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Simple Summary: ASCT2 and LAT1 are amino acid transporters whose impact in cancer has been
explored throughout the years. They have been associated with most currently accepted hallmarks
of cancer, thus the aim of this review is to report the impact of these transporters in this disease,
as well as their clinical significance and applications. ASCT2 and LAT1 have been identified as
prognostic factors and potentially as therapeutic targets. In conclusion, the study and development
of new inhibitors for these amino acid transporters constitutes a promising approach towards the
improvement of cancer treatment and prognosis.

Abstract: The role of the amino acid transporters ASCT2 and LAT1 in cancer has been explored
throughout the years. In this review, we report their impact on the hallmarks of cancer, as well as their
clinical significance. Overall, both proteins have been associated with cell death resistance through
dysregulation of caspases and sustainment of proliferative signaling through mTOR activation.
Furthermore, ASCT2 appears to play an important role in cellular energetics regulation, whereas LAT1
expression is associated with angiogenesis and invasion and metastasis activation. The molecular
impact of these proteins on the hallmarks of cancer translates into various clinical applications and
both transporters have been identified as prognostic factors in many types of cancer. Concerning their
role as therapeutic targets, efforts have been undertaken to synthesize competitive or irreversible
ASCT2 and LAT1 inhibitors. However, JHP203, a selective inhibitor of the latter, is, to the best of our
knowledge, the only compound included in a Phase 1 clinical trial. In conclusion, considering the
usefulness of ASCT2 and LAT1 in a variety of cancer-related pathways and cancer therapy/diagnosis,
the development and testing of novel inhibitors for these transporters that could be evaluated in
clinical trials represents a promising approach to cancer prognosis improvement.

Keywords: alanine; serine; cysteine transporter 2; L-type amino acid transporter 1; hallmarks of
cancer; clinical significance

1. Introduction

Protein synthesis is essential to fuel the metabolic needs of cancer cell growth and relies
on the maintenance of a homeostatic concentration of cytosolic amino acids, the primary
source of cellular nitrogen [1–3]. Protein and amino acid synthesis and degradation, as
well as amino acid uptake by transporters, are essential homeostasis regulators [1]. The
latter are also important in cellular signaling and growth regulation, therefore highlighting
potential targets for cancer therapy [3,4].

During the development of cancer and other metabolic diseases, proteins that confer
growth and survival advantages, like amino acid transporters, are often overexpressed [3].
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These transporters can be found in the plasma membrane or intracellular compartments
such as the mitochondria, late endos40omes, lysosomes, and the Golgi apparatus [5]. Their
dysregulation affects many functional factors, from intracellular energy metabolism to
neurotransmission, and leads to metabolic reprogramming, triggering the carcinogenic
process [5]. The neutral amino acid transporters solute carrier family A1 member 5/alanine,
serine, cysteine transporter 2 (SLC1A5/ASCT2) and solute carrier family A7 member 5/L-
type amino acid transporter 1 (SLC7A5/LAT1) ensure the rapid exchange of different amino
acids and the maintenance of an amino acid pool in the cytosol, being likely involved in
the development of several malignancies [4,5].

The hallmarks of cancer represent biological capabilities cancer cells acquire during the
development of a tumor and help understand the vast diversity of neoplastic diseases [6].
This review will cover the function of ASCT2 and LAT1 transporters, their involvement
in cancer, and their association with the hallmarks of cancer. Finally, it will address the
clinical significance of both transporters, including their prognostic value and implication
in therapy.

1.1. Amino Acid Transport Systems: Focus on Systems ASC and L

In cells, amino acid transport across the plasma membrane is mediated by distinct
transport systems [3]. Based on their substrate specificity, regulatory properties, and
transport mechanism, amino acid transporters can be classified as sodium (Na+)-dependent
neutral amino acid transporters, including systems A, ASC, where ASCT2 is included, B,
and N; Na+-independent neutral amino acid transporters, gathering system L, that includes
LAT1, and system T; Na+-dependent and -independent anionic amino acid transporters;
and Na+-dependent and -independent cationic amino acid transporters [5,7]. Additionally,
based on their sequence homology, these transporters can be included in different family
groups [3]. Indeed, system ASC proteins belong to the solute carrier family 1 (SLC1) [3].
On the other hand, system L proteins are divided between two families, with LAT1 and
LAT2 belonging to the SLC7 family, and LAT3 and LAT4 belonging to the SLC43 family [3].

As previously mentioned, system ASC includes Na+-dependent antiporters, ASCT1
and ASCT2, and it was originally named due to its affinity for the alanine, serine, and cys-
teine amino acids to differentiate it from system A [3,8]. This sodium ion dependency gives
this system access to the energy stores inherent to the gradients of inorganic ions, making
it able to generate gradients of amino acids in favor of the cytoplasmic environment [9].

System L activity is attributed to four Na+-independent transporters, LAT1, LAT2,
LAT3, and LAT4 [3]. LAT1 and LAT2 have been shown to require the formation of covalent
disulfide bridges between their 12 putative membrane-spanning domains and a type-II
membrane glycoprotein heavy chain named 4F2hc to form a functional heterodimeric
transporter [3]. On the contrary, LAT3 and LAT4 have been shown to not need 4F2hc
to be functional [3]. These transporters mediate the uptake of bulky hydrophobic amino
acids and are sensible to 2-amino-bicyclo[2.2.1]heptane-2-carboxylic acid (BCH), a synthetic
competitive inhibitor [3].

1.1.1. ASCT2: Function and Structure

ASCT2 is encoded by the SLC1A5 gene and its structure shows a homotrimer
(Figure 1a,b) [10,11]. It functions as an amino acid exchanger (antiporter) and accepts
only neutral amino acids for transport in both directions [12]. Each ASCT2 protomer
consists of a transport and a scaffold domain connected by the extracellular loop region
2 (ECL2a and ECL2b) [11]. The former contains the transmembrane segments (TMs) TM3,
TM6-TM8 and the helical loops (HP) HP1 and HP2, whereas the latter includes the helices
TM1, TM2, TM4, and TM5 [11]. Each transport domain interacts only with the scaffold
domain from its own protomer and the ECL2 bridges the two domains, connecting TM3
to TM5 via TM4 (Figure 1c) [11]. There is a different number of Cys residues among
SLC1 family members, with the only one conserved corresponding to C363 in ASCT2 [13].
Moreover, the reduction (SH) or oxidation (S-S) of Cys residues allows the switch of
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the protein state between activated and inactivated [13]. Unlike transporters from other
systems, Na+ to K+ or L+ substitution is not tolerated and, contrary to LAT1, it is not
inhibited by BCH [8,14]. The mechanism through which this transporter operates remains
unclear, nevertheless, it is known that the exchange of amino acids is electroneutral and
involves the cotransport of one Na+ ion and one neutral amino acid into the cytosol coupled
with the cotransport of also one Na+ ion and one neutral amino acid out of the cell [3].

The ASCT2 transporter shows an asymmetric specificity, with alanine, methionine, and
valine being transported only into the intracellular environment and asparagine, glutamate,
serine, and threonine being carried in both directions [8]. Cysteine has been shown to work
not as a ASCT2 substrate, but as a modulator at slightly higher concentrations, since it
triggers efflux by uniport mode [15]. Glutamine is a preferred substrate and it has been
shown that its uptake in several cancer cell lines is mediated mainly by this transporter [12].

Cancers 2021, 13, x FOR PEER REVIEW 3 of 30 
 

 

ECL2b) [11]. The former contains the transmembrane segments (TMs) TM3, TM6-TM8 
and the helical loops (HP) HP1 and HP2, whereas the latter includes the helices TM1, TM2, 
TM4, and TM5 [11]. Each transport domain interacts only with the scaffold domain from 
its own protomer and the ECL2 bridges the two domains, connecting TM3 to TM5 via 
TM4 (Figure 1c) [11]. There is a different number of Cys residues among SLC1 family 
members, with the only one conserved corresponding to C363 in ASCT2 [13]. Moreover, 
the reduction (SH) or oxidation (S-S) of Cys residues allows the switch of the protein state 
between activated and inactivated [13]. Unlike transporters from other systems, Na+ to K+ 
or L+ substitution is not tolerated and, contrary to LAT1, it is not inhibited by BCH [8,14]. 
The mechanism through which this transporter operates remains unclear, nevertheless, it 
is known that the exchange of amino acids is electroneutral and involves the cotransport 
of one Na+ ion and one neutral amino acid into the cytosol coupled with the cotransport 
of also one Na+ ion and one neutral amino acid out of the cell [3]. 

The ASCT2 transporter shows an asymmetric specificity, with alanine, methionine, 
and valine being transported only into the intracellular environment and asparagine, glu-
tamate, serine, and threonine being carried in both directions [8]. Cysteine has been shown 
to work not as a ASCT2 substrate, but as a modulator at slightly higher concentrations, 
since it triggers efflux by uniport mode [15]. Glutamine is a preferred substrate and it has 
been shown that its uptake in several cancer cell lines is mediated mainly by this trans-
porter [12]. 

 
Figure 1. ASCT2 structure. (a) Bottom view highlighting the three protomers that constitute the 
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topology of a ASCT2 protomer with the scaffold domain in yellow and the transport domain in 
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created with BioRender.com). ECL: extracellular loop, HP: helical loop, TM: transmembrane seg-
ment. 
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dependent antiporter [17]. It consists of a functional light chain, LAT1, a 55 kDa protein 
encoded by the SLC7A5 gene, that links through a conserved disulfide bridge to a heavy 
chain (4F2hc, also known as CD98), a 68 kDa type II glycoprotein encoded by the SLC3A2 

Figure 1. ASCT2 structure. (a) Bottom view highlighting the three protomers that constitute the
ASCT2 homotrimer (PDB 6GCT); (b) Side view of the homotrimer (PDB 6GCT); (c) Membrane
topology of a ASCT2 protomer with the scaffold domain in yellow and the transport domain in blue.
The ECL2, that connects the two domains, is represented in red (adapted from [11,16] and created
with BioRender.com). ECL: extracellular loop, HP: helical loop, TM: transmembrane segment.

1.1.2. LAT1: Function and Structure

LAT1 is a heterodimeric amino acid transporter (HAT) that functions as an Na+-
independent antiporter [17]. It consists of a functional light chain, LAT1, a 55 kDa protein
encoded by the SLC7A5 gene, that links through a conserved disulfide bridge to a heavy
chain (4F2hc, also known as CD98), a 68 kDa type II glycoprotein encoded by the SLC3A2
gene, that functions as a chaperone to recruit the functional subunit to the plasma mem-
brane, stabilizing it (Figure 2a) [12,17–23]. LAT1 consists of 12 TMs, with TM1, TM3, TM6,
TM8, and TM10 comprising the inner layer, which is surrounded by TM2, TM4, TM5, TM7,
TM9, TM11, and TM12, the outer layer [24]. On the other hand, 4F2hc only comprises a
single TM [24]. The complex also contains several loop and helical segments (H1–H4) [25].
The disulfide bridge forms between two conserved cysteine residues, one in the loop
between transmembrane helices 3 and 4 of LAT1 and the other in 4F2hc (Figure 2b) [17].
LAT1 belongs to the SLC7 gene family, is not glycosylated, and exhibits an intracellular
N- and C-terminus, whereas the latter belongs to the SLC3 gene family, is N-glycosylated,
and presents an intracellular N-terminal and a bulky extracellular C-terminal [8,12]. Its
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substate-binding site consists of a proximal pocket that accommodates primary side chains,
a distal pocket that functions as a binding site for hydrophobic secondary substitutions,
and the positive and negative poles of two short helices that recognize the carboxyl and
amino groups of the substrates [23]. LAT1 has a high affinity for bulky branched-chain
and aromatic amino acids, particularly leucine, phenylalanine, and tryptophan, and can
transport both D- and L-amino acid enantiomers [3,12,22,26]. Alanine, proline, and charged
amino acids are not recognized by this transporter and it has lower affinity for glutamine
and threonine [8]. As an obligatory amino acid exchanger with a 1:1 stoichiometry and
lower affinity for substrates located within the cell its velocity is dependent on the con-
centration of the intracellular amino acids [3]. LAT1 has been shown to transport several
drugs across the blood-brain barrier (BBB), being expressed at 100-fold higher levels in
BBB endothelial cells than in other tissues [22].
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BioRender.com). H: short helix, TM: transmembrane domain.

1.2. ASCT2 and LAT1: Their Expression in Cancer

In a review by Fuchs et al. [3], ASCT2, LAT1, and sodium-coupled amino acid trans-
porter 5 (SNAT5) expression stood out as significantly enhanced in tumors compared to
their normal counterparts. However, whereas the latter had not been verified in other
studies, ASCT2 and LAT1 expression pattern was similar in a variety of cancerous tissues
(Table 1) [3].

Table 1. ASCT2 and LAT1 expression in cancer.

Authors 1 (Year) [Ref] Cancer Model Method Transporter Expression in Cancer (p Value)

Liu et al. (2015) [28] Clear cell renal cell carcinoma RT-qPCR ASCT2 upregulation (p = 0.007)

Huang et al. (2014) [29] Colorectal cancer
IHC

ASCT2 upregulation
(p < 0.001)

WB (p < 0.05)

Schulte et al. (2017) [30] Primary and metastatic
colorectal cancer IHC ASCT2 upregulation in cancer (p < 0.001) and in metastases (p < 0.001)

compared to normal tissue

Marshall et al. (2017) [31] Endometrial carcinoma
Risinger et al. [32]

cohort analysis
(Multiplex-qPCR)

ASCT2 upregulation in serous (p < 0.001) and endometrioid (p < 0.001)
subtypes compared to normal tissue

Lu et al. (2017) [33] Gastric cancer
IHC

ASCT2 upregulation
(p < 0.0001)

RT-qPCR (n = 32, p = 0.0046; n = 45, p < 0.0001; n = 80,
p = 0.0147)
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Table 1. Cont.

Authors 1 (Year) [Ref] Cancer Model Method Transporter Expression in Cancer (p Value)

Sun et al. (2016) [34] Hepatocellular carcinoma IHC ASCT2 upregulation (p = 0.009)

Shimizu et al. (2014) [35] Non-small cell lung cancer IHC Higher ASCT2 expression in non-AC compared to AC (p = 0.019)

Guo et al. (2018) [36] Epithelial ovarian cancer RT-qPCR and WB ASCT2 upregulation (p < 0.001)

Kaira et al. (2015) [37] Pancreatic ductal carcinoma IHC ASCT2 upregulation (p < 0.001)

Wang et al. (2015) [38] Prostate cancer TCGA cohort
analysis

ASCT2 upregulation (p = 0.025) and higher ASCT2 expression in
recurrent cancer compared to patients undergoing NHT (p < 0.001)

Namikawa et al. (2015) [39] Hepatocellular carcinoma IHC Higher ASCT2 expression compared to LAT1 (p < 0.001)

Kaira et al. (2015) [40] Ovarian cancer IHC Higher ASCT2 expression compared to LAT1 (p = 0.032), although no
difference was found in epidermal ovarian cancer

Papin-Michault et al. (2016) [41] Brain metastasis IHC LAT1 upregulation (p < 0.001)
Betsunoh et al. (2013) [42] Clear cell renal cell carcinoma RT-qPCR LAT1 upregulation (p < 0.0001)

Hayase et al. (2017) [43] Colorectal cancer/Colonic
adenoma IHC LAT1 upregulation compared to non-malignant tissue (NA) and

colonic adenoma (p < 0.001)

Sakata et al. (2020) [44] Colorectal AC
WB LAT1 upregulation compared to normal tissue (NA), with an increase

in a sporadic adenoma-adenoma-carcinoma series (p < 0.0001)IHC

Watanabe et al. (2014) [45] Endometrial endometrioid AC IHC LAT1 upregulation compared to atrophic endometrium (p < 0.01)

Sato et al. (2020) [46] Endometrial carcinoma IHC LAT1 upregulation in non-endometrioid compared to endometrioid
carcinomas (p < 0.001)

Wang et al. (2016) [47] Gastric cancer RT-qPCR LAT1 upregulation (p < 0.01)
Li et al. (2013) [48] Hepatocellular carcinoma RT-qPCR LAT1 upregulation (p < 0.001)

Kaira et al. (2008) [49] Resectable stage I-III NSCLC IHC LAT1 upregulation (NA), higher LAT1 expression in SCC than AC
(p < 0.001) and in non-AC than AC (p < 0.001)

Imai et al. (2009) [50] Stage I NSCLC IHC Higher LAT1 expression in SCC than AC (p < 0.001) and in non-AC
than AC (p < 0.001)

Takeuchi et al. (2010) [51] NSCLC RT-PCR LAT1 upregulation (p < 0.05)

Kaira et al. (2011) [52] Resected NSCLC IHC Higher LAT1 expression in non-AC than in AC (p < 0.001)

Kaira et al. (2011) [53] NSCLC (recurrence after
platinum-based chemotherapy) IHC Higher LAT1 expression in non-AC than in AC (p = 0.0022)

Kaira et al. (2012) [54] Pancreatic cancer IHC LAT1 upregulation (p < 0.001)

Yanagisawa et al. (2012) [55] Pancreatic AC IHC Higher LAT1 expression in IPMC compared to PDAC (p < 0.0001)

AC: adenocarcinoma, ASCT2: alanine, serine, cysteine transporter 2, IHC: immunohistochemistry, IPMC: intraductal papillary mucinous
carcinoma, LAT-1: L-type amino acid transporter 1, NHT: neoadjuvant hormone therapy, NSCLC: non-small cell lung cancer, PDAC:
pancreatic ductal adenocarcinoma, RT-qPCR: reverse transcription real-time polymerase chain reaction, SCC: squamous cell carcinoma,
TCGA: The Cancer Genome Atlas, WB: western blot. 1 Published studies with no statistical significant results were not included [27,56–65].

Comparing to LAT1, ASCT2 transports a much wider range of substrates, namely
glutamine as previously mentioned [3]. In fact, increased expression of this transporter
has been documented in tissues where glutamine plays a particularly important role in
metabolism, such as the liver, brain and the epithelial cells of the gut [3]. Moreover,
enhanced ASCT2 expression has also been reported in cancers derived from tissues where
this protein is not usually present [14].

Upregulation of both LAT1 and 4F2hc has been reported in cancer tissues or prolifera-
tive cells [12,27]. LAT1 has been detected in RERF-LC-MA lung small cell carcinoma cells,
leukemia cell lines, T24 bladder carcinoma cells, and HeLa uterine cervical carcinoma cells
and its expression has been correlated with the size of metastatic distant tumors in rats,
thus being suggested as a potential therapeutic target for many cancers [3].

2. ASCT2 and LAT1: Their Contribution to the Hallmarks of Cancer

The hallmarks of cancer have been proposed by Hanahan and Weinberg and consist of
biological concepts that allow the characterization of the heterogeneous and complex nature
of cancer [6]. They consist of six capabilities that promote tumor progression (resisting
cell death, sustaining proliferative signaling, activating invasion and metastasis, inducing
angiogenesis, enabling replicative immortality, and evading growth suppressors) and are
accompanied by two enabling characteristics (tumor-promoting inflammation and genomic
instability and mutation) and two emerging hallmarks (avoiding immune destruction and
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dysregulating cellular energetics) that represent the important aspect of the constitution
and signaling of the tumor microenvironment [6,66].

The role of the amino acid transporters ASCT2 and LAT1 has not yet been explored
in the context of two of the six original hallmarks, enabling replicative immortality and
evading growth suppressors, nor of the enabling characteristics. In this section, we will
explore the association between ASCT2 and LAT1 and these distinctive and complementary
hallmarks of cancer (Figure 3).
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Figure 3. ASCT2, LAT1, and the hallmarks of cancer. Both ASCT2 and LAT1 have been associ-
ated with avoiding immune destruction [7,67–72], invasion and metastasis [47,73–75], angiogene-
sis [63,74,76–78], resisting cell death [20,29,79–87], proliferative signaling [43,52,87–99], and cellular
energetics [90,100–108]. The activation/overexpression (green) or inactivation/subexpression (red)
of those molecules consequently results in the dysregulation of a variety of key players on those
hallmarks of cancer, culminating in cancer. The role of ASCT2 and LAT1 in genomic instability and
mutation, inflammation, replicative immortality, and evading growth suppressors remains to be
explored (created with BioRender.com).

2.1. Resisting Cell Death

Evasion of programmed cell death or apoptosis represents a major way of increasing
the rate of cell proliferation during tumor progression [66]. Overall, apoptosis can result
from an intrinsic or extrinsic pathway and both culminate in the activation of proteases
named caspases [109]. The former, also known as the mitochondrial pathway, is mainly
regulated by the B-cell lymphoma 2 (BCL-2) family of proteins, which can be activated by
a variety of cellular stress signals, such as hypoxia, DNA damage and nutrient deprivation,
and includes the anti-apoptotic proteins BCL-2 and BCL-xL and the pro-apoptotic effectors
BCL-2-associated X protein (BAX) and BCL-2 antagonist/killer (BAK), among others [109].
The extracellular pathway, on the other hand, can result from the binding of specific ligands
to death receptors from the tumor necrosis factor (TNF) superfamily located in the cell
surface, activating them [109]. Regarding the caspases involved in programmed cell death,
caspase-2, -8, -9, and -10 are considered apoptosis initiators, whereas caspase-3, -6, and -7
are apoptosis executioners or effectors [110].
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ASCT2 knockdown has shown to play a role in the mitochondrial pathway of apopto-
sis, as it has been associated with decreased BCL-2 levels, increased BAX expression and
a loss of matrix metallopeptidases (MMPs), which results from the mitochondrial mem-
brane permeabilization facilitated by BAX [79]. Wang et al. [79], using a reactive oxygen
species (ROS) scavenger, NAC, reported a reversion of the effects of ASCT2 knockdown in
gastric cancer cell lines, supporting that this protein ablation leads to oxidative stress and
contributes to apoptosis. That involvement was also observed in colorectal cancer cell lines
using a synthetic small interfering RNA (siRNA) to attenuate the expression of SLC1A5 [29]
and in non-small cell lung cancer (NSCLC) using the L-γ-glutamyl-p-nitroanilide (GPNA)
ASCT2 inhibitor [80]. Topotecan (TPT) is a DNA topoisomerase I inhibitor that has shown
anti-cancer effects on gastric cancer and the results from its testing suggest that ASCT2
is an anti-cancer target for this compound, as it presented the same effects as ASCT2
knockdown [79]. Furthermore, the silencing of this protein with antisense RNA in hepatic
adenocarcinoma cells did not appear to be attributed to glutamine or overall amino acid
deprivation, thus suggesting a crucial role of ASCT2 in cell apoptosis beyond maintaining
of amino acid homeostasis [81]. In fact, whereas both ASCT2 silencing and glutamine
starvation promoted caspases-2 and -3 activity, there was no evidence for caspases-8 and -9
activities in glutamine-starved cells [82]. Moreover, both caspases-2 and -9 are upregulated
in response to ASCT2 suppression and showed to be involved in the intrinsic pathway
of apoptosis in response to oxidative stress, which in turn may result from the loss of
glutathione (GSH), an antioxidant, due to the decrease of its precursors glutamine and
cysteine, amino acids transported by ASCT2 (Figure 4) [82]. Knockdown or inhibition of
this transporter has been associated with increased levels of ROS and decreased levels of
GSH in gastrointestinal cell lines and with significant loss of mitochondrial potential in
lung cancer cells [79,80,83]. The epidermal growth factor receptor (EGFR) is involved in
downstream signal transduction of several pathways upon binding of a specific ligand,
which may result in cell proliferation or evasion of apoptosis [84]. ASCT2 has been identi-
fied as an EGFR-associated protein that can be co-targeted by cetuximab, an EGFR antibody
approved for metastatic human head and neck squamous cell carcinoma treatment, sensi-
tizing the cancer cells to ROS-induced apoptosis through reduction of intracellular levels
of glutamine and, consequently, of glutathione [85].

Dysregulation of LAT1 transporter has also been shown to affect caspase activity and,
consequently, apoptosis [20]. Treatment of the KB human oral epidermoid carcinoma cells,
Saos2 human osteogenic sarcoma cells and C6 rat glioma cells with BCH induced DNA
fragmentation and increased TUNEL-positive cells [86]. Moreover, LAT1 inhibition led
to the activation through proteolytic cleavage of caspase-3 and -7, which are synthesized
as inactive proenzymes, in KB and C6 cells, inducing apoptotic cell death [86]. In Saos2
cells, this induction only depended on caspase-7 activation [86]. Similarly, BCH treatment
also induced TUNEL-positive apoptotic cells from a human malignant glioma cell line [87].
Furthermore, this effect correlated with cleavage induction of both caspase-3 and its
intrinsic substrate PARP [87].

2.2. Sustaining Proliferative Signaling

The ability to sustain chronic proliferation depends on the release of growth-promoting
signals and cell cycle progression [6]. The phosphoinositide 3-kinase (PI3K)/Akt/mammalian
target of rapamycin complex (mTORC) 1 pathway is critical for cell growth, integrating
signals from a variety of factors, such as energy status and growth factors, and is highly
supported by nutrients such as amino acids, particularly leucine, which is required for
the activation of mTORC1 and is transported into the cell by LAT1 [3,111]. mTORC1 and
mTORC2, the two known mTOR complexes, are inhibited during amino acid starvation,
leading to a decrease in mRNA and protein biosynthesis resulting from alterations in the
phosphorylation pattern of their downstream effectors, namely ribosomal protein S6 kinase
beta-1 (S6K1) and eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1) [5].
mTORC1 activation occurs at the lysosomal membrane and its rate-limiting step is the
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uptake of L-glutamine via ASCT2 [5,112]. After 1–2 min, that amino acid leaves the cell,
leading to the uptake of L-leucine by LAT1 and the rapid activation of S6K1 through
mTORC1 [5].
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amino acids into the cell, namely glutamine (Gln), coupled with the transport of one neutral amino
acid (AA) to the extracellular environment. Gln can be used to synthesize glutathione (GSH), an
antioxidant which prevents oxidative stress. In turn, together with ASCT2-related downregulation of
caspases-2 and -9 and LAT1-related downregulation of caspases-3 and -7, oxidative stress inhibits
apoptosis. On the other hand, Gln can also be used to biosynthesize other elements that play key
roles in cell growth or be transported to the mitochondria and enter the glutaminolysis process,
yielding metabolites, such as α-KG, pyruvate and lactate, and generating NADH and FADH2,
essential for ATP production. Similar to ASCT2, LAT1 is an amino acid exchanger, transporting one
amino acid into the cytosol, like leucine (Leu), and another amino acid to the extracellular milieu,
namely Gln. Leu is required for the activation of the mammalian target of rapamycin complex
(mTORC1), which in turn activates the downstream effectors ribosomal protein S6 kinase 1 (S6K1)
and eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1) through phosphorylation.
Those proteins play important roles in mRNA and protein biosynthesis, resulting in cell growth. In
the nucleus, proto-oncogenes and tumor suppressors, such as c-Myc and E2F transcription factor
3 (E2F3), respectively, have been found to bind to promoter elements of the gene encoding ASCT2,
resulting in altered Gln metabolism through SLC1A5 dysregulation (created with BioRender.com).

The role of ASCT2 in tumor growth, namely its association with the inhibition of
mTOR pathway, has been observed in breast cancer [113], melanoma [114], hepatoma [81],
endometrial carcinoma [31], acute myeloid leukemia [115], gastric cancer [116], and prostate
cancer [38], through either lentiviral transduction of a short hairpin RNA (shRNA) against
ASCT2 or treatment with ASCT2 inhibitors (benzylserine or GPNA, for example). In fact, a
study by Avissar et al. [88] showed that the PI3K pathway induced glutamine transport
and ASCT2 expression in the human enterocytes cell surface. C-Myc is a well-characterized
oncogene also involved in tumor cell growth [89]. It is a transcriptional factor frequently
overexpressed in cancer and its levels have been correlated with ASCT2 and mTORC1
activation [89]. Additionally, the tumor suppressor retinoblastoma protein (Rb) is involved
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in cell cycle arrest by disabling the E2F family of cell cycle-promoting transcription factors
and an inverse association with ASCT2 overexpression has been reported [90]. Furthermore,
upregulation of SNAT1 and SNAT2, members of the transport System A and of the SLC38
family, was reported in ASCT2-deficient cells [91,92]. The substrate specificity of these
transporters overlaps that of ASCT2 and they appear to explain the normal mTOR signaling
observed in some cells lacking ASCT2 [91].

Leucine is a regulator of mTORC1, as previously mentioned, and also a major substrate
for LAT1, which mediates its uptake in exchange for glutamine [5]. Pharmacological inhibi-
tion of LAT1, using the selective inhibitor JPH203, significantly reduced cell proliferation
associated with mTORC1 pathway in six human cell lines without reducing CD98 expres-
sion [93]. In fact, Milkereit et al. [94] showed that LAT1-4F2hc is recruited to lysosomes
by the lysosomal-associated transmembrane protein 4b (LAPTM4b), promoting leucine
uptake into those organelles and mTORC1 activation. LAT1 inhibition has been associated
with reduced cellular proliferation, often associated with reduced phosphorylation level
of mTOR and its downstream effectors in several cancer models, including lung [52,95],
colorectal [43] and breast cancer [96]. Similarly, LAT1 expression has been associated with
increased tumor size and tumor cell growth rates [87,97]. On the other hand, Fan et al. [117]
observed little impact of BCH treatment on ovarian cancer cells proliferation. Besides LAT1,
this inhibitor is also able to block the activity of other leucine-accepting transporters and
the authors conclude that LAT1-mediated amino acid transport alone might have limited
impact on anchorage-dependent cancer cell proliferation in tumors [117]. Concerning other
pathways, LAT1 inhibition by the same compound induced cell cycle arrest at G1 phase
in oral cancer cells by inhibiting the cyclin D2-cyclin-dependent protein kinase 6 (CDK6)
complex and increasing p27 expression, a CDK inhibitor [98]. The cyclin/CDK complexes
play major roles in cell cycle events, as the binding between those molecules constitutes
a target of checkpoint pathways that ensure cell cycle progression [99]. EGFR mutations
have been found in lung cancer and they have been shown to have significant responses to
EGFR tyrosine kinase inhibitors (TKIs), such as gebitinib and erlotinib [84]. Imai et al. [95]
observed higher LAT1 expression in NSCLC samples without EGFR mutations, which
might be associated with TKIs refractoriness and a poor prognosis in combination of LAT1
expression and EGFR wild-type.

Since LAT1 is an obligatory exchanger and that leucine uptake is dependent on the
intracellular concentration of the exchange substrates, functional amino acid transporter-
coupling between ASCT2 and LAT1 has been proposed [118]. In that model, ASCT2 drives
glutamine uptake, which serves as an exchange substrate for the LAT1-mediated leucine
transport to the intracellular environment, allowing the activation of the mTORC1 pathway
and cellular growth, as previously mentioned [118]. A reciprocal regulatory connection
has also been observed between ASCT2, LAT1 and mTOR in prostate cancer, hepatoma,
lymphoma and leukemic cells, since glutamine starvation-induced LAT1-mediated trans-
port of amino acids or expression and/or leucine deprivation induced the same effects on
ASCT2 [3,38,67]. However, Cormerais et al. [119] did not observe a disruption in LAT1 or
mTORC1 activity nor in leucine uptake following ASCT2 knockout in colon LS174T and
lung A549 adenocarcinoma cells. Nevertheless, ASCT2 ablation decreased tumor growth,
suggesting a LAT1-independent role in tumor proliferation [119]. Overall, despite their
dominant role in amino acid transport and involvement in cell proliferation, ASCT2 and
LAT1 have been classified as “harmonizers” instead of drivers of amino acid signaling and
accumulation, since cells seem to adapt to the knockout of those transporters [120].

2.3. Activating Invasion and Metastasis

Local invasion and distant metastasis reflect the tumor progression to higher grades
of malignancy, representing the major cause of morbidity and death in cancer patients, and
usually represent alterations in cell-cell adhesion and the attachment to the extracellular
matrix (ECM) [6].
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There are few published studies reporting the association between ASCT2 and in-
vasion and metastasis and the underlying mechanism remains elusive. Nevertheless, a
higher expression of SLC1A5 in gastric cancer tissues has been correlated with clinico-
pathological features such as local invasion and lymph node metastasis [33]. Furthermore,
SLC1A5 downregulation in vitro resulted in significant inhibition of gastric cells invasion
and migration [33].

Similarly, LAT1 expression has been found to be significantly higher in metastatic
sites compared to primary tumors in a variety of cancers [41,58,111,121]. In parallel, higher
LAT1 expression has been associated with an increase in metastatic lesion diameter [122].
Blockade of this transporter efficiently inhibited anchorage-independent growth of ovarian
cancer cell lines, suggesting an important role in proliferation under non-adhesive condi-
tions as the ones involved in migration and metastasis [117]. Moreover, cholangiocarcinoma
cells ability to migrate and invade was reduced by a downregulation of LAT1 expression
through shRNA and it is suggested that it may involve 4F2hc-related signaling, since this
molecule interacts with β1 integrin and forms a complex that takes part in Akt signaling
activation, contributing to carcinogenesis [73]. Cells lacking LAT1 showed a reduction in
cell migration due to a decrease in phosphorylation and consequent activation of ERK1/2
signaling pathway, regulated by the reorganization of the collagen matrix that is mediated
by the α1β1 integrin [73]. Overexpressed LAT1 together with 4F2hc has been reported
as necessary for metastasis in colon cancer patients [74]. Ding et al. [75] determined that
the SLC7A5 transcript stability was increased by genetic suppressor element 1 (GSE1) in a
post-transcriptional manner independent from direct binding. GSE1 is positively associ-
ated with many clinicopathological features, namely lymph node metastasis, clinical stage,
depth of invasion and histological grade and LAT1 appears to mediate its functions and to
be positively regulated by GSE1 [75]. Wang et al. [47] identified LAT1 as a downstream
target of the CRK-like (CRKL) protein, a promoter of gastric cancer. Depletion of CRKL in
a gastric cancer cell line resulted in impairment of SLC7A5 expression and suppression of
cell motility [47].

2.4. Inducing Angiogenesis

Tumor cells with high proliferation rates require high levels of nutrients and oxygen,
as well as an efficient ability to dispose of carbon dioxide and metabolic wastes [6]. These
needs are addressed by the process of angiogenesis, which allows neovascularization
associated with the tumor [6].

The expression level of both ASCT2 and LAT1 showed a significant correlation with
CD147, an inductor of matrix metalloproteinases and tumor angiogenesis [76]. LAT1
expression correlated with that of vascular endothelial growth factor (VEGF), a marker of
angiogenesis, in thymic carcinomas [77], colon [74] and lung cancers [63]. Furthermore,
LAT1 has been detected in vascular endothelial and its expression level has been associated
with glioma microvessel density [78].

2.5. Avoiding Immune Destruction

Immune surveillance recognizes and eliminates the majority of incipient cancer cells
through the constant monitoring of tissues and cells by the immune system [6]. However,
developing tumors appear to be able to evade immune recognition and thus avoid de-
struction [6]. In fact, an increase in tumor incidence has been observed in patients with
deficiency of natural killer (NK) cells, CD8+ cytotoxic T lymphocytes (CTLs) and Th1
cells [6].

Interestingly, both ASCT2 and LAT1 have been reported as mediators of amino acid
supply to activated T cells and important factors for T cell differentiation into Th1 and Th17
cells [7,68]. Moreover, ASCT2 transporter is required for mTORC1 signaling activation
stimulated by T-cell receptor (TCR) and CD28, but not in other T cell activation pathways,
making it particularly important in naïve T cells although dispensable in effector T cells,
where it might be functionally redundant with other amino acid transporters [69]. LAT1
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expression has been shown to be induced by CD3, which forms a complex with the TCR
and allows its signaling, and CD28, a heterodimer that not only binds to integrin-β and
mediates survival and growth through adhesive signals but is also involved in amino acid
transport [68,70,71]. T cells need to achieve high levels of amino acid incorporation for
normal immune responses, therefore requiring LAT1 to maintain their activated state [68].
In fact, T cells appear to use LAT1 to sustain the high demand for nutrients required
for immune reactions in the same way cancer cells also prefer using this transporter to
efficiently proliferate [68]. Despite ASCT2 importance in T cell activation, some studies
have shown that, in ASCT2-knockout mice, this amino acid transporter is not required for
T and B cell development, B cell proliferation and antibody production, suggesting that the
immune system of cancer patients might tolerate the inhibition of this transporter [67,72].

2.6. Dysregulating Cellular Energetics

The uncontrollable proliferation rates that characterize cancer cells require adjustments
in cell energy metabolism so that it can fuel the growth [6]. Glutamine is a non-essential
amino acid that cells can synthesize de novo [123]. Nevertheless, it is one of the most
important amino acids in the human body, being a source of both reduced nitrogen for
biosynthetic reactions and of carbon for the mitochondrial tricarboxylic acid (TCA) cy-
cle, also serving as a precursor to nucleotide and lipid synthesis [8,123,124]. Glutamine
catabolism involves the conversion of glutamine to glutamate, a precursor of the TCA
cycle intermediate α-ketoglutarate (α-KG), by cytosolic glutamine aminotransferases or
mitochondrial glutaminases [123]. On the other hand, α-KG can be used to endoge-
nously synthesize glutamine via the enzymes glutamate dehydrogenase and glutamine
synthetase [125]. The need for glutamine is enhanced when cells undergo a high prolif-
eration rate, with many tumors depending on glutaminolysis to fuel their energetic and
metabolic necessities [5,14]. This process yields increased levels of downstream metabolites
such as α-KG, pyruvate and lactate [5]. Additionally, the TCA cycle, where glutamine ends
its fate, generates NADH and FADH2 that provide electrons for mitochondrial ATP gen-
eration [5,125]. Simultaneously, glutaminolysis has been considered a hallmark of cancer
and its increase in cancer cells has been associated with an upregulation of some amino
acid transporters, particularly ASCT2, whose targeting may lead to promising anti-cancer
treatments [5,14].

Alteration of glutamine uptake has been reported as a result of the action of proto-
oncogenes or tumor suppressors, similar to their action in stimulating cell proliferation
as aforementioned [126]. C-Myc has been found to bind to promoter elements of the gene
encoding ASCT2, resulting in higher levels of SLC1A5 mRNA and enhanced glutamine
uptake [100]. On the other hand, deletion of the tumor suppressors belonging to the Rb
family alters glutamine metabolism by increasing the uptake of this amino acid through
E2F transcription factor 3 (E2F3) binding to the SLC1A5 promoter [90]. RNF5 is an E3
ubiquitin ligase associated with the endoplasmic reticulum involved in the regulation of
protein stability and clearance, allowing the functioning of various cellular processes [101].
This protein has been found to play a role in ASCT2 degradation, also resulting in reduced
glutamine uptake, induced by protein misfolding in response to endoplasmic reticulum
stress [101]. There are also published studies on the influence of the tumor microenviron-
ment on glutamine metabolism, contributing to tumor progression, involving cytokines
and chemokines [102,127]. Interleukins (ILs) are secreted proteins that interact with specific
receptors and allow communication between cells [128]. IL-4 is a Th2 cytokine that interacts
with the IL-4 receptor (IL-4R) and has been reported as a regulator of high ASCT2 mRNA
and protein expression, enhancing glutamine uptake in breast cancer cells [102]. IL-3,
required for survival and proliferation of hematopoietic progenitor cells, binds to IL-3Rα,
a glucose-dependent receptor, and signaling through this receptor induces ASCT2 [103].
Moreover, Jak inhibition repressed glutamine uptake, completely blocking ASCT2 induc-
tion, suggesting that IL-3 action occurs via the Jak/signal transducer and activator of
transcription (STAT) pathway [103]. Ren et al. [104] have shown that neuroblastomas
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with amplification of the MYCN gene, which is associated with high levels of the N-Myc
protein, rely on high amounts of glutamine to sustain cell viability, the TCA cycle and
biosynthetic activities and that those high amounts are supported by ASCT2 activation.
The activation of this transporter appeared to occur via activating transcription factor 4
(ATF4), a member of the cyclic AMP response element binding protein (CREB) family
frequently induced in response to hypoxia, endoplasmic reticulum (ER) and oxidative
stress and nutrient deprivation, in coordination with N-Myc [104]. There are also studies
reporting the epigenetic modulation of tumor glutamine metabolism via ASCT2. In a
study by Dong et al. [105], inhibition of the tumor suppressor microRNA-137 (miR-137)
through methylation of its promoter by DNA methyltransferases (DNMTs) together with
methyl-CpG-binding protein 2 (MeCP2) led to ASCT2 upregulation and, consequently,
glutamine metabolism reactivation, identifying miR-137 as a regulator of glutaminolysis
by targeting ASCT2 [105]. Interestingly, this miR has also been identified as a regulator of
ferroptosis, an iron-dependent form of cell death genetically and morphologically different
from apoptosis, by directly targeting ASCT2 in melanoma cells [106]. miR-137 suppressed
ferroptosis, inhibiting the ability of melanoma cells to colonize in vitro and develop tumors
in a mouse model [106]. Ferroptosis inhibition led to ASCT2 overexpression, which rescued
the suppressing effect of miR-137 in this form of cell death [106].

Despite its high affinity for glutamine and the fact that SLC1A5 knockout did decrease
the uptake of this amino acid, blockade of ASCT2 in leukemic cells resulted in a much more
pronounced effect on global cell metabolism which cannot be explained solely by glutamine
transport [67]. Other amino acids play important roles in biosynthesis and intracellular
redox homeostasis in cancer cells, such as cysteine, isoleucine, threonine and valine, and
they have been found to significantly decrease in SLC1A5-knockout cells [67]. Furthermore,
the pentose phosphate pathway, the glycolytic pathway, as well as the methylation cycle,
had decreased rates in leukemic cells in the same study by Ni et al. [67].

Leucine plays important signaling roles, promoting protein synthesis through the
activation of the mTOR pathway, enhancing mitochondrial biogenesis and augmenting
fatty acid oxidation [129]. As previously mentioned, this amino acid can be transported
into the cell by LAT1 [129]. Treatment of NSCLC cells with delta-tocotrienol (δT) inhibited
both LAT1 and ASCT2 expression, resulting in a significant decrease in leucine concentra-
tion [107]. Furthermore, treatment of breast cancer cells with JPH203, a tyrosine analog
and selective LAT1 inhibitor, limited the amount of leucine, and also tyrosine, that could
maintain protein production or enter the TCA cycle, proving to be beneficial in combination
with other mTOR inhibitors and/or endocrine therapies for breast cancer treatment [108].

3. ASCT2 and LAT1: Their Clinical Significance in Cancer

After acknowledging the potential role of the neutral amino acid transporters ad-
dressed here on the hallmarks of cancer, the focus of researchers and pharmaceuticals on
ASCT2 and LAT1 clinical relevance is to be expected [130] (Figure 5). If these proteins are
overexpressed in tumor cells, their blockade would likely lead to amino acid deprivation,
impairing protein synthesis and, consequently, growth, while not affecting the biology of
normal cells [131]. Moreover, drugs based on transporters are proposed to reduce possible
side effects and enhance clinical efficacy [132].

3.1. ASCT2 and LAT1 as Prognostic Biomarkers in Cancer

The prognostic value of LAT1 in cancer has recently been the subject of two meta-
analyses [133,134]. Those reviews reported associations between high LAT1 expression
and poor overall, cancer-specific, disease-free and progression-free survival, as well as
clinicopathological features such as stage, tumor size, lymphatic and vascular invasion,
tumor differentiation, Ki-67, 4F2hc, CD34, p53 and ASCT2 [133,134]. LAT1, besides hepa-
tocellular [39,48], lung [49–51,60,62–64,135,136], colorectal [44,137,138], renal [42,59], ovar-
ian [40,139], breast [57], tongue [140] and pancreatic cancer [54,55], has also been identi-
fied as a prognostic marker for multiple myeloma [141], melanoma [142], cholangiocar-



Cancers 2021, 13, 203 13 of 26

cinoma [143], biliary tract [144,145], laryngeal [146], bladder [147], prostate [65,148,149],
thymic [150] cancer and endometrioid carcinoma [46], even though the latter showed
contradicting results.
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Although with fewer published studies, ASCT2 has been identified as a prognostic
factor in hepatocellular [34], lung [35], colorectal [151], gastric [33], renal [28], ovarian [36,152],
breast [153], tongue [140] and pancreatic cancer [76]. Furthermore, genetic variants in the
SLC1A5 gene have also been implicated in hepatocellular carcinoma prognosis, with
stage I patients carrying the rs2070246 TT genotype showing higher overall survival
(OS) than carriers of CC genotype [154]. Concerning the latter, contradicting results had
been previously reported by Watanabe et al. [45], who suggested a low significance of
LAT1 as a prognostic marker since its expression had been low in poorly differentiated
adenocarcinomas and correlated with neither proliferative activity nor the International
Federation of Gynecology and Obstetrics stage.

Furthermore, co-expression of both transporters, ASCT2 and LAT1, has also been
identified as an independent prognostic factor for lung adenocarcinoma [155] and surgically
resected esophageal squamous cell carcinoma [156]. In fact, the combined expression of
the transporters presented an overall poorer prognosis compared to the single-positive
expression of ASCT2 or LAT1 in both models [155,156].

3.2. LAT1 as a Predictive Factor in Cancer Treatment

The relationship between the expression level of amino acid transporters, particularly
of LAT1, and response to chemotherapy in cancer patients as been reported [53]. In
NSCLC, LAT1 expression was significantly associated with resistance to platinum-based
chemotherapy in patients with postoperative recurrence [53]. Higher expression LAT1
has also been identified as an independent factor for chemoresistance in ovarian clear cell
carcinomas [139]. A similar role in chemotherapy resistance has been reported for LAT1
in patients with metastatic or recurrent pancreatic ductal adenocarcinoma after surgical
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resection, with all patients with high LAT1 expression being identified as non-responders
to fluorouracil (5-FU) and gemcitabine [149].

3.3. ASCT2 and LAT1 Therapeutic Targets in Cancer

The research on the ASCT2 and LAT1 transporters as novel therapeutic targets for
cancer therapy has been reported in the last five years (Table 2) [132,157–159]. The drug
design of targets for these transporters usually follows an approach based on substrate
analogues, which act as competitive inhibitors [159]. Several amino acid analogues have
been reported to competitively bind to the ASCT2 substrate-binding site, impairing the
amino acid transport, such as benzylserine [160], GPNA, the most potent compound of
a series of glutamine analogues synthesized by Esslinger et al. [161], and V-9302, which
selectively targets ASCT2 and represents the only inhibitor of this transporter that reached
a preclinical phase [83,159], as well as other molecules based on sulfonamide/sulfonic
acid ester scaffolds [162]. The major limitations of this type of inhibitors is the fact that (1)
endogenous substrates can displace them from the binding pocket, impeding their effect;
and (2) these transporters usually recognize more than one amino acid as substrate [159].
Thus, it is important to design compounds that are able to irreversibly target and block
ASCT2 transport. L-phenylglycine and its analogues have been identified as non-substrate
molecules that selectively and effectively inhibit the function of this transporter [163].
Furthermore, analogues of the amino acid proline, which is not a substrate for ASCT2, such
as benzylproline-derived compounds have also been found as potential inhibitors [164,165].
Due to the strong reactivity of ASCT2 toward metals like mercury and its derivatives that
form bonds with cysteine residues, the design of inhibitors that exploit this interaction
could also play an important role in the irreversible inhibition of this transporter [14]. The
use of monoclonal antibodies (MAbs) has also shown potential as an effective treatment
for some cancers, namely in the suppression of glutamine-dependent growth of colorectal
cancer cells (KM4008, KM4012 and KM4018) [166] and ASCT2-expressing gastric cancer
(KM8094) [56,167].

Efforts have also been undertaken to synthesize potential LAT1 inhibitors due to
the well-documented overexpression of this transporter in cancer [168]. Interestingly,
GPNA, the widely used ASCT2 inhibitor, as already mentioned, has also been shown
to impair the uptake of essential amino acids through other transporters, namely LAT1,
lowering the cell content of these nutrients and potentially affecting mTORC1 activity [168].
Moreover, δT also inhibits both ASCT2 and LAT1 by impairing glutamine uptake, resulting
in the induction of apoptosis and inhibition of cell proliferation due to mTOR pathway
dysregulation [107]. BCH is a nonmetabolizable leucine analogue that has been shown to
diminish growth in a variety of cancer cells [132,157,169]. Nevertheless, the concentration
required to suppress cancer cell growth is extremely high and it constitutes a rather
unspecific inhibitor of all the L-type amino acid transporters (LAT1-4) [157,158]. The
anti-cancer potential of KYT-0353 or JHP203, a highly selective LAT1 inhibitor produced
through synthetic chemistry and in vitro screening based on triiodothyronine (T3), has
been reported in osteosarcoma [170], leukemic [171], oral cancer [172], gastric cancer [173],
and colon cancer [173,174] cells, among others [157]. The thyroid hormone derivative
3-iodo-L-tyrosine has been identified as a potent LAT1 inhibitor through cis-inhibition
and cell-proliferation experiments [175]. Other compounds have also been reported in
recent years, including other inhibitors based on the T3 structure [176], with highlight
to SKN103, and based on dithiazole and dithiazine compounds [177]. To the best of our
knowledge, only the LAT1 inhibitor JPH203 is being tested in clinical trial setting [178].
In the in-human Phase 1 clinical trial study published by Okano et al. [178], clinical trial
registration UMIN000016546, JPH203 was not only reported to have promising activity
against biliary tract cancer, but was also well-tolerated in these patients. This compound is
predominantly acetylated by N-acetyltransferase 2, which may exhibit distinct phenotypes
according to its speed (rapid, intermediate, or slow) before it is excreted in bile [178]. Those
phenotypes might be useful to predict JPH203 safety and efficacy [178].
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Table 2. ASCT2 and LAT1 pharmacological inhibitors.

Transporter Inhibitor Model Reference

ASCT2

Benzylcysteine Normal kidney [160]

Benzylproline derivatives Normal kidney [165]

Benzylserine Normal kidney [160]

δT NSCLC [107]

GPNA Rat glioma [161]

MAb KM8094
Gastric cancer [56]

Gastric cancer patient-derived xenograft mice [167]

MAb KM4008 Colorectal cancer [166]

MAb KM4012 Colorectal cancer [166]

MAb KM4018 Colorectal cancer [166]

Phenylglycine analogues
Wistar rat [163]

Normal kidney [163]

Sulfonamide/sulfonic acid ester scaffolds-based molecules Normal kidney [162]

V-9302

Normal kidney [83]

Breast cancer [83]

Colorectal cancer [83]

Lung cancer [83]

LAT1

BCH

Bladder cancer [179]

Breast cancer [180]

Cervical cancer [86]

Cholangiocarcinoma [144]

Endometrial cancer [181]

Esophageal cancer [169]

Glioma [87]

Head and neck [182]

Melanoma [183]

NSCLC [95]

Osteosarcoma [86]

Ovarian cancer [58]

Prostate cancer [184,185]

Rat glioma [86]

δT NSCLC [107]

GPNA

Brain glioma [168]

Breast cancer [168]

Cervical cancer [168]

Hepatocellular carcinoma [168]

NSCLC [168]

JHP203

Colorectal cancer [173,174]

Gastric cancer [173]

Head and neck [172]

Leukemia [171]

Osteosarcoma [170]

SKN103
Cervical cancer [176]

NSCLC [176]

Pancreatic cancer [176]

δT: delta-tocotrienol, ASCT2: alanine, serine, cysteine transporter 2, BCH: 2-aminobicyclo[2,2,1]-heptane-2-carboxylic acid, GPNA: L-γ-
glutamyl-p-nitroanilide, LAT-1: L-type amino acid transporter 1, MAb: monoclonal antibody, NSCLC: non-small cell lung cancer.
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3.4. LAT1 in Cancer Diagnosis and Drug Delivery

The potential of LAT1 for enhanced delivery of nanoparticles into the cancer cells
for diagnostic and therapeutic purposes has been previously addressed [157,186,187].
Phenylalanine-coupled solid lipid nanoparticles (SLN) loaded with doxorubicin, a chemother-
apy drug, have been shown to target LAT1 in the blood-brain barrier, as well as in brain cancer
cells, where it is highly expressed, significantly enhancing the delivery of that drug and its
anti-cancer activity [188]. The potential of this transporter as a nanoparticle target, either
directed for chemotherapy or photothermal therapy via multi-branched gold nanoparticles,
has also been reported for breast cancer treatment [189,190]. Furthermore, the uptake of
liposomes modified with a LAT1-targeting polymer with thermoresponsive properties has
also been enhanced in HeLa cells, suggesting the usefulness of this transporter as a target
for drug delivery [191].

Interestingly, LAT1 has also the potential to be useful in cancer diagnosis due to
its ability to transport radio-labeled (18F- or 11C-) amino acid analogues that function
as positron emission tomography (PET) probes, allowing their visualization inside the
body [158]. 2-18F-fluoro-2-deoxy-D-glucose ([18F]FDG) was one of the most commonly
used PET probes, based on the fact that tumor cells consume high amounts of glucose,
which led to false-positive results, especially in organs with higher uptake of glucose,
like the brain [158]. To overcome this drawback, novel probes, including the amino
acid analogues L-4-borono-2-18F-fluorophenylalanine (18F-FBPA) [192], (S)-2-amino-3-[3-(2-
18F-fluoroethoxy)-4-iodophenyl]-2-methylpropanoic acid (18F-FIMP) [193] and 2-[18F]-2-
fluoroethyl-L-phenylalanine (2-[18F]FELP), attracted attention [194].

4. Conclusions

The importance of amino acid transporters in cancer has been explored in the last
two decades. However, there is a limited number of studies supporting the involvement
of ASCT2 and LAT1 in tumor development for each cancer model. These transporters
have been associated with a variety of hallmarks of cancer, such as resisting cell death,
sustaining proliferative signaling, activating invasion and metastasis, inducing angiogen-
esis, avoiding immune destruction and dysregulating cellular energetics. Moreover, the
clinical significance of these transporters has been explored in a variety of cancers. Due
to their usefulness for cancer therapy and/or diagnosis, as well as their association with
chemotherapy response, efforts should be undertaken to develop and test inhibitors that
can be evaluated in clinical trials, such as the LAT1 inhibitor JHP203, hopefully enabling
the improvement of cancer prognosis.
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Abbreviations

4E-BP1 Eukaryotic translation initiation factor 4E-binding protein 1
5-FU Fluorouracil
α-KG α-Ketoglutarate
δT δ-Tocotrienol
ASCT2 Alanine, serine, cysteine transporter 2
ATF4 Activating transcription factor 4
BAK BCL-2 antagonist/killer
BAX BCL-2-associated X protein
BBB Blood-brain barrier
BCH 2-Aminobicyclo [2,2,1]heptane-2-carboxylic acid
BCL-2 B-cell lymphoma 2
CDK6 Cyclin-dependent protein kinase 6
CREB Cyclic AMP response element binding protein
CRKL CRK-like
CTL Cytotoxic T lymphocytes
DNMT Deoxyribonucleic acid methyltransferase
E2F3 E2F transcription factor 3
ECM Extracellular matrix
EGFR Epidermal growth factor receptor
ER Endoplasmic reticulum
GPNA L-γ-glutamyl-p-nitroanilide
GSE1 Genetic suppressor element 1
GSH Glutathione
HAT Heterodimeric amino acid transporter
IL Interleukin
IL-R Interleukin receptor
LAPTM4b Lysosomal-associated transmembrane protein 4b
LAT1 L-type amino acid transporter 1
MAb Monoclonal antibody
MeCP2 Methyl-cpg-binding protein 2
miR Micro ribonucleic acid
MMP Matrix metallopeptidase
mTORC Mammalian target of rapamycin complex
NK Natural killer
NSCLC Non-small cell lung cancer
OS Overall survival
PET Positron emission tomography
PI-3K Phosphoinositide 3-kinase
Rb Retinoblastoma protein
ROS Reactive oxygen species
S6K1 Ribosomal protein S6 kinase beta-1
shRNA Short hairpin ribonucleic acid
siRNA Small interfering ribonucleic acid
SLC Solute carrier family
SLC1A5 Solute carrier family A1 member 5
SLC7A5 Solute carrier family A7 member 5
SLN Solid lipid nanoparticles
SNAT Sodium-coupled amino acid transporter
STAT Signal transducer and activator of transcription
TCA Tricarboxylic acid
TCR T-cell receptor
TKI Tyrosine kinase inhibitor
TM Transmembrane segment
TNF Tumor necrosis factor
TPT Topotecan
VEGF Vascular endothelial growth factor
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