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Abstract

Background: Bayesian hierarchical models have been proposed to combine evidence from different types of study designs.
However, when combining evidence from randomised and non-randomised controlled studies, imbalances in patient
characteristics between study arms may bias the results. The objective of this study was to assess the performance of a
proposed Bayesian approach to adjust for imbalances in patient level covariates when combining evidence from both types
of study designs.

Methodology/Principal Findings: Simulation techniques, in which the truth is known, were used to generate sets of data
for randomised and non-randomised studies. Covariate imbalances between study arms were introduced in the non-
randomised studies. The performance of the Bayesian hierarchical model adjusted for imbalances was assessed in terms of
bias. The data were also modelled using three other Bayesian approaches for synthesising evidence from randomised and
non-randomised studies. The simulations considered six scenarios aimed at assessing the sensitivity of the results to
changes in the impact of the imbalances and the relative number and size of studies of each type. For all six scenarios
considered, the Bayesian hierarchical model adjusted for differences within studies gave results that were unbiased and
closest to the true value compared to the other models.

Conclusions/Significance: Where informed health care decision making requires the synthesis of evidence from
randomised and non-randomised study designs, the proposed hierarchical Bayesian method adjusted for differences in
patient characteristics between study arms may facilitate the optimal use of all available evidence leading to unbiased
results compared to unadjusted analyses.
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Introduction

Evidence of the effects of interventions is a critical component of

health care decision making as it contributes to the comparison of

alternative interventions in terms of their relative costs and effects.

Such comparisons form the basis of decisions regarding the

economically efficient allocation of scarce resources. An all

available evidence approach to informing these decisions may

require the synthesis of evidence from different types of study

designs (e.g., randomised controlled trials (RCTs) and comparative

non-randomised or observational studies). Recently, Bayesian

hierarchical models have been proposed to combine evidence

from different types of study designs such as randomised and non-

randomised studies [1,2].

Due to their inherent design, RCTs are more likely to be

balanced in terms of patient characteristics between study arms

than non-randomised studies, but they are subject to strict

inclusion and exclusion criteria which may limit their generalisa-

bility. Despite the greater generalisability associated with non-

randomised or observational studies, the increased likelihood of

imbalances among the study arms compared to RCTs suggests the

results may be more subject to the potential confounding effects of

extraneous variables. Although other sources of bias, both internal

(e.g., performance, attrition) and external (e.g., population,

intervention) [3], may exist, it is the increased likelihood of

imbalances among the non-randomised studies that constitutes the

principal difference between randomised and non-randomised

studies [4]. When these imbalances exist in factors that are also

related to the outcome, bias may be introduced.

In order to address the problem of bias due to imbalances

between study arms in non-randomised studies, we proposed [5]

an extension to the Bayesian three-level hierarchical model,

initially developed by Prevost et al. [1], and applied it to a case

study. The proposed approach involved adjusting study estimates
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for potential imbalances using differences in patient characteristics

between study arms. Results from the case study indicated a shift

in the estimates for the model adjusted for differences towards the

estimate for the randomised studies alone [5]. While this shift lends

credence to the proposed model’s ability to adjust for imbalances,

these results pertain only to a single applied example.

Given the importance of using all available evidence for decision

making and the increased use of Bayesian hierarchical models to

combine evidence from different study types [6,7], the objective of

this paper was to assess the performance of the proposed Bayesian

approach to synthesise evidence from randomised and non-

randomised studies and adjust for imbalances in patient

characteristics within studies. To meet the study objective, we

conducted a simulation study to generate sets of randomised and

non-randomised studies in which bias that could be explained by

covariate imbalances was introduced in the non-randomised

studies. The data were also modelled using three other Bayesian

approaches: 1) results unadjusted for potential imbalances [1], 2)

results adjusted for aggregate study values (e.g., mean age) [1] and

3) downweighting the potentially biased non-randomised studies

[2]. The sensitivity of the results to changes in the impact of the

imbalances and the relative number and size of studies of each

type was also assessed.

Methods

The following presents the four models being compared, the

scenarios considered, and the methods used to conduct the

simulation study.

2.1 Bayesian methods to combine evidence from
randomised and non-randomised studies

2.1.1 Unadjusted for potential imbalances (model I). The

first model presented is the Bayesian three-level hierarchical model

unadjusted for potential imbalances. We undertook this analysis

using a binomial model in which the odds of the event were

calculated for each study and study arm level information was

incorporated into the model. We assumed that for each study type

(indexed by i) there were ki studies (indexed by j), which allows for a

different number of studies for each study type (i.e., randomised and

non-randomised).

The model can be written as follows:

rCij*Binomial pCij, nCij

� �
and rTij*Binomial pTij, nTij

� �
ð1Þ

log odds pCij

� �
~cij and log odds pTij

� �
~cijzyij ð2Þ

yij*Normal(hi,si
2) ð3Þ

hi*Normal(m,t2) ð4Þ

(i = 1 or 2 for the 2 study types; j = 1,…,ki studies).

At the first level of the model, represented by equations one and

two, it was assumed that the number of events in each arm in the

jth study of type i (i.e., rCij and rTij for control (C) and treatment

(T), respectively) followed a binomial distribution defined by the

proportion of patients who experienced the event in each arm in

the jth study of type i (i.e., pCij and pTij) and the total number of

patients in each arm in the jth study of type i (i.e., nCij and nTij).

Equation two described the log odds for the event in the control

(cij) and treatment (cij+yij) arms of each of the ki studies.

The second level of the model, represented by equation three,

assumed that the log odds ratio comparing treatment and control,

yij, followed a normal distribution with a mean of hi (i.e., the

overall intervention effect in the ith type of studies). The within-

study-type variability for studies of type i was represented by si
2.

At the third level of the model, represented by equation four, the

study-type effects were distributed about an overall population

effect, m, with t2 representing the between-study-type variability.

Prior distributions for the unknown model parameters were

intended to be vague. Normal priors with mean zero and variance

0.26 truncated to be positive, were specified for the random-effects

standard deviations (si,t). These priors support equality between

studies while discounting substantial heterogeneity and represent

what may be considered reasonable priors in many situations [8].

In keeping with Prevost et al. [1], Normal priors with mean zero

and variance ten were used for the overall population effect (m).

Vague Normal priors with mean zero and variance 1000 were

assigned to the log odds (cij’s).

2.1.2 Adjustment using study arm differences (model

II). The following presents the extension of the Bayesian three-

level hierarchical model (I) proposed by McCarron et al. [5]. The

model was specified as before except equation three was replaced

by equation five.

yij*Normal(hiz
XM
m~1

am xmTij-xmCij

� �
, si

2) ð5Þ

(i = 1 or 2 for the 2 study types; j = 1,…,ki studies; m = 1,..,M

confounders).

As shown in equation five, this model assumed that the log odds

ratio, yij, followed a normal distribution with a mean which was

the sum of hi (i.e., the overall intervention effect in the ith type of

studies) and a study specific bias adjustment,
PM

m~1

am xmTij-xmCij

� �
,

that was proportional to the relative differences between the study

arms in each of the studies. In this expression, xmTij and xmCij were

the values of the m-th potential confounder in each of the study

arms (i.e., treatment and control) in the jth study of type i while am

represented the coefficient for the m-th potential confounding

variable across all the studies. This variable described the impact

of the imbalances on the study specific log odds ratios.

The priors for the unknown parameters were the same as for

model I with the addition of a vague Normal prior with mean zero

and variance 1000 for the coefficient (am) for the m-th potential

confounder.

2.1.3 Adjustment using aggregate study values (model

III). This approach was initially proposed by Prevost et al. [1] to

try to explain between study heterogeneity. The model was

specified in the same way as in section 2.1.1, except equation three

was replaced by equation six:

yij*Normal(hiz(am|xmij), si
2) ð6Þ

(i = 1 or 2 for the 2 study types; j = 1,…,ki studies; m = 1,..,M

confounders).

In this approach, xmij represented the value of the m-th

potential confounder aggregated across study arms (i.e., treatment

and control) in the jth study of type i. This is in contrast to the

previous approach which adjusted using the difference in the m-th

potential confounder between the study arms. The prior

distributions were the same as in the previous models.

Bayesian Hierarchical Models and Adjustment
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2.1.4 Downweighting using an informative prior (model

IV). The informative prior approach used by Sutton and

Abrams [2] included the evidence from the non-randomised

studies via the prior for the treatment effect and combined this

with a likelihood based only on the data from the randomised

studies.

As in Sutton and Abrams [2], we centred the informative prior

for the population mean (m) on the non-randomised pooled

estimate but used a variance four times larger than that of the

RCTs. Such a prior reflects scepticism regarding the non-

randomised evidence and would be appropriate in situations

where a researcher believes that although the non-randomised

evidence provides some information, concern that serious biases

may exist (e.g., as a result of imbalances in study arms) means that

it should be treated with caution. The pooled estimate for the non-

randomised studies was generated using a two-level Bayesian

hierarchical model (simple Bayesian random-effects model). We

chose to use a variance that was four times as large as that for the

RCTs, because this was the variance inflation factor used by

Sutton and Abrams [2]. Other choices are possible, however. The

more the variance from the non-randomised studies is inflated, the

more their evidence is downweighted.

2.2 Assessment framework
The effect of these models is to produce a weighted average of

the evidence from the randomised and non-randomised studies,

where the weights are determined either implicitly, as in the

Bayesian three-level hierarchical models (I,II and III), or explicitly,

as in the informative prior approach (model IV) [9]. The results for

each of the four models were simulated under different scenarios

which varied as a function of the impact of the imbalances in the

non-randomised studies, and the relative number and size of

studies of each type. These factors were selected as they were

deemed to be the most important in terms of calculating a

weighted average of the evidence from the randomised and non-

randomised studies. For the purpose of this simulation study,

imbalance in a single continuous covariate (i.e., age) was

considered, but the analysis could be extended to adjust for other

covariates [5]. Imbalances in age between study arms were only

assumed for the non-randomised studies, in keeping with the

general assumption that due to their design RCTs are more likely

to be balanced.

Table 1 presents the parameters used in the six scenarios

considered. Two different values were investigated for the impact

of the imbalances in the non-randomised studies (am). Log scale

values of 0.10 and 0.50 were chosen as they represent lower and

upper estimates of what may appear reasonable in terms of

variation in the between-study log odds ratios [8]. A magnitude of

0.10 would indicate that there is not much systematic variation in

the study specific log odds ratios while a magnitude of 0.50 would

result in much more systematic variation. This means that, all else

being equal, every one unit increase in the difference in age

between study arms would result in an increase in the study

specific log odds ratio of 0.10 or 0.50. For example, the impact of

going from no imbalances to a one year difference in mean age

between study arms would increase the study specific log odds

ratio from a true value of 20.20 to values of 20.10 and 0.30

respectively.

The impact of the precision and quantity of information

contained in each of the two types of studies (i.e., randomised and

non-randomised) was examined by comparing study sizes of 100 to

500 patients per arm and 500 to 1000 patients per arm for the

randomised and non-randomised studies respectively and four

randomised studies with 40 non-randomised studies. These values

reflect the fact that non-randomised studies tend to be larger than

randomised studies [2]. Also, the number of studies in a meta-

analysis of RCTs in medicine tends to be small and it is common

to see meta-analysis performed on five or fewer studies [10]. These

values were also based on the systematic literature review

comparing endovascular aneurysm repair (EVAR) and open

surgical repair (OSR) [11] that informed the results of the previous

case study [5]. For the six scenarios presented in Table 1, it was

assumed that the true log odds ratio was 20.20, which

corresponds roughly to an odds ratio of 0.82. Although this

represented a much more modest treatment effect than was

observed for 30-day mortality in either the randomised or non-

randomised studies in the EVAR case study [5], this odds ratio

may better reflect the magnitude of relative treatment effects seen

in practice for other conditions.

2.3 Simulation study
As the truth is known, simulation studies allow one to assess

model performance relative to this known truth [12]. This is in

contrast to a case study, like the one in which we initially proposed

model II, where the truth is not known. In order to demonstrate

empirically whether model II is able to adjust for imbalances we

have conducted a simulation study. The simulation study was

concerned with synthesising evidence from randomised and non-

randomised studies and adjusting for bias due to imbalances in the

non-randomised studies, consequently we have simulated data

under a model that produces imbalances in the non-randomised

studies (see Figure S1).

Each simulated data set consisted of a number of hypothetical

randomised (i.e., four) and non-randomised studies (i.e., four or 40)

comparing treatment and control groups. The outcome was

defined as a dichotomous variable indicating the occurrence or not

of the event of interest (i.e., death). Each data set for each of the

two study types was generated by the following model:

rCij*Binomial pCij, nCij

� �
and rTij*Binomial pTij, nTij

� �
ð7Þ

log odds pCij

� �
~cij and log odds pTij

� �
~cijzyij ð8Þ

yij~hizaage xageTij{xageCij

� �
ð9Þ

The number of subjects in the control (nCij) and treatment (nTij)

groups in the jth study of type i were assumed to be equal and were

sampled from a uniform distribution of either 100 to 500 or 500 to

1000 patients. Based on the data for perioperative mortality from

the previous systematic literature review [11] the probability for

the event (i.e., death) in the control group (pCij) in each of the ki

studies was drawn from a beta distribution with mean 0.04 and

variance 0.001. For scenarios 1–6, the true log-odds ratio (hi) was

20.20 for both the randomised and non-randomised studies. A

possible explanation for the effect of treatment on mortality in our

simulation study was assumed to be differences in age between

study arms (xageTij2xageCij), as shown in equation nine. Age is

related to mortality and aage addresses the relationship between

differences in age and mortality. The variables xageTij and xageCij

are both sampled from uniform distributions based on the age

distribution observed in the previous systematic literature review

(i.e., xageTij,uniform(75,90), xageCij,uniform(70,85)) [11]. As

randomisation will likely minimize differences between study

groups, xageTij and xageCij were assumed to be equal in the

Bayesian Hierarchical Models and Adjustment
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randomised studies. Simulated values were generated for the

number of events and subjects as well as for the age in the control

and treatment groups given the impact of the imbalances (aage),

the number of randomised and non-randomised studies, and the

study size being considered.

In order to justify the number of simulations (i.e., 100), we

calculated the difference in mean treatment effects for each of the

models (I,III,IV) relative to the difference model (II) and compared

these to the standard errors of the differences in treatment effects.

This was repeated across 100 simulations for each of two seeds

(starting values for the simulation). The results across both seeds

suggested that 100 simulations were sufficient to average out the

sampling variation. For scenario 1, for example, the differences in

mean treatment effects relative to model II were 0.27 for model I,

0.28 for model III and 0.10 for model IV. The standard errors of

the differences were 0.02, 0.03 and 0.02 respectively for the three

comparisons. For the second seed the mean differences were 0.27,

0.28, and 0.09 respectively and the standard errors were

approximately 0.02 across all three comparisons, illustrating that

sampling variation was small compared to the size of the

differences that were detected.

Markov chain Monte Carlo (MCMC) simulation using the

Gibbs sampling technique was used to assess the models. The

Brooks, Gelman & Rubin, Geweke and Heidelberger and Welch

diagnostics available in the package Bayesian Output Analysis

[13], performed on two chains, were used to assess convergence.

To provide a sense of the convergence diagnostics we give the

Brooks, Gelman & Rubin diagnostics for the overall log odds ratio

(m) for each of the models in scenario 4: the estimated values for

the ratio of total variability to within-chain variability were

approximately 1.01, 1, 1.01, and 1for models I through IV

respectively, suggesting little between-chain variability. Based on

these and the results from the other diagnostics, we decided to use

a burn-in of 50 000 iterations for every model for each simulated

data set except for the unadjusted and aggregate models in

scenarios 2 and 5, which required a longer burn-in of 100 000

iterations to converge. After discarding the burn-in iterations, we

sampled from a further 10 000 iterations with a thin rate of 20, for

each of the two chains, such that summary statistics for the

parameter values were based on thinned samples of 1000

iterations.

The simulated data sets were generated in R 2.9.2 [14]. The

Bayesian hierarchical models (I,II,III,IV) were fitted to each

generated data set in WinBUGS 1.4 [15] using the R 2.9.2

package R2WinBUGS. To validate the simulation model the

mean value for aage was calculated across all 100 simulations for

model II and compared to the true value. The results for the six

scenarios were 0.10, 0.10, 0.10, 0.52, 0.51, and 0.51 respectively.

These correspond to true values of 0.10 for scenarios 1–3 and 0.50

for scenarios 4–6.

2.4 Criteria for assessing model performance
The median value of the overall log odds ratio (m) was calculated

for each simulated data set. The four different models for the six

scenarios were then evaluated relative to the true value using the

criterion of bias under repeated sampling. The estimated bias in

the log odds ratio was defined as the mean value of the median log

odds ratios across the simulated samples minus the true value [12].

As the results may be subject to sampling variation, we also

reported the bias divided by its standard error, which is equal to

the standard error of the mean of the median log odds ratios and

would be expected to follow a standard normal distribution. If an

estimation technique is unbiased, we would expect the observed

bias divided by its standard error (Z-statistic) to lie between 21.96

and +1.96 ninety-five percent of the time. Formulas for the various

calculations are given in Figure S1.

Results

Table 2 shows the point estimates for the mean of the median

log odds ratios, and the associated standard errors of the mean

median log odds ratios as well as the estimated bias and Z-statistics

for each of the four models in the six scenarios. As shown in this

table, the estimates of the pooled effect size appear to be unbiased

for the model adjusted for differences (model II) across all six

scenarios. The informative prior approach appears to give less

biased results than the model adjusted for aggregate study values

while bias is roughly equal for both the model adjusted for

aggregate values and the unadjusted model. An increase in the

study arm size for the non-randomised studies relative to the

randomised studies tends to increase the precision of the estimates

for all of the models. However, combining evidence from four

randomised studies and 40 non-randomised studies seems to

increase the precision of the estimates the most compared to the

other scenarios. In general, as might be expected, there is more

variability in the model estimates when the assumed value of the

impact of imbalances in age across all of the studies (aage) is

greater. The most extreme cases of bias appear to occur with the

aggregate and unadjusted models in scenario five, when the value

of aage is 0.50 and there are four randomised and 40 non-

Table 1. Simulation parameters for scenarios 1–6.

Criteria

Scenario

Impact of imbalances
in non-randomised
studiesa

Number of
randomised studies

Number of non-
randomised studies

Study arm size
randomised studiesb

Study arm size non-
randomised studiesb

True overall log
odds ratio

1 0.10 4 4 100–500 100–500 20.20

2 0.10 4 40 100–500 100–500 20.20

3 0.10 4 4 100–500 500–1000 20.20

4 0.50 4 4 100–500 100–500 20.20

5 0.50 4 40 100–500 100–500 20.20

6 0.50 4 4 100–500 500–1000 20.20

aaage measured on the log scale,
bsampled from a uniform distribution.
doi:10.1371/journal.pone.0025635.t001
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randomised studies, and scenario two, when aage is 0.10 and there

are 40 non-randomised studies. However, as shown in table 2, the

extent of the bias is more pronounced in scenario five compared to

scenario two, where the magnitude of the impact of the imbalances

is relatively smaller.

Figure 1 presents the point estimates and the confidence

intervals for the overall log odds ratio (m) for each of the models in

the six scenarios. Comparing the point estimates to a log odds ratio

of zero (i.e., no effect) indicates that among the aggregate and

unadjusted models and even the informative prior, for scenarios 4–

6, the impact of the imbalances is such that it alters the estimate as

to whether or not the treatment is effective, thus deviating from the

truth.

Discussion

This simulation study demonstrated that when bias in the non-

randomised studies can be explained by covariate imbalances

between study arms, the proposed Bayesian three-level hierarchi-

cal model adjusted for differences in patient characteristics within

studies can handle this problem. Using simulation techniques,

wherein the truth is known, we have been able to produce

empirical evidence that this is the case. Failure to take into account

these imbalances could bias the results.

Specifically, six scenarios incorporating different aspects of the

impact of the imbalances and the relative numbers and sizes of

each study type were considered. The results from the model

adjusted for differences in patient characteristics within studies

were, in every scenario, unbiased and closest to the true value

compared to the results from the other models. This trend was

robust to changes in the magnitude of the impact of the

imbalances across studies as well as to both the relative number

and size of studies being combined. Results also showed that none

of the previously proposed Bayesian approaches could handle the

issue of bias due to covariate imbalances. In certain instances, the

bias observed among the other models was such that it changed

the treatment estimate from one of benefit to one of harm. This

could have implications in terms of health care decision making.

A practical limitation of the study concerns the number of

simulations. There are no exact standards for the number of

simulations necessary to average out sampling variation. We had

initially considered performing 1000 simulations, but given the

breadth of the study in terms of the number of scenarios

considered and the associated run times, which ranged from five

to 40 hours (1.83 GHz processor) for the 100 simulations,

depending on the scenario, we determined that this would not

be feasible. All of the parameters in each of the models were

sampled and none were marginalised. This was done to ensure

that the appropriate probabilistic dependence between the

unknown parameters was propagated through the model. This

could be particularly important when propagating inferences

which are likely to be strongly correlated. For example, the current

study considers both baseline levels and treatment differences

estimated from the same studies [8]. In addition, the study is based

on the assumption that there is also some association with

Table 2. Simulation results comparing Bayesian hierarchical models for scenarios 1–6.

Scenario Model
Mean median
log odds ratio

Standard error mean
median log odds ratio Bias Z-statistic

1 Unadjusted (I) 0.06253 0.02268 0.26253 11.57665

Adjusted for differences (II) 20.20836 0.02374 20.00836 20.35207

Adjusted for aggregate values (III) 0.07407 0.02622 0.27407 10.45383

Informative prior (IV) 20.11156 0.02437 0.08844 3.62828

2 Unadjusted (I) 0.18750 0.01330 0.38750 29.12960

Adjusted for differences (II) 20.20216 0.01010 20.00216 20.21398

Adjusted for aggregate values (III) 0.19520 0.01355 0.39520 29.17138

Informative prior (IV) 20.12240 0.02385 0.07760 3.25356

3 Unadjusted (I) 0.05473 0.02079 0.25473 12.25142

Adjusted for differences (II) 20.23125 0.01816 20.03125 21.72104

Adjusted for aggregate values (III) 0.05979 0.02189 0.25979 11.86562

Informative prior (IV) 20.13908 0.02235 0.06092 2.72561

4 Unadjusted (I) 0.87357 0.06602 1.07357 16.26034

Adjusted for differences (II) 20.22000 0.02535 20.02000 20.78904

Adjusted for aggregate values (III) 0.98388 0.07572 1.18388 15.63405

Informative prior (IV) 0.85343 0.09327 1.05343 11.29504

5 Unadjusted (I) 1.14790 0.03313 1.34790 40.67943

Adjusted for differences (II) 20.20083 0.01146 20.00083 20.07268

Adjusted for aggregate values (III) 1.28827 0.03734 1.48827 39.85580

Informative prior (IV) 0.64133 0.05340 0.84133 15.75488

6 Unadjusted (I) 0.70170 0.06319 0.90170 14.27030

Adjusted for differences (II) 20.19981 0.01721 0.00019 0.01117

Adjusted for aggregate values (III) 0.78753 0.06303 0.98753 15.66646

Informative prior (IV) 0.69489 0.09509 0.89489 9.41122

doi:10.1371/journal.pone.0025635.t002
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imbalances in patient characteristics. As such it was important to

sample all parameters in our simulation study. In other cases,

perhaps, some parameters could be marginalised which could

potentially improve the speed of the algorithm. Concerns

regarding the number of simulations conducted were mitigated

by comparing the effect sizes relative to the standard errors for

each of two data sets. The results of these comparisons suggested

we could be reasonably confident that the number of simulations

was adequate.

Another potential limitation is that we assumed that the only

source of variation between study estimates was due to imbalances

between treatment arms in a single patient characteristic. As such,

the underlying study type effects in both the randomised and non-

randomised studies were assumed to be the same, which may not

always be true. In practice, there may be other unexplained

reasons why the estimates may differ. For example, patients

enrolled in RCTs may be comparatively younger than those

enrolled in non-randomised studies. The result of incorporating

different values for the study type treatment effects is that there is

no longer one true underlying effect, as there was in the six

scenarios we considered. As the objective of the simulation study

was to evaluate the performance of the proposed model in terms of

adjusting for bias due to covariate imbalances, we did not address

this issue in our study. Such an analysis would likely require a

Figure 1. Overall log odds ratios for Bayesian hierarchical models scenarios 1–6. The overall log odds ratios (m) and associated 95%
confidence intervals (CIs) from the simulations are presented for scenarios 1–6. A solid line intersects the x axis at the true overall log odds ratio (i.e.,
20.20). A dashed line intersects the x axis at no effect (i.e., 0).
doi:10.1371/journal.pone.0025635.g001
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separate simulation study in which each scenario considered would

involve its own base case assuming no imbalances. This would

allow one to distinguish between the borrowing of strength across

study types that is part of Bayesian hierarchical modelling and the

appropriate adjustment for imbalances. This is left for future

research. Future research could also assess the practical implica-

tions of these results within a decision analytic model. Another

potential area of research could be the choice of prior distribution

for the random-effects standard deviations (si,t). In contrast to the

half-normal priors used in the current analysis, other suggestions

include an inverse gamma distribution such as 1/si
2,

Gamma[0.001,0.001]. Though, because such a distribution gives

a high weight near zero for the standard deviation, the true

variability may be underestimated [8,10]. As the current analysis

relies on the existence of within-study-type and between-study-

type variability, such a prior could be problematic, especially in

those scenarios with only four non-randomised studies.

Despite potential limitations, we believe the results of this

simulation study demonstrate the ability of the Bayesian three-level

hierarchical model adjusted for differences to account for

imbalances in patient characteristics within non-randomised studies

that could bias the results. Such an approach does, however, rely on

authors reporting the main characteristics of their study popula-

tions. This is important as the unadjusted model performed poorly

in the presence of imbalances between study arms, as shown in our

simulations. Unfortunately, few studies report all relevant covariates

[4]. For example, in the initial case study, over half of the non-

randomised studies were missing information on at least one

covariate. Based on the results of our study, and the performance of

the proposed approach, authors should be encouraged to improve

the reporting of covariate information as this would facilitate

adjustment for future evidence synthesis. The performance of the

informative prior approach depends on how well one anticipates the

impact of the imbalances on the results and downweights the

evidence accordingly. Though the factor we used to inflate the

variance and downweight the non-randomised studies was based on

Sutton and Abrams [2], this value was somewhat arbitrary. In

practice the selection of an appropriate discount factor would

require a careful consideration of the relative weight and

information each study type should contribute to the analysis.

Nonetheless, the factor of four used for model IV in the current

study means that in calculating a weighted average of both study

types, the randomised studies would contribute the majority of the

information. This reflects the existence of scepticism regarding the

evidence generated by the non-randomised studies, but assumes

there is still some value in combining these studies with the

randomised studies. As has been demonstrated, by holding constant

the amount by which the non-randomised studies were down-

weighted, downweighting is not an automatic procedure, nor does it

explicitly address the potential for imbalances in patient character-

istics within individual studies. Only one of the methods for

downweighting used in the case study was considered in this

analysis. The number of failures that occurred when simulating

values for the prior constraint method [1] suggested that it could not

be used reliably in the situations being investigated. However, the

results of the case study suggest it is unlikely that this method would

be able to handle the covariate imbalances, especially in those

scenarios where the relative number or size of the non-randomised

studies was greater compared to the randomised studies. Adjust-

ment using aggregate study values attempts to explain heterogeneity

across studies by adjusting for variation in study level characteristics.

However, the absence of variation in mean age across studies does

not preclude the presence of imbalances in age within studies. This

will not be adjusted for using aggregate study values.

Based on the six scenarios considered, covariate adjustment using

differences in patient characteristics between study arms (i.e., model

II) provides a way of adjusting for imbalances that is robust to

changes in the magnitude of the impact of the imbalances and the

relative number and size of the studies of each type (i.e., randomised

or non-randomised studies). This is important as this new

methodology provides a way to synthesise randomised and non-

randomised studies by adjusting for bias in non-randomised studies

that is due to imbalances between treatment arms. Where informed

health care decision making requires the synthesis of evidence from

randomised and non-randomised study designs, such Bayesian

hierarchical models adjusting for covariate imbalances could

facilitate the optimal use of all available evidence.

Supporting Information

Figure S1 Flow chart depicting data simulation, analy-
sis and output for scenarios 1–6. The flow chart depicts the

simulation of the data in R, the analysis of the simulated data in

WinBUGS and the statistics used to assess the performance of the

four models.

(PDF)
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