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Perspectives from metabolomics
in the early diagnosis and
prognosis of gestational
diabetes mellitus

Muqiu Zhang and Huixia Yang*

Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
Gestational diabetes mellitus (GDM) is one of the most common metabolic

disorders in pregnant women. The early detection of GDM provides an

opportunity for the effective treatment of hyperglycemia in pregnancy, thus

decreasing the risk of adverse perinatal outcomes for mothers and newborns.

Metabolomics, an emerging technique, offers a novel point of view in

understanding the onset and development of diseases and has been repeatedly

used in various gestational periods in recent studies of GDM. Moreover,

metabolomics provides varied opportunities in the different diagnoses of GDM

from prediabetes or predisposition to diabetes, the diagnosis of GDM at a

gestational age several weeks earlier than that used in the traditional method,

and the assessment of prognosis considering the physiologic subtypes of GDM

and clinical indexes. Longitudinal metabolomics truly facilitates the dynamic

monitoring of metabolic alterations over the course of pregnancy. Herein, we

review recent advancements in metabolomics and summarize evidence from

studies on the application ofmetabolomics in GDM, highlighting the aspects of the

diagnosis and differential diagnoses of GDM in an early stage. We also discuss

future study directions concerning the physiologic subtypes, prognosis, and

limitations of metabolomics.
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Gestational diabetes mellitus

Gestational diabetes mellitus (GDM) is a common metabolic disorder that is defined

as any degree of glucose intolerance with onset or first recognition during pregnancy (1).

GDM affects approximately 14% of pregnancies worldwide, representing approximately

18 million births annually (2). Being overweight, being of advanced maternal age, having

micronutrient deficiencies, and having a family history of insulin resistance and/or
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diabetes are risk factors for GDM (3). Meanwhile, the risk of

GDM is increased in case of disturbances in the metabolism of

the three nutrients, namely, carbohydrates, fat, and protein (4).

In clinical practice, the diagnosis of GDM is accompanied by

several challenges. It is challenging to differentiate GDM from

prediabetes or predisposition to diabetes in some cases; moreover,

there is a possibility of heterogeneity of physiologic processes

underlying hyperglycemia in women with GDM. Hyperglycemia

in pregnancy is associated with adverse maternal and prenatal

outcomes; however, there is a lack of international consensus

regarding the timing of the screening method and optimal cutoff

points for the diagnosis and intervention of GDM (5). Routine

screening of the general population, including pregnant women,

helps in identifying patients with prediabetes or predisposition to

diabetes (5). Furthermore, based on the metabolic abnormality in

insulin sensitivity or deficient insulin secretion, patients with GDM

can be classified as cases with predominant insulin sensitivity

defects, predominant insulin secretion defects, or normal glucose

tolerance (6).

The metabolism of a pregnant woman undergoes constant

alterations once the pregnancy starts to support fetal development.

Increased serum insulin secretion and insulin resistance are the

most obvious maternal metabolic changes (Figure 1). During

pregnancy, the amount of insulin secreted by pancreatic b cells

steadily increases until the peak in the third trimester and returns to

the normal level after delivery (7, 8). Along with increased insulin

secretion, there is a decrease in maternal insulin sensitivity at the
Frontiers in Endocrinology 02
end of the first trimester, which continues until before delivery (9,

10). The insulin receptor signal is affected by increased placental

lactogen, placenta-derived human growth hormone, progesterone,

cortisol, prolactin, and other hormones, leading to GDM (11).

Pathophysiologically, GDM occurs when there is an imbalance in

insulin sensitivity and secretion during pregnancy. In detail, the

level of insulin secreted by pancreatic b cells is unable to keep up

with the increasing insulin resistance (12).

GDM develops among women with normal glucose before

pregnancy in a more occult way throughout trimesters. Women

with GDM are usually more likely to experience pregnancy-

related complications, including high blood pressure and large

birth weight (2), which are improved by effective glycemic

control. Thus, timely detection and control of GDM are

dispensable for the decrease in pregnancy-re lated

complications (13, 14). Furthermore, children born to mothers

with GDM are at high risk of suffering from type 2 diabetes

mellitus and obesity at an early age (15–17). Therefore, it is

necessary to put greater efforts into exploring GDM, particularly

with respect to early diagnosis and prognosis.

There are alterations in metabolism during pregnancy, and

hyperglycemia is a metabolic disorder. In this review, we discuss

updates in metabolomics and summarize studies on the

application of metabolomics in GDM, highlighting aspects of

the diagnosis and differential diagnoses of GDM in an early stage.

We also mention future study directions concerning the

physiologic subtypes, prognosis, and limitations of metabolomics.
FIGURE 1

The glucose metabolism alteration and its influences in pregnancy.
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Metabolomics in gestational
diabetes mellitus studies

The composition of the metabolome, the complete set of

metabolites and lipids in a biological system, directly reflects the

physiological status, gene expression, and environmental stimuli

of the biological system. Changes in the concentration or rate of

transformation of metabolites under pathophysiological

processes, such as aging and diseases, can be used as

biomarkers for the diagnosis and prediction of clinical

outcomes. Metabolomics has the advantage of recording

disease-relevant metabolic changes and recognizing new

biomarkers of disease processes (18). After further verification,

these important metabolites can be used for disease diagnosis,

therapeutic response assessment, or even predicting

susceptibility to diseases (19).

Metabolomics has been successfully used to distinguish

many disease-associated metabolite types in cancer,

inflammatory bowel disease, asthma, diabetes, traumatic brain

injury, metabolic syndrome, Parkinson’s disease, and so on (20–

20). In a series of studies, the changes in metabolites were

analyzed in the specific stages of pregnancy in women with

pregnancy-associated complications, such as preeclampsia and

GDM (20–22). The results of a metabolomics study interpreted

the disease after the integration of multiple factors, including

disease process, environmental exposures, demographic

variations, and dietary habits, which are also the origin of

study heterogeneity (23). Therefore, a successful metabolomics

study calls for considerate preparations, which include

consideration of confounding variables, powerful calculation

for sample size, and standard sample extraction and storage

(24). In metabolomics studies of GDM, the known confounding

variables include ethnicity, maternal age, pregravid body mass

index, family history of diabetes, history of GDM, and newborn

sex (24). Furthermore, statistical power analysis should be

performed to form an appropriate sample size (25).

Metabolomics, as an important part of the biological system,

mainly analyzes blood, urine, and feces and then studies the

small-molecule metabolites of various metabolic pathway

matrices and products (26). In the studies of GDM or other

gestation-associated disorders, the serum in the umbilical cord

and amniotic fluid is also collected for analysis. In rare cases,

placenta or mothers’ hair is collected for analysis. In general,

samples should be stored at −80°C for short‐term periods.

Usually, complex and time-consuming sample preparation

procedures are not used, except for the collection of samples

of the placenta or mothers’ hair.

In the process of metabolomics, proton nuclear magnetic

resonance (NMR) and mass spectrometry (MS) are effective tools

for analyzing the molecular composition of a sample. Liquid

chromatography (LC), gas chromatography (GC), and capillary

electrophoresis (CE) are used for metabolite separation. LC, GC,
Frontiers in Endocrinology 03
or CE combined with MS or NMR spectroscopy are the most

commonly used metabolomics platforms (27). Proton NMR is

widely used in metabolomics studies due to its nondestructive

nature and ability to simultaneously measure many organic

compounds present in biological samples. However, the low

sensitivity of proton NMR, which permits the detection of

metabolites only at the micromolar level, is the major limitation

of NMR as a comprehensive technique (28). Conversely, MS-

based methods provide increased sensitivity and the ability to

assay a diverse range of cellular metabolites over a varied polarity

range. As such, in clinical metabolomics, NMR has a trend to be

superseded by the evolved MS-based methods (23). Untargeted

and targeted approaches are the two analytical strategies

commonly used in metabolomics (29). The untargeted

approach detects metabolites without an a priori hypothesis and

is more suitable for studies focused on assessing potential

biomarkers or metabolic mechanisms for diseases (29–32). The

targeted approach analyzes the specific kind of metabolites and

the relative metabolic pathways with a priori information and is

used for biomarker validation and studying a specific biological

pathway (29–32). Data generated by untargeted approaches are

extremely complex, and themajority of peaks in the profile are not

identifiable. Furthermore, the concept of fingerprinting in an

untargeted approach was initially developed for microbiology to

classify microbial species but is not useful in clinical applications

(33). Currently, metabolomics datasets for annotating the spectral

features from the untagged approach are not available (34).

Conversely, in clinical applications, data processing and

normalization are critical in untargeted metabolomics studies.

Profile clustering may be used for the diagnosis of patients.

Targeted metabolomics is an important workflow because of

the higher sensitivity and selectivity and the validation and

expansion of results from the untargeted analysis (35).

In addition to high efficiency, ease of interpretation, and

acceptable cost, clinical practice poses an additional requirement

for metabolomics, and superior reproducibility, particularly in the

case of disease prediction. However, metabolomics usually

generates a long list of metabolites, which could not be directly

used in clinical practice. Advanced algorithms are needed to define

and integrate metabolites with the utmost potential. Traditionally,

univariate analysis and logistic regression are performed. Recently,

machine learning, a data analysis technique that develops

algorithms for predicting outcomes by “learning” from data, has

been increasingly highlighted as a competitive alternative to

regression analysis. Machine learning has been mainly classified

into supervised and unsupervised.Hierarchical clustering, principal

component analysis, and self-organizingmaps are the unsupervised

methods that have been used in analyzing metabolomics data.

Supervised methods include support vector machines, partial least

squares, analysis of variance, k-nearest neighbors, and discriminant

function analysis (36). Machine learning outperforms conventional

regression in terms of its ability to capture nonlinearities and
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complex interactions among multiple predictive variables (37). A

few studies on the prediction of GDM have been conducted for

comparing the performances of machine learning and logistic

regression. Liu et al. (38) developed a machine learning-based

prediction model for GDM in women within early pregnancy and

compared it with a traditional logistic model. Themachine learning

methodwith extreme gradient boosting had similar performance in

validation but was better in calibration. Meanwhile, the results of

studies comparingmachine learningwith logistic regression should

be critically interpreted. Ye et al. (39) andWu et al. (40) used a series

of machine learning methods to select candidate predictors and

build predictive models for GDM. As a result, not all methods in

machine learning outperformed logistic regression. For instance, in

a study by Ye et al. (39), only three out of eight machine learning

methods (AdaBoost, Vote, and LGB) invariably outperformed

logistic regression in both external validation and calibration. In a

study by Wu et al. (40), the machine learning algorithms had an

inferior balance for sensitivity and specificity (Youden index) than

the traditional logistic regressions, except for deep neural networks.

Furthermore, the models from machine learning algorithms were

inclined to have high specificity but low sensitivity (40).Meanwhile,

the sample size and the number of variables are another concern

when using machine learning.
Comparison of metabolic profiles
between gestational diabetes
mellitus and type 2 diabetes mellitus
by metabolomics

The diagnostic paradigm of GDM is a problem across

different guidelines throughout the world. The American

Diabetes Association (ADA) formally classifies GDM as

“diabetes first diagnosed in the second or third trimester of

pregnancy that is not overt (preexisting type 1 or type 2)

diabetes” (13). GDM is typically diagnosed using an oral

glucose tolerance test between 24 and 28 weeks of gestation.

However, the International Association of Diabetes and

Pregnancy Study Group also recommends screening for overt

diabetes at the first antenatal visit. The ADA standard might have

difficulties in distinguishing patients with true GDM from those

patients with either prediabetes or predisposition to diabetes.

There is a lack of international consensus on the screening and

diagnosis of GDM; furthermore, the intentions of early diagnosis

of GDM and differentiation from prediabetes or predisposition to

diabetes have not been obtained yet. Therefore, metabolomics is

rendered to have great expectations in the discernment of GDM.

Several investigations of metabolite profiles have facilitated the

identification of potential mechanistic pathways for both diabetes

and GDM, thus helping detect their similarities and disparities.

Protein metabolism reflected by changes in plasma amino acid

concentrations is reported with high frequencies (41). Branched-
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chain amino acids (BCAAs), including valine, leucine, and

isoleucine, are repeatedly reported to be associated with risk

factors for diabetes (42). In contrast, elevated levels of BCAAs in

womenwithGDMcomparedwith controls have not been observed

in all circumstances. The pioneering study by Metzger et al. (43)

observed elevated levels of BCAAs in women with GDM at 30–39

weeks of gestation, which was also later confirmed by Butte et al.

(44). In another study, fastingmaternal plasma carnitine (total, free,

and acyl-carnitine), beta-hydroxybutyrate, free fatty acids,

glycosylated hemoglobin, and 21 amino acids were assayed at

30–33 weeks of gestation. Of the 21 amino acids, only

methionine, glycine, alanine, citrulline, and ornithine levels were

found to be significantly higher in the study group than those in the

control group. Meanwhile, Pappa et al. (45) delineated that in

GDM, ketogenic amino acids and the branched-chain amino acid

isoleucine are released at low rates from the skeletal muscles and

mostly catabolized in the liver rather than in the peripheral tissues.

Along with BCAAs, alterations in the metabolic by-products of

protein, including aromatic amino acids, sulfur-containing amino

acids, and asymmetric dimethylarginine, contribute to the

development of diabetes and insulin resistance (46). However,

inconsistent results have been drawn in various studies on GDM

(46, 47). Further study in larger populations is required for

explaining the interactions between GDM and the metabolism of

proteins. The major components of triacylglycerols, non-esterified

fatty acids (NEFAs), are the energy source for many body tissues.

Increased circulating levels of NEFAs have been well described in

studies on insulin resistance and type 2 diabetes (48, 49). Similarly,

upregulated levels of NEFAs in womenwith GDMwere detected in

the third trimester of pregnancy, which might be aggravated by an

increase in dietary intake of polyunsaturated and saturated fatty

acids during pregnancy (50, 51). However, few metabolomics

studies are conducting head-to-head comparisons between GDM

and diabetes. Moreover, it is important to match the confounding

factors including gestational time, techniques used in

metabolomics, and other metabolic disorders when applying

metabolomics in patients with GDM and diabetes.
Early diagnosis of gestational
diabetes mellitus by metabolomics

According to Clarke et al. (52), the early diagnosis of GDM

and timely treatment at an average of 17 weeks of gestation

minimized neonatal adverse events. However, the traditional

methods based on the oral glucose tolerance test often detect

GDM at 24–28 weeks of gestation, thus leaving patients with

GDM untreated for weeks and causing deleterious effects on the

fetus. Hence, there is a need for examining novel diagnostic

biomarkers for GDM to facilitate early detection and treatment.

According to metabolomics, abnormal metabolism occurs

before the GDM attack (53). Generally, GDM is a multifaceted
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condition that involves changes in various metabolic pathways

including amino acids, carbohydrates, lipids, and purines (47). A

series of studies have attempted to determine biomarkers in urine,

amniotic fluid, or plasma for diagnosing GDM at 14–25 weeks of

gestation. Pinto et al. (54) performedNMR spectroscopy to identify

alterations inmetabolites inmaternal plasma and lipids extracted at

2–21weeks of gestation. Compared with those who did not develop

GDM, the potential patients with GDM had increases in plasma

valine and pyruvate, with decreases in proline, urea, and 1,5-

anhydroglucitol. In the study by Hou et al. (55), liquid

chromatography-mass spectrometry (LC-MS), GC, and NMR

were performed on maternal serum from pregnant women with

GDM and normal glucose tolerance. The results showed that the

changes in free fatty acids, BCAAs, lipids, and organooxygen

compounds differentiated the GDM groups from the healthy

group. Furthermore, Hou et al. (55) built models for the risk

prediction of GDM based on data from metabolomics and key

clinical parameters. In addition, increases in acetate, creatine,

creatinine, choline, 3-hydroxyisovalerate, and hydroxyisobutyrate

and decreases in trimethylamine N-oxide and betaine in the first

trimester are also considered potential signs of developing GDM

(56, 57).

Zhu et al. (58) exploredmetabolomicsmarkers and developed a

panel for the early diagnosis of GDM, which paved the way for

clinical practice. Time-of-flight GC-MS was performed in cohorts

from three population-based studies conducted by different centers,

which included 168 patients with GDM and 622 normal controls.

The general study cohort had uniform diagnostic criteria but

heterogeneity in ethnicity. Ten-fold cross-validated Lasso

regression was used to identify predictive metabolomics markers

at 10–13 and 16–19 weeks of gestation for GDM. Purinone

metabolites at both 10–13 and 16–19 weeks of gestation and

amino acids, amino alcohols, hexoses, indoles, and pyrimidine

metabolites at 16–19 weeks of gestation were positively associated

with GDM risk. Finally, Zhu et al. (58) found that a 17-metabolite

panel at 10–13 weeks of gestation and a 13-metabolite panel at 17–

19 weeks of gestation outperformed the model using conventional

risk factors, including fasting glycemia.
Longitudinal metabolomics in
studies on gestational
diabetes mellitus

The drawback of most of the published studies is measuring

maternal metabolic profiles at only one time point during

pregnancy or pooling metabolome data across trimesters.

Metabolite alterations may occur in conjunction with

substantial metabolic changes in the maternal body during

different trimesters of pregnancy, highlighting the value of

longitudinal metabolomics research at different pregnancy

stages. Several studies have also been dedicated to determining
Frontiers in Endocrinology 05
the dynamic alterations in metabolites across different time

points during pregnancy, which completely marked the

metabolic profiles of GDM.

The pioneering study of GDM by longitudinal metabolomics

was conducted by Law et al. (59). LC-MS untargeted metabolomics

for maternal plasma was performed along with innovative sample

preparation andmultilevel statisticalmethods.All participantswere

scheduled for three antenatal visits at 11–14, 23–27, and 29–33

weeks of gestation. Compared with the healthy controls, the

participants who developed GDM showed a reduction in

polyunsaturated phospholipids in the first trimester, independent

of the stage of gestation and steroid hormones. In, 2017, Law et al.

(60) conducted another longitudinalmetabolomics study onGDM.

In this follow-up study, urine samples were collected at every

antenatal visit during the three trimesters. LC-MS untargeted

metabolomics was performed to assess the differences in the

urinary metabolome of patients with GDM and healthy controls

over the course of pregnancy. Accordingly, before placental

hormones or the fetoplacental unit could have produced any

physiological effect, the tryptophan–kynurenine pathway was

activated in patients with GDM, ultimately leading to uric acid

production. The results of Law et al. (60) supported the notion that

GDM is a predisposed condition and can be predicted by urinary

metabolome countering tryptophan and purine. The two studies by

Law et al. (59, 60) set an important role of longitudinal

metabolomics in the early diagnosis and prediction of GDM.

Zhao et al. (61) performed MS-based untargeted

metabolomics in pregnant women with GDM and healthy

controls in their first and second trimesters to investigate the

trimester-specific alterations of metabolites related to GDM. In

the first trimester, the GDM group had 31 significantly altered

metabolites, which were mainly attributed to purine metabolism,

fatty acid b-oxidation, and urea cycle and tricarboxylic acid cycle
pathways. In the second trimester, significant changes in fold

changes across trimesters were detected in six amino acids,

lysophosphatidylcholine, and uric acid, which might have

contributed to the occurrence and progression of GDM (61).

The study by Zhao et al. (61) truly recognized the dynamic

monitoring of metabolic alterations by metabolomics over the

course of pregnancy.

Apart from GDM, obesity and hypertensive disorders are

also common metabolic disorders in pregnancy. It has been

suggested that the so-called metabolic disturbances caused by

GDM are confused with other concurrent metabolic disorders.

Kivelä et al. (62) explored the metabolic profiles of pregnant

women suffering from all three metabolic complications. Proton

NMR was performed on blood samples collected at a median of

13, 20, and 28 weeks of gestation. Across all three time points,

women with obesity had significantly higher levels of very-low-

density lipoprotein, fatty, and amino acids and more adverse

metabolic profiles. Meanwhile, many of the adverse metabolic

profiles associated with GDMwere rendered nonsignificant after

adjustment for body mass index (62).
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Metabolic profiles of women with
gestational diabetes mellitus in
different physiologic subtypes

For women who are not pregnant, hyperglycemia results

from a defect in either insulin secretion or insulin sensitivity

(63), which supports the possibility of the physiologic

heterogeneity of GDM. According to the metabolic

abnormality in insulin sensitivity or deficient insulin secretion,

GDM can be classified into three physiologic subtypes: insulin

sensitivity defects, insulin secretion defects, and normal glucose

tolerance (6). It is of clinical importance to classify GDM into

physiologic subtypes, which are associated with risks of adverse

perinatal outcomes (64). For instance, women with GDM with

high insulin resistance have higher rates of preterm delivery,

labor induction, Cesarean section, neonatal hypoglycemia, and

neonatal intensive care unit admissions (64, 65). Several lines of

evidence indicate the different metabolic profiles existing in

patients with GDM with the three physiologic subtypes.

Obesity-related factors, including pre-pregnancy overweight

and elevated gestational weight gain in the first trimester, are

specific to the insulin-resistance subtype (66). Layton et al. (67)

measured lipid markers in fasting plasma collected during the

second trimester for characterizing lipid profiles in women with

different physiologic subtypes of GDM. Women with GDM

characterized by a predominant insulin sensitivity defect had

significantly higher triglycerides, lower high-density lipoprotein,

and higher NEFA than those with GDM and normal glucose

tolerance. Women with GDM characterized by a predominant

insulin secretion defect had higher NEFA levels than those with

GDM and normal glucose tolerance. Currently, no study has

been conducted to determine the metabolic characteristics of

GDM with different physiologic subtypes by metabolomics. The

physiologic subtypes of GDM are closely associated with the

prognosis of mothers and newborns; thus, it is essential to

perform studies on the physiologic subtypes along with data of

metabolomics and clinical indexes, which help detect indications

of abnormal metabolism belonging to different subtypes

of GDM.
Limitations of metabolomics in the
clinical practice of gestational
diabetes mellitus

There are some limitations of metabolomics in the clinical

practice of GDM. First, the process of metabolomics needs

higher efficiency. The early detection and control of GDM

result in less adverse perinatal outcomes. It usually takes weeks

to months before clinicians obtain the final outcomes of

metabolomics. According to the ADA standard, the disparity
Frontiers in Endocrinology 06
between the oral glucose tolerance test and metabolomics is

approximately 10 weeks. It is essential to enhance the efficiency

in the process of metabolomics. Second, obvious heterogeneity

and low reproducibility exist in the present studies of GDM

concerning metabolomics, which is a complication for clinicians

in setting a definite cutoff value for one type of metabolite. The

differences in GDM diagnostic criteria used, variation in

analytical platforms used, analysis of different types of

specimens, and disparity in the inherent characteristics of the

cohort population are the main sources of heterogeneity (62).

Therefore, future multicenter metabolomics studies on GDM are

proposed using unified diagnostic criteria, longitudinal

supervision of metabolites, and efficient data processing

methods to cater to clinical practice.
Conclusion

Metabolomics, an emerging technique, offers a new point of

view in understanding the onset and development of diseases. In

recent studies of GDM, metabolomics has been repeatedly used

in various gestational periods. Metabolomics is rendered to have

great expectations in the different and early diagnoses of GDM.

Longitudinal metabolomics truly facilitates the dynamic

monitoring of metabolic alterations over the course of

pregnancy. Furthermore, patients with GDM with different

physiologic subtypes have different prognoses and metabolic

backgrounds. It would be of clinical importance to perform

metabolomics in consideration of physiologic subtypes of GDM

and clinical indexes. In conclusion, metabolomics requires

further improvement in terms of efficiency and uniform

standards in practice.
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