant to fusidic acid, tetracycline,
and clindamycin [3]. In addition, resistance to methicillin, oxacillin, penicillin, ampicillin, cephalothin,
kanamycin, gentamicin, and tetracycline was reported in MRS obtained from samples of bovine
mastitis in Korea [27].

At farm B, the person who did the milking was also involved in unpasteurized cheese production.
Our findings suggest that milk and dairy products represent a potential risk of multidrug resistant
infections due to poor hygiene practices during the production of artisanal unpasteurized cheese.
Moreover, we emphasize the need to adopt more restrictive hygiene strategies in the dairy production
chain in order to promote food safety. High quality safe unpasteurized milk is directly linked to healthy
animals and meticulous attention to good hygiene practices. Proper farmer training and support
programs are very important to help dairy producers understand the various risks in milk production
and the measures needed to mitigate such risks. Actions to reduce the possibility of contamination of
unpasteurized milk and cheese are essential and must be practiced daily to ensure consistent product
safety [28].

Several studies have described MRS or MRSA in foods [29–31] and in hospital patients [32].
However, no published data were found evidencing the transmission of MRS from food handlers to
food. The present study reports this kind of cross contamination by demonstrating the high genetic
similarity between strains from artisanal unpasteurized cheese and human hands. It should also be
kept in mind that, at each farm, milking and cheese processing were performed by the same person.
This type of contamination can easily be avoided by adopting good milking and cheese production
practices. Therefore, farmers should receive training about good hygiene practices in milking and
in the production of unpasteurized cheese, as well as about the proper treatment of infected cows.
In addition, the routine inspection of artisanal unpasteurized cheeses could be useful in order to
control widespread MRS and reduce risks to public health. Besides S. aureus being considered the most
important foodborne pathogen, other CoNS strains have been detected carrying enterotoxin-coding
genes and the production of enterotoxins has been proven [14] although they are not so common.
In addition, methicillin-resistant staphylococci can be a source of zoonotic infections and a reservoir of
antimicrobial resistant genes [3], contributing to widespread antimicrobial resistance and requiring
urgent control.

In conclusion, this study identified the major role of people working in milking and artisanal
unpasteurized cheese production in the dissemination of methicillin-resistant Staphylococcus species
through improper product handling procedures and the consequent risks to public health.

4. Material and Methods

4.1. Staphylococcus spp. Sampling, Isolation and Identification

In 2014, samples were collected of bovine feces, swab samples from milkmen’s and cheese handlers
hands, from milking buckets, samples of unpasteurized artisanal cheese, whey, water, cheese processing
surfaces, sieves, trays, molds, and skimmers at five non-technified dairy farms (A, B, C, D, E) in the
northeastern region of the state of São Paulo, Brazil [33]. These farms used manual milking and
produced artisanal unpasteurized cheese. The person that did the milking at each farm was also the
one directly involved in cheesemaking. At least 17 samples (one of each type of sample and five of
bovine feces) were collected at each farm, making a total of 106 samples, 22 from farm A, 23 from
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B, 21 from C, 21 from D, and 19 from E. All these samples were put up in peptone water 0.1% and
enriched in Brain Heat Infusion (BHI) broth with NaCl 6%.

Staphylococcus spp. was isolated as described by [34]. Three to five suggestive colonies of
Staphylococcus spp. were collected from each Petri dish containing mannitol salt agar (MSA) with
oxacillin 2 µg·mL−1. Suggestive colonies of S. aureus were those colored in yellow with yellow zones
while coagulase-negative Staphylococcus were small pink or red colonies with no color change in the
medium. A set of 391 isolates were obtained and transferred to tubes containing BHI broth.

DNA was extracted as described by [35] and multiplex PCR was used to confirm the presence of
Staphylococcus spp. [36], S. aureus [37] and mecA gene presence [38].

4.2. Detection of Enterotoxin Genes

MRS isolates were tested for the presence of toxin encoding genes (sea, seb, sec, sed, see, seg, seh, sei,
tst, eta, pvl, and hlg [39].

4.3. Antimicrobial Susceptibility Test of MRS Isolates

MRS isolates were subjected to an in vitro sensitivity test using the disk diffusion method [40].
The antimicrobials tested were cefepime (30 µg), ciprofloxacin (5 µg), chloramphenicol (30 µg),
clindamycin (2 µg), erythromycin (15 µg), gentamicin (10 µg), oxacillin (1 µg), penicillin G (10 µm),
rifampicin (30 µg), sulfatrim (25 µg), tetracycline (30 µg), and vancomycin (30 µg) [41].

4.4. Sequencing

DNA was extracted from MRS isolates [42]. The identification of MRS species was performed
by sequencing of rpob, gap, and tuf conserved genes using the primers proposed by [43,44] and [45],
respectively. Reactions were prepared with 1× buffer (20 mM Tris-HCl pH 8.4, 50 mM KCl), 2 mM
MgCl2, 0.2 mM dNTPs, 0.5 U of Platinum® Taq DNA polymerase (Invitrogen), 4 pmol of primers and
60 ng of genomic DNA and nuclease free water up to 20 µL. Amplified PCR products were subjected to
sequencing by using the BigDye® Terminator v3.1 kit (Thermo Fisher Scientific, Waltham, MA, USA)
and capillary electrophoresis was performed in an ABI3130 sequencer (Applied Biosystems, Foster
City, CA, USA).

Quality trimming of reads was achieved using the Phred/Phrap/Consed package, considering
Phred base quality equal to or higher than 20 [46–48]. Sequences of the three genes and those available
in the GenBank were aligned using Multiple Sequence Comparison by Log-Expectation (MUSCLE) [49].
Bordetella pertussis (Accession number BX640414.1) and Pseudomonas sp. (LT222319.1) were used
as outgroups. Aligned sequences of the three genes were concatenated and the best fit model for
phylogenetic analysis was selected, based on the Akaike information criterion (AIC) [50]. Bayesian
analyses were performed using MrBayes v. 3.2.3 software [51] with the number of substitution six
and rates gamma. Four independent runs were carried out with 5,000,000 generations, with sampling
performed at intervals of 100 generations. At the end of the analyses, with a standard deviation less
than 0.01, the initial 25% of the trees was discarded as burn-in. The resulting phylogram was edited
graphically using the software Dendroscope 3 [52].

4.5. RAPD Markers

MRS genetic diversity was analyzed using RAPD (Random Amplified Polymorphic DNA)
molecular markers. One hundred RAPD primers were tested (Operon Technologies, CA, USA) in order
to select the most informative and polymorphic ones. Twelve primers were selected: OPA4, OPA13,
OPA18, OPG14, OPI7, OPM5, OPM12, OPP19, OPQ1, OPQ18, OPR2, and OPR12. The amplification
reaction of fragments was performed with 1× buffer (20 mM Tris-HCl pH 8.4, 50 mM KCl), 2.5 mM
MgCl 2, 0.2 mM dNTPs, 1.0 U Taq DNA polymerase (Fermentas, Thermo Fisher Scientific), 5 pmol
of primer, 60 ng of genomic DNA and pure sterile water to 20 µL. Amplification was performed in a
Eppendorf Nexus thermal cycler programmed to cycle at 92 ◦C for 3 min, 35 cycles at 92 ◦C for 60 s,
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36 ◦C for one min and 45 s, 72 ◦C for 1 min and 45 s, and at 72 ◦C for 10 min. Amplification products
were separated using 1.5% agarose gel electrophoresis stained with ethidium bromide (0.5µg/mL).

Banding patterns were analyzed to obtain a binary matrix, which was used to generate a distance
matrix [53] and a neighbor-joining cluster with 1000 bootstraps [54,55] using PAUP 4.0b10 software [56].
The dendrogram obtained was graphically edited using the software Dendroscope 3 [52].
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