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Abstract

Structural templates are 3D signatures representing protein functional sites,

such as ligand binding cavities, metal coordination motifs, or catalytic sites.

Here we explore methods to generate template libraries and algorithms to

query structures for conserved 3D motifs. Applications of templates are dis-

cussed, as well as some exemplar cases for examining evolutionary links in

enzymes. We also introduce the concept of using more than one template per

structure to represent flexible sites, as an approach to better understand cataly-

sis through snapshots captured in enzyme structures. Functional annotation

from structure is an important topic that has recently resurfaced due to the

new more accurate methods of protein structure prediction. Therefore, we

anticipate that template-based functional site detection will be a powerful tool

in the task of characterizing a vast number of new protein models.
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Significance statement
This is a review covering the use of 3D templates to identify conserved
motifs in proteins, focusing on enzymes. We overview relevant literature
and propose some new methodologies and implications, which are currently
under development in our group. We anticipate that templates will aid in
the functional annotation of predicted protein structures, since the advent of
AlphaFold DB. We also discuss template-based methods to investigate the
evolution of catalytic function, aiming to better understand catalysis and
design new enzymes.

1 | INTRODUCTION

Τhe mechanistic description of enzymatic catalysis
requires firm understanding of the geometry of chemi-
cally important groups, whose relative spatial arrange-
ment is well-defined at each step of the catalytic
mechanism. Enzymes utilize a restricted ensemble of

amino acids to perform all-known catalytic reactions,1

with 3D conformation of the active site being critical for
catalysis to occur. In a recent work, we show that the
geometry of active sites across a large set of diverse
enzyme families is highly conserved, with conformational
variation and flexibility being observed to various degrees
among different enzymes.2
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Active sites are typical examples of functional sites
that can be represented by 3D signatures, known as
structural templates.3 These usually consist of residue
coordinates (a subset of main or side chain atoms, or
average coordinates) and a set of geometrical or physical/
chemical constraints to permit tunable matching specific-
ity.4,5 Special tailor-made algorithms are used to query
protein structures and find template matches, working as
a structural equivalent of sequence motif searching
methods.6–9 Templates have been used extensively for the
identification of functional sites in protein structures.10

More specifically, sites facilitating DNA binding,11 metal
coordination motifs,12,13 catalytic sites,5,14 and ligand
binding cavities15,16 have been studied in our group, and
template-matching methods, able to identify such sites,
have been incorporated in functional annotation pipe-
lines.17 During the era of structural genomics,18 protein
functional annotation was a trending topic.19 Fast-
forwarding to the present day, the emergence of sophisti-
cated protein structure prediction algorithms20 is reviving
the need for functional annotation from structural
models, therefore revisiting templates for this purpose is
important, though not a trivial process. Two challenges
must be faced: how to generate template libraries, and
how to query structures with templates, efficiently with
speed and accuracy. In this review, we focus on catalytic
templates, aiming to address these challenges, though the
principles can be transferred to templates representing all
types of functional sites.

Furthermore, we present applications of templates in
the context of enzyme evolution, discussing phenomena
like functional convergence and divergence,21 catalytic site
plasticity, and flexibility. Understanding enzyme evolution
is critical for designing enzymes that perform novel func-
tions, and templates can aid to infer evolutionary relation-
ships. We appreciate that enzyme engineering through
modification of existing enzymes requires knowledge of
how catalytic function has evolved in 3D, a topic beauti-
fully discussed in the extensive body of work by Dan
Tawfik.22,23 In addition to reviewing the work done in
structural templates so far, this paper presents some pre-
liminary results from our ongoing work on enzyme evolu-
tion, using the well-studied catalytic triad of serine
proteases as a case study24 and as proof of concept for some
proposed methodologies involving catalytic templates.

2 | GENERATING TEMPLATES

2.1 | Definitions of templates

We define two types of templates: coordinate templates
(model coordinates and a set of matching constraints)

and fuzzy or “feature” templates. Coordinate tem-
plates consist of a set of atom coordinates, specifying a
defined geometry, and each atom type is subject to con-
straints such as matching fuzziness (e.g., only side chain
C atom, or any non-C atom can be matched). These coor-
dinates are used to generate distance constraints, which
are applied when matching a target structure. The quality
of the match is measured by the Root Mean Square Devi-
ation (RMSD) of corresponding atomic positions.4,25

Algorithms used for matching of direct templates will be
discussed further below. Fuzzy templates on the other
hand do not necessarily include hard-coded atom coordi-
nates, but instead a set of geometrical and/or physico-
chemical parameters (e.g., inter-residue distances,
charge, hydrophobicity etc.). The following paragraphs
list a number of examples of templates of both types and
the methods of their extraction, which can be either auto-
mated or semi-automated (manual/hybrid). Most studies
involving template libraries implement an automated
pipeline to extract motifs from protein structures, usually
with additional sequence-derived information. This
allows for large libraries to be generated quickly, covering
a large functional space, but this can come with a cost in
accuracy due to a variety of causes (e.g., no manual
curation of templates), and usually, reviewing of the gen-
erated templates is mandatory.

2.2 | Template extraction methods

Fetrow and Skolnick in their popular work26 introduced
the term “Fuzzy Functional Forms” (FFFs) to refer to fea-
ture (distances, angles) templates of relaxed constraints,
generated manually for two enzyme families. These were
used successfully to predict function by detecting cata-
lytic centers both in high- and low-resolution structures.
This method was later automated by Arakaki et al., who
developed “Automated Functional Templates” (AFTs),
an upgraded version of FFFs. Their library comprised
593 indirect templates for 162 enzymes.27

Enzyme function identification was also explored by
Meng et al.,28 who show that consensus templates for two
enzyme families (enolases and haloacid dehalogenases)
coded in the SPASM format (see below in the Matching
Algorithms section), consisting of a set of conserved resi-
dues, can successfully re-assign enzymes of a training
dataset to the superfamily they belong. The same group,
2 years later, presented the automated version of this work
(GASPS motifs)29; these motifs are culled from a set of
conserved residues able to best identify the correct func-
tion in a training set. Residue conservation is also
exploited in the works of Kristensen et al.30 and Ward
et al.31 where catalytically critical residues are identified
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via Evolutionary Trace (ET); a library covering 98 enzyme
families was generated by Kristensen et al., with these
templates being �80% successful to identify catalytic func-
tion in benchmarks.

Catalytic site identification is also described by
Nebel32 who generated consensus 3D templates, built
using rigid bound groups as a reference (porphyrin-
bound proteins are explored as a use case). Another
example of automatically extracted templates is presented
by Liang et al.,33 whose method rely on gathering struc-
tural information from the environment of conserved
sequence motifs; this information is used to construct
templates in the form of physicochemical fingerprints. A
template in this library is a hard-coded consensus of fea-
tures and parameters instead of actual coordinates. Func-
tionally important clusters of residues can also be
identified by representing protein structures as graphs,
an approach first devised by Artymiuk et al. in the
ASSAM program34 (described in the next section).
DRESPAT by Wangikar et al.35 also implements a graph-
based method to break a protein down into small struc-
tural patterns (subgraphs) and then search a query struc-
ture for 3D motif matches in the form of common
subgraphs. A similar concept is described by Laskowski
et al., where a protein is broken into multiple direct tem-
plates of a few residues (reverse templates), and struc-
tures are queried with all of them, to identify function.36

Functional characterization has also been explored by
Jambon et al. in the program SuMo,37 whose principle is
based on comparing two structures and identifying com-
mon local 3D similarities.

Within our own group, Wallace et al. used the cata-
lytic triad as a testing active site to generate functional
atom templates that were able to distinguish catalytic
from non-catalytic entities in protein structure data-
bases.38 This pipeline was further generalized a few years
later by Torrance et al., who generated direct templates
from 147 families in the Catalytic Site Atlas (CSA)39,40

and validated their ability to identify members within the
correct homologous family.5 In that work, a representa-
tive template from each CSA family was extracted auto-
matically using RMSD criteria. All CSA families include
a representative structure where catalytic residues are
manually curated; therefore, this method of template
extraction can be classified as hybrid, since it combines
programmatic generation of templates and a knowledge-
based definition of the active sites.

We have also considered binding sites; Jones et al.
modeled helix-turn-helix motifs in 3D templates to iden-
tify DNA binding sites,11 while metal binding sites were
explored by Torrance et al.12 and Andreini et al.41,42 in
2008. Similar work has been done by other research
teams: Goyal and Mande13 created metal coordination

templates by extracting metal–ligand neighboring residue
parameters such as inter-residue distances, Cα and Cβ

plane angles, and volume of the binding site. Further-
more, Zhao et al. generated fuzzy templates from non-
homologous nucleotide-binding proteins. These are use-
ful for identifying co-factor (NAD, FAD, ATP etc.) bind-
ing sites.25 The structural features here are affinity
potentials within the nucleotide-binding cavities, which
are used to generate a template that resembles a consen-
sus pseudo-ligand (a physicochemical signature common
among these cavities). Match-searching of the template
ligand is performed using molecular docking software.
Lastly, Chang et al. introduced Protemot43 in 2006, a web
server for ligand binding site prediction. This is again
based on coordinate templates, generated automatically
by the extracting residues in close proximity to ligands
bound in crystal structures from the PDB.44 This method
initially produced a high rate of false positive results but
was later refined by introducing a sequence-order con-
straint to the templates,45 which significantly reduced
this rate.

2.3 | 3D variation-aware templates

The limitation of the template library generated by Tor-
rance et al. lies in the fact that a single template is gener-
ated for an enzyme family, averaging out any structural
variation within homologous active sites.46 This applies
to the striking majority of libraries involving some form
of consensus templates: Fuzziness caused by structural
variation is only captured by setting relaxed matching
criteria in the matching algorithms, leading to a high rate
of false positive results, and reducing accuracy. What if
different conformational states of an active site could be
captured by multiple templates? Figure 1 presents this
concept, exploiting GTPases – a use case thoroughly
examined in our previous work2 The methodology is sim-
ple: catalytic residues for all homologous enzymes of a
(Mechanism and Catalytic Site Atlas [M-CSA]) family are
extracted and iteratively superimposed47 over their func-
tional atoms.5 Structures are then clustered by con-
structing a hierarchical dendrogram using pairwise
RMSD as a metric, and the tree is pruned to derive struc-
tural clusters (adjusting pruning height will lead to a
coarse or fine clustering). In GTPases (Figure 1), three
major clusters can be distinguished, each of which corre-
sponds to the binding of a different analog to the native
ligand as this is transformed during catalysis (Cluster 1:
Transition state analog, GDP.AlF3; Cluster 2: Substrate
analog, GSP; Cluster 3: Product, GDP). For each cluster,
we generate a representative template, derived from the
site with the closest 3D similarity to the average cluster
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coordinates. The result is three templates, each one
corresponding to a major conformational state of the
active site during the progression of catalysis. We see that
the primary differences in geometry lie in the Arg residue
which directly interacts with the β and γ phosphate
groups of the ligand by forming an H-bond with an oxy-
gen atom between them. Other residues such as Gln/Asn
and bottom right Asp/Glu also exhibit some variance,
which is captured by the templates. Important to note
here also is the fuzzy residue matching that is allowed in
the templates (Asp-Glu, Asn-Gln, Ser-Tyr-Thr can be
matched interchangeably) and fuzzy atom matching
(e.g., endpoint Asn/Gln N and O atoms can be matched
interchangeably48). This approach, which we are cur-
rently developing, will allow for a much more compre-
hensive and robust catalytic template library, which can

also assist in understanding catalysis and in the design of
novel enzymes.

3 | MATCHING ALGORITHMS

In this section, we discuss a number of template
matching algorithms. This is merely a subset of all algo-
rithms in literature, but they comprise a sample rep-
resenting important underlying principles for template
matching. One of the first principles utilized for 3D motif
matching was search via subgraph isomorphism,
implemented in the program ASSAM34 by Artymiuk
et al. In this algorithm, side chains are abstract and are
represented by pseudoatoms (graph nodes), with their
relative position represented by distances (graph edges).

FIGURE 1 Multiple 3D templates to cover structural variation in the active sites of GTPases. Catalytic residues from enzymes within

the homologous family are superimposed over their functional atoms and clustered by constructing a hierarchical dendrogram (upper right

panel). Major clusters (presented over distinctly colored backgrounds) are derived by dynamically pruning the dendrogram. Side chains of

catalytic residues are shown as transparent sticks, with their functional atoms colored differently according to the group of aligned residues

they belong. The 3D template for each cluster is a representative active site calculated as the cluster member of closest 3D similarity to the

average coordinates of the cluster and is shown as opaque sticks, colored by atom type (white: C, red: O, blue: N). Alternative residues that

can be matched by template atoms are labeled accordingly. For each cluster, a representative bound ligand (Cluster 1: GDP.AlF3 – transition

state analog; Cluster 2: GSP – GTP substrate analog; Cluster 3: GDP – product) is shown as light sticks, colored by atom type. 3D models

were prepared in PyMol49
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Ullman's subgraph isomorphism is then used to find
occurrences of the template (as subgraphs) in a protein
structure graph. Stark and Russell also used inter-residue
distances to find template matches in PINTS,19 also intro-
ducing an atom-count independent confidence score, to
be used complementarily with RMSD for assessing the
odds of finding a template match by chance. Similar prin-
ciples (depth-first search using Euclidean distances) are
implemented in the SPASM-RIGOR3 software suite: here,
residues in the template are modeled by a Cα atom and a
pseudo-atom representing the side chain center of mass.
Fuzzy residue and atom matching are supported in this
method, and the output is all substructures satisfying the
template constraints, with the drawback being the lack of
a statistical significance metric for each match. The work-
ing principle is identical between SPASM and RIGOR,
with the former being used for searching a user-defined
template in a set of query structures, and the latter for
querying a single structure with a library of pre-defined
templates. Higher flexibility in template nomenclature is
allowed in the program TESS,25 which uses geometric
hashing for template searching, an algorithm used as of
then in computer vision. Templates of similar (and also
more flexible and robust) nomenclature are also used by
Jess,4 the successor of TESS; this is based on a k-d tree
method to represent a structure and iteratively search for
matches of the constraints coded in a template. This pro-
vides order-of-magnitude increase in speed compared to
TESS since it does not require severe preprocessing and
storing of the query structure. Also, Jess uses a semi-
empirical significance score for the outputted template-
match superposition, calculated through model RMSD
distributions of real structural data. Jess and its templates
will be used in the examples below. Lastly, one of the lat-
est motif matching algorithms reported by Brittich et al.
applies an inverted-index search principle to prioritize
structural database searching, by breaking templates in
two-residue combinations, significantly improving effi-
ciency and speed.50

Distinguishing true from false positive matches is a
significant problem in template matching. This heavily
relies on template specificity, which further relies on the
defined constraints and number of residues/atoms (lower
number or residues will lead to more general templates,
thus more potential hits). For instance, in enolases, five-
residue templates used by Meng et al.28 seem to be robust
enough to correctly assign these enzymes to their super-
family, but for other superfamilies, the optimal residue
number might be different. The question underlying this
is the following: What is the optimal specificity, so that
we do not reject matches of biological significance, for
example those that result from convergent evolution?
Furthermore, structural variation within the active site is

difficult to capture when templates are over-specific; a
tradeoff is to loosen matching criteria (e.g., a relatively
high pairwise matching distance threshold or a high
RMSD threshold). However, this comes at a cost in com-
puting speed, with higher distance and RMSD thresholds
resulting in slow algorithm runs,4 and again a higher
false/true positive ratio. A feasible solution to these prob-
lems can potentially be provided by the recently intro-
duced parametric templates,51 where individual atoms
can be weighted according to arbitrary criteria.

As discussed further above, there are confidence met-
rics to assess meaningfulness of matches. Stark et al.
describe an a priori method for measuring statistical sig-
nificance of calculated RMSD of fitted motifs in query
structures, in a fold-independent manner,52 while Jess
implements a semi-empirical metric. It is evident that
this is a significant challenge. For example, Protemot43

suffered reliability issues caused by a high false positive
rate. However, its back-end algorithm was optimized by
applying a sequence-order constraint45 that demanded
matching residues to be in the same sequential order as
in the template. Although this might provide robustness
in identifying matches in proteins linked by evolution, it
is severely limited in detecting convergent active site
geometries or functional motifs where residues might
have been substituted by others in different position in
sequence.

4 | APPLICATIONS

Functional annotation has always attracted great interest
in protein science, since experimental functional charac-
terizations are time-consuming and rarely unbiased, and
therefore, several computational approaches have been
developed for this.53–56 Functional identification pipe-
lines using templates have been released, including but
not limited to ProFunc,36 COFACTOR,57 SuMo,37 etc.
These found huge application during the rise of struc-
tural genomics two decades ago, which added more than
15,000 experimentally determined structures to the PDB,
plenty of them being functionally uncharacterized.58 It is
easily predictable that similar work will re-emerge, with
the latest breakthrough in protein structure prediction.
The public release of the AlphaFold database20,59 has
delivered millions of modeled structures, the majority of
which are of unknown function. Therefore, the impor-
tance of functional annotation is rising again, and tem-
plates are a great tool to facilitate this.

Templates also find application in studying the evolu-
tion of proteins. Inference of evolutionary relationships is
a non-trivial task in cases where sequence and structure
have diverged to the point where it is impossible to
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distinguish random (non-functional) similarities from
convergent evolution events and from similarities due to
the presence of a common ancestor.21,26,60 In such cases,
templates identifying local structural similarities can pro-
vide some insight into evolutionary relationships. We are
particularly interested in convergent and divergent evolu-
tion in enzymes, as well as structural substitution events
in active sites (plasticity) that results in rescue of catalytic
function when major mutation events occur during evo-
lution. A detailed review of the latter phenomena is
described and illustrated in a survey by Todd et al..61 In
the following paragraphs, we use the well-studied Ser-
His-Asp catalytic triad of serine proteinases to describe
some applications of templates in exploring the evolution
of enzyme catalysis.

5 | FUNCTIONAL CONVERGENCE
AND DIVERGENCE

It has been shown that convergence in the function of
evolutionary unrelated enzymes, particularly among
large enzyme families, occurs frequently.60,62 Similarly,
due to the restricted number of distinct protein folds in
nature, enzymes catalyzing slightly63 or even radically
different reactions might adopt a similar overall struc-
ture, with differences only located within the catalytic
center. This is often the outcome of divergent
evolution,64 usually after gene duplication and subse-
quent selection in the gene copies.

Templates are powerful tools to detect and investigate
such phenomena. In functional convergence, similar rel-
ative spatial arrangement of functional groups can be
detected in active sites. Subtle 3D differences in func-
tional divergence, on the other hand, will correspond to a
partial match of a template to the active site
(e.g., matching of 3 out of 5 residues), with non-matching
functional atoms reflecting the residues that have chan-
ged during time and resulted to functional shift (change
in mechanism21 or change in substrate specificity65,66).

Serine proteases are a well-known example of func-
tional convergence in enzymatic function. Russell, using
the catalytic triad as a use case along with some ligand
binding sites, described side chain conformational pat-
terns observed frequently as a consequence of convergent
evolution.67 These patterns are essentially 3D templates
that can identify conserved geometries of functional
atoms. Querying a protein with two templates of the
same active site, one consisting of backbone and one of
functional atoms, can constitute a simple method to iden-
tify cases of functional convergence. The principle is the
following: Functional atoms matches in a structure,
which do not have a corresponding backbone atoms

match, will indicate a conserved geometry in the side
chain, while the residues contributing these side chains
might come from completely different sequence
positions.

Using the catalytic triad as an exemplar, we present
some indicative results of a rudimentary pipeline like
this, in Figure 2. Here, a non-redundant set of PDB struc-
tures (95% max sequence identity) is queried using con-
sensus Jess templates of the Ser/His/Asp catalytic triad
extracted from carboxypeptidases (M-CSA entry 5, EC
3.4.16.6). The dataset was first queried with a backbone
template, and subsequently with a functional atoms tem-
plate (same software parameters used in both searches).
The functional atoms template allows fuzzy matching of
Ser with Thr and Tyr, as well as Asp with Glu; also, to
minimize the number of false positive hits, inter-residue
distances in the matches must not differ from the
corresponding template distances by more than 1 Å.
From the putative hits (functional atoms matches not
having a corresponding match in backbone), we
filtered the structures annotated with hydrolase activity
(EC 3.-.-.-); 3 hits were cherry-picked by hand and are
presented in individual panels in Figure 2a. It is clearly
seen that catalytic triad geometry is observed within dif-
ferent structural contexts, as seen from the secondary
structure variety among the hits. Superposition of the hits
over their functional atoms (bottom right panel) reveals
that these are actually well conserved in 3D, while their
respective Cα atoms (orange spheres) are scattered in var-
ious directions. This shows the many configurations and
possibilities to form a catalytic triad functional motif, by
residues from completely different positions, both in
sequence and in the fold. These results demonstrate the
power of templates to identify convergence; further evi-
dence that these proteins are not evolutionarily related is
provided by the CATH68 domain annotations of each
triad site, as well as by the multiple sequence alignment
of the sub-sequences containing the triad residues
(Figure 2b), which shows no evident homology.

6 | ACTIVE SITE PLASTICITY

Catalytic plasticity refers to the conservation of structure
and function, especially within the active site, after
numerous amino acid changes during evolution. Cata-
lytic sites are under evolutionary pressure; therefore, the
effects of functionally deleterious mutations might be
reversed by the deployment of other residues. The result
is two active sites from evolutionarily related enzymes,
with similar functional atoms adopting similar geome-
tries, but whose residues do not align perfectly in
sequence. Todd et al. present a collection of cases culled
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from the literature,61 where various types of plasticity are
exemplified. Rescue of function during evolution can be
the outcome of –among others– spatial or functional sub-
stitution; the former refers to the use of a similar residue
from a different position in sequence while the latter is
the contribution of the same functional atoms by a resi-
due of different chemical structure (e.g., O atom contrib-
uted by a Thr in one case and a Tyr in another case). Of
course, there are other phenomena that lead to re-

establishment of function, such as circular permutations
and divergence followed by convergence, but here we
focus on the first two mentioned.

We are again using the catalytic triad and present two
simple case studies, identified by querying a non-
redundant PDB set (95% maximum sequence identity)70

with the [Ser/Thr]-[His]-[Asp/Glu] functional atoms tem-
plate. Figure 3 illustrates the first case, which a catalytic
triad, detected in two bacterial carboxylesterases

FIGURE 2 Examples of convergent catalytic triad 3D motifs, identified by a template consisting of functional atoms. a: Top panels and

bottom right panel show each example, with side chain atoms colored according to atom type and main chain colored orange. A part of the

parent structure in each example is drawn as cartoon to indicate the different structural context of these motifs. Bottom right panel shows all

hits superimposed over the template in a stick representation, with side chains colored by atom type (white: C, red: O, blue: N) and Cα atoms

shown as orange spheres to indicate the geometrical heterogeneity of the backbone and geometrical/chemical conservation of the functional

groups. 3D models were prepared in PyMol.49 b: Multiple sequence alignment of sub-sequences containing the catalytic triad residues

(shaded in pink), in the three example proteins. Matched residues in the alignment are shaded in purple, as illustrated in JalView69
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(EC 3.1.1.-). Both enzymes perform similar functions, fold
into a common α/β architecture, and belong to the same
CATH superfamily, therefore are homologs. The template
search identified a catalytic triad configuration in these
structures; both are consistent with the literature and are
responsible for hydrolyzing a carboxylic ester into an
alcohol and a carboxylate moiety.71,72 The catalytic
triad of the E. coli homolog (shown in pink in the fig-
ure) is the standard Ser-His-Asp triad found in most
serine proteases; however, in the B. subtilis homolog,
the Asp residue has been substituted by a Glu in the
same sequence position. This is a case of functional
substitution, where the function of the enzyme is res-
cued despite the mutation, and the geometry of the
functional groups is almost perfectly retained. Asp and
Glu share the same carbonyl functional group, and this
is captured by the template, since we allow Asp-Glu to
be matched interchangeably.

The second noteworthy case is again a pair of prote-
ases, a human, and a bacterial one, shown in Figure 4.
This case underscores the question: can we infer evolu-
tionary relationships between proteins with the aid of
structural templates? These two examples have a mat-
ched Ser-His-Asp catalytic triad each, both known to be
functional,73,74 in the center of the molecules (Figure 4a).

The triads have almost identical conformation, and as
seen in superposition (Figure 4b), the secondary structure
around each share some similarity, although the outer
shells of the structures are completely different (as seen
in their CATH codes). This particular case was identified
by template matching and subsequent multiple sequence
alignment of the local sequences containing the matches
motifs (Figure 4c). The pair only has the Ser residues of
the triads aligned in sequence, which are located on a C-
terminal conserved motif in both proteins. The His and
Asp residues, on the other hand, come from completely
different sequence positions, and they are even in differ-
ent sequence order, as clearly seen in Figure 4c.
Corresponding aligned residues with these two are
shown in yellow in Figure 4a and c, and they are located
in positions in the structure that are unrelated with func-
tion.75 What these observations suggest is that this is
most probably a case of convergent evolution. Another
scenario might be that they could share a distant com-
mon ancestor (that would either be before eucaryote/
procaryote differentiation or a scenario of symbiotic bac-
teria). Having said that, if we assume an ancestral link
here, the Asp or His residues have been substituted dur-
ing evolution by residues in a different position in the
sequence. Therefore, this might be a case of single or
double spatial substitution.

Commonalities like the ones discussed in this
section could only be found by a purely 3D approach like
the use of templates, although more information is
required to exactly infer the evolutionary history.
Sequence alignment is proven to perform poorly in cases
where sequences have diverged to the point where only
some extremely conserved motifs would be aligned. How-
ever, template matching can find an implication in these
cases, as it is sequence independent and can recognize
motifs only conserved in 3D, even if these derive from
residues with dissimilar chemical structure (in the case of
functional substitution).

7 | CONCLUSIONS – DISCUSSION

This paper has reviewed template extraction pipelines
and matching algorithms. Templates can be defined in
different ways and derived using various approaches,
some relying on automatic prediction of functionally
important residues and others being knowledge-based.
Tailor-made matching algorithms have been developed
for each type of template, and almost all are limited by
the same challenge: distinguishing true from false posi-
tives. Statistical analysis is usually performed to filter out
matches occurring by chance,4,52 as well as adjustment of
template specificity by adding/removing matching

FIGURE 3 Functional substitution event in serine proteases

captured by a 3D template. Two homologous bacterial

carboxylesterases (EC 3.1.1.-) (PDB IDs: 1 m33 (pink) and 4ccy

(white)) are superimposed over the functional atoms of the

template-matched catalytic triads. Inline panel shows the

superimposed triads in a zoomed stick representation, colored by

atom type (C: white/pink, O: red, N: blue). Glu-Asp functional

substitution is indicated by a green circle. 3D models were prepared

in PyMol49
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constraints. Here it is important to stress that the latter
approach should be taken with care, as it entails the risk
of creating over-specific templates (e.g., by including
more residues/atoms in a coordinate template) that per-
form poorly in matching, especially when structural vari-
ation is involved.

Identification of functional centers in macromolecu-
lar structures is the primary goal of templates, as seen in
several works presented in previous sections. This is an
ongoing need, since the advent of –now millions59–
accurately (at least a significant fraction of them76)
predicted 3D protein models, plenty of which lack func-
tional annotation. Template-based annotation of these
models can lead the way to further characterization, this
time experimental. Furthermore, this works as a positive
feedback loop: new structures are functionally character-
ized (computationally or/and experimentally) and their
functional sites are used to further enhance existing

templates (or create new ones), making the libraries pro-
gressively more robust.

We also consider the use of templates to explore the
evolution of enzymes. Phenomena like convergent, diver-
gent evolution, functional promiscuity, moonlighting,
and functional site plasticity can indeed be identified and
characterized through 3D templates. However, such pro-
cedures are rarely trivial; from the cases we presented in
the previous sections, we saw that analysis of protein
structures can help to elucidate the pathway of evolution,
where sequences have diverged to such an extent that
relationships are difficult to identify.77 Template libraries
can assist in inferring evolutionary pathways to new
function, which is a critical piece in protein/enzyme
design.

Lastly, we have presented some future ideas currently
under investigation within our group. We introduced
here the concept of multiple templates to cover

FIGURE 4 Catalytic triads captured by a 3D template, in two enzymes of similar function. a: A human (upper model, white, PDB ID

3vxe) and a bacterial (lower model, pink, PDB ID 4i0w) serine protease shown in cartoon representation, with the catalytic triad shown as

sticks. Residues of the triad that align in sequence but not in structure (see panel c) are colored yellow and labeled. CATH codes refer to the

domains where the triads belong to. b: Magnification and superposition of the human and bacterial catalytic triads shown as sticks colored

by atom type (C: white/pink, O: red, N: blue). Structural context is presented as cartoon to indicate a relative similarity in the fold within the

substrate binding cavity. c: Multiple sequence alignment of a sample of serine proteases in which a catalytic triad motif was matched by the

template with aligned positions shaded purple. The two proteases under investigation are marked by red rectangles. Residues of the catalytic

triad are shown in red background and alignment columns (green dashed rectangles) indicate the order mismatch in two of the three

catalytic residues (His and Asp). The corresponding aligned residues of the two misaligned residues are shown in yellow background and

labeled in the 3D models of panel a. Note that only the subsequence blocks surrounding the catalytic residues shown in figure. 3D. models

were prepared in PyMol49 and alignment was visualized in Jalview69
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conformational variation in flexible active sites. The
extraction process is fully-automated and we plan to
make the library available in the near future, both as
standalone and as part of the back-end algorithm of
ProFunc.17 Furthermore, as seen in Figure 1 and in our
recent publication,2 large active sites like this can be bro-
ken down into self-contained entities or modules (for
instance, a metal binding and a bond cleaving module, or
a catalytic triad, and an oxyanion hole). Our templates
essentially represent the functional groups of catalytic
residues, and by combining them with mechanistic infor-
mation from M-CSA, we can define functional group
combinations responsible for each mechanistic step. Such
modules can serve as puzzle pieces to aid in modifying or
designing catalytic centers in artificial enzyme design.
Moreover, large-scale studies involving the querying of a
large set of experimental and predicted protein models
(within the PDBe44 and EMBL-EBI AlphaFold DB20,59

respectively) with catalytic templates are currently in pro-
gress. These studies include the identification of catalytic
entities, and the evolutionary characterization of
enzymes, in a systematic manner (as described in the pre-
vious paragraphs). We anticipate these template methods
to constitute a powerful set of tools to design, repurpose,
and modify enzymes, by mimicking how nature modifies
enzyme active sites to retain function.
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