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Abstract

Background: The ray floret shapes referred to as petal types on the chrysanthemum (Chrysanthemum x morifolium
Ramat.) capitulum is extremely abundant, which is one of the most important ornamental traits of chrysanthemum.
However, the regulatory mechanisms of different ray floret shapes are still unknown. C. vestitum is a major origin
species of cultivated chrysanthemum and has flat, spoon, and tubular type of ray florets which are the three basic
petal types of chrysanthemum. Therefore, it is an ideal model material for studying ray floret morphogenesis in
chrysanthemum. Here, using morphological, gene expression and transcriptomic analyses of different ray floret
types of C. vestitum, we explored the developmental processes and underlying regulatory networks of ray florets.

Results: The formation of the flat type was due to stagnation of its dorsal petal primordium, while the petal
primordium of the tubular type had an intact ring shape. Morphological differences between the two ray floret
types occurred during the initial stage with vigorous cell division. Analysis of genes related to flower development
showed that CYCLOIDEA genes, including CYC2b, CYC2d, CY(2e, and CYC2f, were differentially expressed in different
ray floret types, while the transcriptional levels of others, such as MADS-box genes, were not significantly different.
Hormone-related genes, including SMALL AUXIN UPREGULATED RNA (SAUR), GRETCHEN HAGEN3 (GH3), GIBBERELLIN 2-
BETA-DIOXYGENASE 1 (GA20XT1) and APETALA2/ETHYLENE RESPONSIVE FACTOR (AP2/ERF), were identified from 1532
differentially expressed genes (DEGS) in pairwise comparisons among the flat, spoon, and tubular types, with
significantly higher expression in the tubular type than that in the flat type and potential involvement in the
morphogenesis of different ray floret types.
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morphological variation of ray floret of chrysanthemum.

Conclusions: Our findings, together with the gene interactional relationships reported for Arabidopsis thaliana,
suggest that hormone-related genes are highly expressed in the tubular type, promoting petal cell division and
leading to the formation of a complete ring of the petal primordium. These results provide novel insights into the
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Background

Colorful and multiform petals are usually the most
attractive parts of higher plants. The abundant shape of
petals is the breeding goal of many horticulturalists to
enhance the ornamental value of plants. Chrysanthe-
mum (Chrysanthemum x morifolium Ramat.), a valuable
ornamental and commercial crop, has a typical radiate
capitulum composed of central disc florets and periph-
eral ray florets and regarded as a pseudanthium [1-3].
Disc florets with an actinomorphic corolla tube are
bisexual and fertile, while ray florets are unisexual with
various shapes of petals and are usually divided into
three basic types including flat, spoon and tubular type
according to the corolla tube merged degree (CTMD)
which is a morphological index to aid in defining petal
type [4]. The diversity of the chrysanthemum capitulum
is determined by the relative number and position of
disc and ray florets and the petal type of ray florets [5].

A large number of molecular genetics studies have
revealed the mechanisms regulating the development of
disc florets and ray florets in Asteraceae. Floral organ
identity is conferred on developing primordia by the
well-characterized ABCE genes, which has been widely
confirmed in model plants [6-8]. For Asteraceae, the
ABCE genes also regulated the development of the capit-
ulum [8-10]. In Gerbera hybrida, SEPALLATA-like MADS
box genes, GERBERA REGULATOR of CAPITULUM DEVE
LOPMENT (GRCDs), controlled determinacy of the inflores-
cence meristem [11, 12], and suppression of GERBERA
GLOBOSA-LIKEI (GGLO1), GERBERA DEFICIENS-LIKE1
(GDEFI) and GDEF?2 resulted in retrogressive trans florets
[13]. In addition, the relative positions of distinct florets were
mainly regulated by an endogenous auxin gradient, the
disruption of which led to homeotic conversions of florets
and phyllaries in the capitulum [14]. However, the molecular
basis of various ray florets, another determinant of the diver-
sity of the capitulum, remains largely unexplored.

The visual difference of three basic ray floret types is the
petal symmetry. The flat and spoon types are bilaterally
symmetric and tubular types that are approximately radi-
ally symmetric. The genetic control of flower symmetry
has been deduced in studies of Antirrhinum majus, mainly
involving CYC and its paralog gene DICHOTOMA (DICH)
[15, 16]. In Asteraceae plants, expression level changes or
mutations of CYC2s significantly affected the morphology

of ray florets [17-20]. Because of transposon insertion
of HaCYC2c in Helianthus annuus, the originally
zygomorphic flat type of ray floret became the actino-
morphic tubular type [21], while overexpression of
RAY2 (CYC2 homologous gene) in Senecio vulgaris
resulted in the formation of tubular type [22]. Studies
of C. lavandulifolium, another ancestral diploid wild
species of cultivated chrysanthemum [23], revealed
that overexpression of CYC2c made the petal of ray
floret longer than wild type [24], but ectopic expression of
CYC2d hindered the growth of ray floret petals [25]. Previ-
ous studies have shown that the functions of CYC2 genes
in ray florets of Asteraceae plants were quite different,
which could not explain the reason for the formation of
different ray floret types.

The growth process of petals in higher plants mainly
involves three stages: @ petal primordium initiation; @
petal cell proliferation in the early stage; and ® petal cell
expansion in the late stage [26, 27]. Auxin has been
shown to directly signal the initiation of petal primordia,
and mutations in genes related to auxin biosynthesis,
transport, and response all dramatically affect petal for-
mation [28, 29]. The morphological difference in petals
may appear in the early stage of vigorous cell division or
in the late stage, when cell expansion predominates over
cell division [30]. The proliferation and expansion of
petal cells are significantly affected by plant hormones.
In Arabidopsis, AP2/ERF regulated by auxin-related
genes [31-33] promoted cell proliferation in the early
phase of petal growth [34, 35]. In addition, plant hormones,
including auxin, cytokinin (CTK), gibberellin (GA), abscisic
acid (ABA), and brassinolide (BR), also affected petal cell
expansion of ray florets in Asteraceae [36—38]. In gerbera,
GhWIP2, a WIP zinc finger protein, acted as a transcrip-
tional repressor to suppress cell expansion and affect the
final morphology of ray florets by regulating the levels of
GA, ABA, and auxin [38]. For chrysanthemum, however,
the stage in which the morphological difference in different
ray florets appears and the genes involved in regulating
such morphological differences remain unknown.

An extremely rich ray floret shape is a determinant of
various chrysanthemum capitulum morphologies. Simul-
taneously, ray floret shape is an important basis for
chrysanthemum cultivar classification [39, 40]. However,
the mechanism underlying the formation of different ray
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floret types is still unclear, and there is a lack of
morphological observation and molecular biological
exploration. It is difficult to explore these mechanisms
because of the extremely abundant morphological vari-
ation of ray florets and excessively complex genetic
background in chrysanthemum. As an ancestral wild
species of chrysanthemum [41], C. vestitum is distrib-
uted in the high mountain region of central China and
has basic ray floret shapes of the flat, spoon and tubular
type [42, 43], so it is considered as an important model
for studying ray floret morphogenesis. In the current
study, phenotypic observation, gene expression analysis
and transcriptome sequencing were conducted to ex-
plore the morphological nature of ray floret and excavate
key genes regulating the ray floret types of C. vestitum.
Our research not only provides new insights into the
development of different ray floret types but also lays
the theoretical foundation for directional breeding of
flower type in chrysanthemum.

Results

Phenotypic observation of different types of capitula and

ray florets

Various plant lines of C. vestitum with different ray
floret types were collected. Among these plant lines, the
ray florets of CVW are all flat type (Fig. la), those of
CVT are all tubular type (Fig. 1b), and CVZ has three
ray floret shapes including flat, spoon and tubular type
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(Fig. 1c). To determine the key period of phenotypic dif-
ferences in different types of ray florets, morphological
observation was performed of capitula and ray florets of
CVW and CVT using paraffin sections and scanning
electron microscopy (SEM). Capitulum morphogenesis
was divided into ten stages (Fig. 2) based on landmarks
(Table 1). When the capitulum had developed to stage 5
(Fig. 2el, €2, o1, 02), ray floret primordia (RFP) initiated
between the bracts and the outermost disc floret primor-
dia (DFP). RFP appeared after one or two rows of DFP
formation at stage 4 (Fig. 2d1, d2, nl1, n2), which revealed
that the floret events on the C. vestitum capitulum took
place in a non-acropetal or non-centripetal sequence.
Comparing the dynamic developmental processes of
CVW (Fig. 2a) and CVT (Fig. 2b), we found no difference
in the initial time and location between different ray floret
types, and the overall developmental processes of CVW
and CVT capitula were basically the same.

On the basis of determining the developmental
process of the CVW and CVT capitulum, the different
types of ray florets morphogenesis were further ob-
served. There was no significant difference in phenotype
between the ray florets of CVW and CVT from stage 6
to stage 8 (Fig. 3al-cl, a2-c2). The initiation of ray floret
development was the oval or nearly oval RFP formation,
and then the center of RFP sagged inward to present a
cup-like structure at stage 7 (Fig. 3bl, b2). At stage 8
(Fig. 3cl, c2), two petal primordium developed on both

-

Fig. 1 Characterization of three Chrysanthemum vestitum strains. A The five different opening stages of the CVW capitula (a1) and ray florets (a2).
B The five different opening stages of the CVT capitula (b1) and ray florets (b2). C The last opening stage of the CVW capitulum (c1), ray florets
and disc floret (c2). C: capitulum, R: ray floret, F: flat type, S: spoon type, T: tubular type, D: disc floret. Scale bar=0.5cm
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Stage 9 Stage 10

Stage 6 Stage 7 Stagé 8 Stage 9 Stage 10

Fig. 2 The developmental process of capitulum morphogenesis in C. vestitum. A The different developmental stages of the CVW capitulum. B
The different developmental stages of the CVT capitulum. a1-t1 The capitula showed with paraffin section under optical microscope, scale bar =
500 um at stage 1-10. a2-t2 The capitula under scanning electron microscope, scale bar =200 um at stage 1-7 and scale bar =500 um at stage
8-10. SAM: shoot apical meristem, IM: inflorescence shoot apical meristem, YL: young leaf, BP: bracts primordia, DFP: disc floret primordia, RFP: ray
floret primordia, Br: bracts, PPD: petal primordia of disc floret, PPR: petal primordia of ray floret, DF: disc floret, RF: ray floret, Pe: petal
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Table 1 A schedule for capitulum morphogenesis and development stages of C. vestitum

Stage no. Stage name Landmarks of morphological

Stage 1 Vegetative period SAM keeps the conical shape and is wrapped tightly by young leaves

Stage 2 Apical meristem enlargement stage Apical meristem grows and expands, showing hemispherical shape
and developing into IM

Stage 3 Bract formation stage Bract primordia start to from at the basal part of IM

Stage 4 Disc floret primordia formation early stage Disc floret primordia showing as small spherical protrusions initiate at
the lower part of IM

Stage 5 Ray floret primordia formation early stage Ray floret primordia showing as approximate elliptical protrusions initiate
between the bract and the outermost disc floret primordia

Stage 6 Floret primordia formation middle stage Disc floret primordia continue to generate in centripetal differentiated
pattern

Stage 7 Floret primordia formation end stage Floret primordia cover the entire dome of capitulum

Stage 8 Petal formation early stage The petal primordia of florets begin to form

Stage 9 Petal formation middle stage Disc floret petals have basically formed, and ray floret petals continue to
develop

Stage 10 Petal formation end stage Disc floret petals are mature and ray floret petals continue to elongate

sides of the cup-shaped structure and gradually grew at
stage 9 (Fig. 3d1, d2). The differences between CVW
and CVT ray floret morphology were already present at
stage 10 (Fig. 3el, e2). During stage 9 to stage 10 (Fig. 3c,
d), petal cell division was vigorous, and the growth of
the CVW ray floret dorsal petal stagnated, while the ven-
tral petal quickly elongated and wrapped from both sides
to the dorsal. Eventually a fissure presented on the dor-
sal, resulting in formation of flat ray floret (Fig. 3c). The
petals on the ventral and dorsal of CVT grew normally,
eventually forming the tubular type (Fig. 3d).

Based on the observations of the adaxial and abaxial
epidermal cells at the center of the basal, middle and top
regions of CVW and CVT ray floret petals (Fig. 4a, b) at
R1-R5 stage, there was no significant difference between
the adaxial and abaxial epidermal cells in terms of
morphology (Fig. 4c, d). The number of adaxial epider-
mal cells in the top, middle, and basal parts of ray floret
petals at R1 stage in CVT was observably larger than in
CVW at the same magnification. As the capitulum grad-
ually opened, the gap in the number of adaxial epidermal
cells between the two narrowed (Fig. 4e), while for the
abaxial epidermal cells, there was only a small gap be-
tween the number of CVW and CVT in the top, middle,
and basal parts at R1-R5 stage (Fig. 4f). The results re-
vealed a major difference in the number of petal epider-
mal cells between flat and tubular ray floret, and the
number of epidermal cells in the tubular type was
significantly higher than the flat type.

Expression pattern of flower development related-genes
in different ray floret types

The expression pattern of genes related to flower develop-
ment, including MADS-box conferring floral organ identity,

TEOSINTE BRANCHED/CYCLOIDEA/PCF (TCP) affecting
flower symmetry, NAM/ATAF/CUC (NAC) regulating
organ boundaries, WOX effecting petal fusion and AUXIN
RESPONSE FACTOR (ARF), were analyzed in CVW, CVT
and CVZ using semi-quantitative reverse transcriptase-
polymerase chain reaction (RT-PCR). The expression levels
of CYC2b and CYC2e were higher in CVT than CVW.
However, the MAD-box, TCP, WOX and NAC genes
showed no significantly differential expression among the
different samples (Additional file 1: Fig. S1, Additional file 2:
Fig. S2). According to further analysis of the expression pat-
tern of CYC2-like genes in ray floret petals of CVW and
CVT at R1-R5 stage by real-time quantitative polymerase
chain reaction (QRT-PCR) (Fig. 5), we found that CvCYC2b
and CvCYC2e lower expression level in CVW than CVT.
The expression level of CvCYC2a showed no obvious differ-
ence between the flat and tubular types, and the expression
levels of CvCYC2c were slightly different in the two types.
CvCYC2d and CvCYC2f had higher expression levels in
CVT than CVW at R1-R4 stage but a similar expression
level at R5 stage. The above results suggested that CvCYC2b,
CvCYC2d, CvCYC2e, and CvCYC2f were important for ray
floret morphogenesis.

Transcriptome sequencing and functional annotation

Because the flat, spoon and tubular ray florets of CVZ
were on the same capitulum with the same genetic back-
ground, RNA-seq of these samples was carried out to
further investigate the molecular mechanisms underlying
the ray floret phenotype. The use of three biological
repeats resulted in the sequencing of a total of 9 RNA
samples (Additional file 3: Fig. S3, Additional file 4:
Table S1). A total of 70.79 Gb clean data were generated,
and 92.63-97.29% of the clean reads had Phred-like
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(f2-i2), scale bar =200 um. ve: ventral, do: dorsal

Fig. 3 Developmental process of different ray florets types in C. vestitum under scanning electron microscope. A Top views of CVW ray florets at
stage 6-10 (a1-e1), scale bar =100 um. B Top views of CVT ray florets at stage 6-10 (a2-e2), scale bar= 100 um. C Developmental process of
CVW ray florets on the dorsal at stage 9-10 (f1-i1), scale bar =200 um. D Developmental process of CVT ray florets on the dorsal at stage 9-10
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quality scores at the Q30 threshold (percentage of
sequences with sequencing error rates lower than 0.1%).
Following assembly, 100,882 unigenes were recognized,
of which 21,315 were longer than 1kb and the N50 of
the unigenes was 1251bp. A total of 48,662 unigenes
were annotated based on BLASTx (E-value <1 x 10™°)
and HMMER (E-value < 1 x 107 '°) searches against pub-
lic databases including COG, GO, KEGG, KOG, Pfam,
Swiss-Prot, eggNOG and Nr. Based on the annotation
results (Additional file 5: Fig. S4), 26,253 genes (53.95%)

were annotated in KOG, 30,992 genes (63.69%) in Pfam,
29,766 genes (61.17%) in Swiss-Prot, 42,792 genes
(87.94%) in eggNOG and 45,723 genes (93.96%) in Nr.
The functions of the predicted unigenes were classified
using GO, COG, and KEGG assignments. A total of 29,
582 genes (60.79%) were annotated by GO assignments,
being categorized into three major groups (cellular
component, molecular function, and biological process).
In addition, 13,290 genes (27.31%) were clustered into
25 COG categories, and 17,764 genes (36.50%) were
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(See figure on previous page.)

Fig. 4 Observation and statistics of CVW and CVT petal epidermal cells of ray floret . a-b The materials from the center of the top, middle and

basal regions of CYW (a) and CVT (b) ray florets were sampled for morphological characterization of petal epidermal cells. c-d Epidermal cells in
the top, middle and basal regions of CYW and CVT ray floret petals were observed using a scanning electron microscope. Scale bar =100 um. e
Measurement of adaxial epidermal cell numbers in CVW and CVT ray floret petals. f Measurement of abaxial epidermal cell numbers in CYW and

CVT ray floret petals

mapped into 129 KEGG pathways, with the most repre-
sented pathways being “Ribosome (ko03010)” followed
by “Carbon metabolism (ko01200)”.

DEGs identified by pairwise comparison

To identify the important genes associated with ray
floret morphogenesis, a pairwise comparison was con-
ducted among the flat, spoon and tubular types. A total
of 1532 DEGs were detected in the three comparisons,
with 1282 (71 up-regulated and 1211 down-regulated),
976 (186 up-regulated and 781 down-regulated), and
60 (42 up-regulated and 18 down-regulated) DEGs in
T_vs_S, T_vs_F and S_vs_F, respectively (Fig. 6a, b).
Only 4 DEGs were present in all three comparisons
(Additional file 6: Table S2). Furthermore, the overlap-
ping number of DEGs detected from T_vs_S and T_vs_
F was 719, from T_vs F and S_vs_F was 37 and from T_
vs_S and S_vs_F was 13 (Additional file 6: Table S2), which
might contain important factors affecting the shape of ray

florets. To classify the functions of DEGs in pairwise
comparisons, they were further evaluated using GO and
KEGG. The GO enrichment of DEGs presented a simi-
lar pattern compared with all genes (Additional file 7:
Fig. S5A-C). The most enriched pathway in DEGs of T_
vs_S and T_vs_F was “phenylpropanoid biosynthesis
(ko00940)” (Additional file 7: Fig. S5D-F).

Transcription factors (TFs) play important roles in
the regulation of flower organ morphogenesis. There
were 39 TFs in the overlapping DEGs of T_vs_S and
T_vs_F, mainly including WRKY, NAC, ARF, AP2/
ERF, basic helix-loop-helix (bHLH). Only 2 genes
were predicted to encode transcription factors in the
overlapping DEGs of T_vs_F and S_vs_F, both of
which were bHLH. The 41 genes encoding transcrip-
tion factors were differentially expressed in different
types of ray florets, most of which were expressed at
the highest levels in the tubular type and at lower
levels in the flat type (Fig. 7a).
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Fig. 5 Expression analysis of CYC2-like genes in ray floret petals of CYW and CVT. R1-R5 indicated the five opening stages of ray floret
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Cluster analysis of DEGs

The overall expression pattern of 1532 DEGs are shown
on the clustering heatmap (Fig. 8a), and all the DEGs
were classified into six distinct expression patterns with
K-means cluster analysis (Fig. 8b). Cluster 1 (495 DEGs),

cluster 2 (46 DEGs), and cluster 4 (251 DEGs) had simi-
lar expression patterns, with high expression levels in
the tubular type and comparable levels in the spoon and
flat type. The expression pattern of cluster 6 (130 DEGs)
was lower in the tubular and spoon types than the flat
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type, which was opposite to cluster 2. Through K-means
cluster analysis, DEGs encoding TFs were concentrated
in cluster 2, cluster 4, and cluster 6, and a total of 22
TFs were finally detected (Fig. 7b).

DEGs involved in ray floret morphogenesis

To further determine the genes involved in regulating
the morphology of ray florets, 45 differentially expressed
TFs detected through pairwise comparison and K-means
cluster analysis were filtered to obtain candidate TFs
with a ten-fold or more difference in fragments per
kilobase of transcript per million mapped reads (FPKM)
(Additional file 8: Table S3), including six AP2/ERFs
(PTI5, c55396.graph_c0; ERF098, c66167.graph_c0; ER
F5, ¢70056.graph_c0; ERF13, c70872.graph_c0; ERFIB,
€72903.graph_c0; WRII, c80498.graph_c0), two MYBs (WER,
c64713.graph_c0; MYBS, c66377.graph_c0), three WRKYs
(WRKY1, c67151.graph_c0; WRKYS5S, c¢71617.graph_c0; W
RKY2, c73591.graph_cl), three bHLH genes (PHLH75-1,

¢67890.graph_c0; bHLH75-2, c64947.graph_c0; bHLHIS,
€70206.graph_c0), one homolog of NAC (NAC83, c693
74.graph_c0) and one HEAT STRESS TRANSCRIPTION
FACTOR gene (HSFB3, ¢71989.graph_cl).

Furthermore, the division and expansion of plant petal
cells were regulated by many genes, the expression levels
of which were mostly affected by plant hormones, so
further analysis of DEGs related to plant hormones was
performed (Additional file 9: Table S4). The auxin response
genes SAUR (c68047.graph_c0) and GH3 (c68304.graph_c0
and ¢80649.graph_c1) were up-regulated in the tubular type
compared with the spoon or flat type. In addition, AP2/ERF
(c77988.graph_c0, ¢76110.graph_c0, c¢65396.graph_c0, c769
02.graph_c0, c70056.graph_c0, c70872.graph_c0, c80498.gr
aph_c0, c66167.graph_c0 and c72903.graph_c0) and GA
20X1 (c66798.graph_c0) also displayed the highest expres-
sion levels in the tubular type and relatively low expression
levels in the spoon and flat types, and PYRABACTIN-like 4
(PYL4, c70076.graph_c0) and BRASSINOSTEROID INSENS
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ITIVEI-ASSOCIATED RECEPTOR KINASE 1 (BAK1, c703
97.graph_c0) showed the lowest expression levels in the

spoon type.

gRT-PCR validation of DEGs related to ray floret
morphogenesis

To identify key genes affecting ray floret types, 15 tran-
scripts were selected as representatives of DEGs and
analyzed in tubular, spoon and flat ray florets of CVZ
(Fig. 1c) using qRT-PCR (Additional file 10: Fig. S6). To
further investigate the involvement of these genes in ray
floret morphogenesis, qRT-PCR was performed in ray
floret petals at R1-R5 stage of CVW and CVT (Fig. 1a,
b). ERF4 (c65396.graph_c0), the expression level of
which gradually increased with the gradual development
of the ray florets, was expressed at high levels in CVT
compared with CVW. Four genes, including WRII
(c80498.graph_c0), RAP2-3 (c77988.graph_c0), ERF098
(c66167.graph_c0), and ERF5 (c70056.graph_c0), showed
similar uniform expression patterns, which the expres-
sion levels of these genes all showed a tendency to in-
crease and then decrease during the five opening stages
and higher enrichment in CVT (Fig. 9). Moreover,
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SAUR71 (c68047.graph_c0), GH3.5 (c68304.graph_c0)
and GH3 (c80649.graph_c1) had higher expression levels
in ray floret petals of CVT than CVW (Fig. 10). Add-
itionally, GA20X1(c66798.graph_c0) also showed a high
expression in CVT ray floret petals. The above results
further indicated that these genes were involved in the
morphogenesis of ray florets and regulated the morpho-
logical differences of the tubular, spoon and flat types.

Discussion

Morphological analysis reveals the development of
different types of ray florets

The developmental process of the flat type of ray floret
in C. vestitum starts with the petal primordium initiation
on both sides of the cup-shaped ray floret primordium
in a bilaterally symmetric manner, after which the ven-
tral petal primordia grows rapidly while the development
of dorsal stagnates, and eventually, the ray floret exhibits
a gap on the dorsal (Fig. 3a, ¢). The developmental
processes of ray florets in H. annuus [44], Anacyclus clava-
tus [1] and C. lavandulifolium [45] are similar to C. vesti-
tum. In addition, another type of ray floret development
has been observed in G. hybrida [9, 44] and S. vulgaris
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[46]. Based on the cup-shaped structure, five petal primor-
dia form and show a radiant symmetry. Subsequently,
three ventral petal primordia fuse and gradually elongate
and grow further, whereas the two dorsal petals remain un-
fused and stop growing. The morphological differences in
ray florets may appear at the early stage of petal formation,
that is, during the period of vigorous cell division, or in the
late stage of petal growth when cell expansion occurs more
than cell division [30]. Ding et al. [47] described a chrysan-
themum cultivar with tubular ray florets with hooked ends,
while those of its bud sport mutant were tubular with
straight ends. This morphological difference in ray florets
was discernible during a late stage of petal development,
while in our study, morphological differences of C. vesti-
tum ray florets appeared early in petal development.

Numerous genes are involved in morphogenesis of ray
florets

MADS-box genes determine the identity of floral organs
[8, 13, 48, 49]. In the present study, the results obtained
by expression analysis of some MADS-box (Additional file 1:
Fig. S1) and the search for DEGs in the transcriptome re-
vealed no genes with significantly different expression levels
among tubular, spoon and flat ray florets. CYC2-like genes
regulate petal symmetry of ray floret, and the expression
levels of CvCYC2b, CvCYC2d, CvCYC2e and CvCYC2f
were significantly higher in the tubular type than the flat
type (Fig. 5). Overexpression in S. vulgaris of RAY2, a
homologous gene of CYC2e, enables its ray florets to be
transformed from the flat to the tubular type [14, 22]. Thus,
we speculate that the differential expression of CYC2-like
genes in C. vestitum could promote the change from the
flat to the tubular type.

Plant hormone-related DEGs regulate morphological
differences in ray florets

Plant hormones are indispensable in the process of plant
growth and development, and they have extremely im-
portant effects on the growth of petals. In this work, the
auxin response-related genes SAUR (c68047.graph_c0)
and GH3 (c68304.graph_c0, c80649.graph_c1) had the
highest expression levels in tubular ray floret petals of
CVZ and relatively low expression levels in the spoon
and flat types of CVZ (Additional file 10: Fig. S6). The
expression levels in ray floret petals were also signifi-
cantly higher in CVT than CVW (Fig. 10), indicating
their critical role in regulating the morphological differ-
ences in ray florets. The DR5 reporter of auxin function
is expressed in the Arabidopsis floral meristem (FM)
peripheral zone where floral organs will arise [50, 51],
and initiation of the petal primordium depends on the
activity of auxin [52]. The disruption of auxin polar
transport in pin-formedl (pinl) and pinoid (pid) mutants
can cause some floral organs to fail to initiate or the
number and location of floral organs to be abnormal
[53, 54]. Moreover, mutations of auxin biosynthesis and
response-related genes can also significantly affect the
number and formation of petals [28, 55]. Upon initiation
of the petal primordia, auxin begins to accumulate in
the developing petals and induces a series of genes regu-
lating petal growth to function.

The morphological differences in the ray florets of C.
vestitum appeared in the early stage of petal develop-
ment (Fig. 3), when the division of petal cells was
vigorous. According to statistical observations of the
petal epidermal cells of ray florets with different shapes,
the number of adaxial epidermal cells in tubular ray
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florets of CVT was significantly higher than the flat type
of CVW (Fig. 4c, e). In addition, the expression levels of
AP2/ERF, which are closely related to cell division, were
much higher in the tubular type of CVT than the flat
type of CVW (Fig. 9). It has been reported that AUXIN
REGULATED GENE INVOLVED IN ORGAN GROWTH
(ARGOS) acts upstream of AINTEGUMENTA (ANT)
[31, 32], which is a subfamily member of AP2/ERF. These
subfamilies have similar functions in promoting cell div-
ision [34], some of which are involved in regulating petal
cell proliferation [35]. In addition, the auxin response
genes MONOPTEROS (MP)/ARF5 activate AINTEGU-
MENTA-LIKE 6 (AIL6) [33], which is closely related to
and functions redundantly with ANT to regulate petal de-
velopment [56]. It is speculated that at the early stage of
petal formation, petal cell division of tubular ray florets is
more vigorous than the flat type, which is regulated by
AP2/ERF and results in the formation of ring shape petal
primordia and the tubular type. However, because of the
low expression of AP2/ERF in the flat type, petal cell div-
ision ability is weak, and growth of dorsal petal primordia
is stagnant, eventually forming the flat type.

Conclusion

Based on morphological observation and transcriptomic
analysis combined with gene expression analysis, we
found that morphological differences appeared in the
early stage of ray floret development, the division of petal
cells was more vigorous in tubular ray floret than flat type
and the expression levels of CvCYC2h, CvCYC2d,
CvCYC2e, and CvCYC2f involved in floral symmetry and
CvAP2/ERF, CvSAUR71, CvGH3, CvGH3.5, and CvGA20
X1 involved in plant hormones were higher in tubular ray
floret than flat type. Based on the above findings and
previous studies, the mechanism underlying ray floret
morphogenesis is summarized in Fig. 11. We speculated

Page 13 of 16

that up-regulated expression of auxin and gibberellin-
related genes in tubular ray florets might promote the in-
crease in downstream AP2/ERF gene expression, thereby
enhancing cell division ability and promoting the petal
primordium to form an intact ring shape and eventually
develop into a tubular type. Concurrently, CYC2-like genes
are involved in common regulation. Overall, this study
provides direction in identifying the mechanism underlying
the development of different morphological ray florets and
enriches our understanding of ray floret morphogenesis in
chrysanthemum.

Methods

Plant materials and growth conditions

C. vestitum distributed in the central China with a large
population is a major origin hexaploid species (2n = 6x =
54) of cultivated chrysanthemum [41] and can be
collected non-destructively through cuttings for ex-situ
conservation. The cuttings of C. vestitum with different
types of ray florets were collected from their native habi-
tat area and transplanted to the greenhouse [41, 43]. All
experiments were adhered to Regulations of the People’s
Republic of China for Wild Plants Protection.

Three plant lines of C. vestitum, CVW, CVT and CVZ,
were grown in the chrysanthemum germplasm nursery
of the Beijing Forestry University, Beijing, China. Among
these plant lines, the ray florets of CVW are all flat type
(Fig. 1a), those of CVT are all tubular type (Fig. 1b), and
CVZ has three ray floret shapes of the flat, spoon and
tubular type (Fig. 1c). CVW and CVT were used for
morphological observation and gene expression analysis.
The ray floret petals of CVZ were selected for RNA-Seq
analysis, as the flat, spoon and tubular types were on the
same capitulum and had the same genetic background,
which is more conducive to explore genes that effect-
ively regulate the difference in ray florets.

Plant hormone related genes
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Fig. 11 Summary of plant hormone-related and floral symmetry-related gene regulation of different morphological ray florets
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Light microscopy observations

The apical buds of CVW and CVT from the vegetative
growth period to reproductive growth period were fixed
in FAA (50% ethanol, 38% formaldehyde solution, glacial
acetic acid =18, 1, 1). Then, the specimens were dehy-
drated through an ethanol series (50, 70, 85, 95, 100%)
and transferred to a xylene-ethanol series up to 100%
xylene. The specific method used has been described by
Wen et al. [45].

SEM observations

The apical buds of CVW and CVT from the vegetative
growth period to reproductive growth period were col-
lected and placed in 2.5% glutaraldehyde fixative for at
least 12 h. An ethanol series (30, 50, 70, 90, 95, 100%)
was used for material dehydration, followed by an
ethanol-tert-butanol series up to 100% tert-butanol. The
samples were freeze-dried overnight using a lyophilizer
(ES-2030; Tokyo; HITACHI; Japan) and then dissected
and attached onto carbon conductive tabs. The materials
were coated with an ion sputtering apparatus (E-1010;
Tokyo; HITACHI; Japan) and observed by SEM (S-3400
N II; Tokyo; HITACHI; Japan).

Ray florets at the R1-R5 stage of CVW and CVT
(Fig. 1a2, b2) were treated as described above. The
center of the basal, middle and top regions of ray floret
petals were sampled for morphological characterization
of the adaxial and abaxial epidermal cells under a field
of view magnified 800 times with SEM. The cell number
measurement was performed using Image] software
(http://rsb.info.nih.gov/ij/, NIH, MD, USA).

RNA-Seq, functional annotation and data processing
The flat, spoon and tubular ray floret petals at R5 stage
of CVZ (Fig. 1 c2) were sampled to construct nine li-
braries (F1, F2, F3, S1, S2, S3, T1, T2, T3) for RNA-Seq.
Total RNAs were extracted using a Plant RNA Rapid
Extraction Kit (HUAYUEYANG Biotechnology, Beijing,
China) and treated with RNase-free DNasel to digest
DNA. After assessing the purity and integrity of the
RNA with the Agilent 2100 Bioanalyzer and the ABI
StepOnePlus Real-Time PCR System, the constructed
libraries were sequenced on an Illumina HiSeq 2500
sequencing platform (Illumina, San Diego, CA, USA) by
Biomarker Technologies Corporation (Beijing, China).
Connectors of the raw reads and low-quality sequences
were removed to obtain clean reads, which were then
assembled using Trinity [57]. The obtained unigene
sequences were aligned using BLAST (E-value < 10™°) to
the NR, Swiss-Prot, GO, COG, KOG, eggNOG, and
KEGG databases and then annotated.

The reads obtained from sequencing were compared
with the unigene library using Bowtie [58]. Based on the
comparison results combined with RSEM [59], the
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transcript abundance was estimated. The expression
level of unigenes was measured by FPKM [60], and dif-
ferential expression among F, S and T was analyzed with
DESeq2 [61]. DEGs were screened by a false discovery
rate (FDR) <0.01 and fold change (FC) > 2. In addition,
key DEGs were obtained using Venn and cluster
analyses.

RT-PCR analysis

The total RNAs of ray floret petals at the R1-R5 stages
of CVW and CVT (Fig. 1a2, b2) and ray floret petals and
disc floret corolla tubes of CVZ (Fig. 1c2) were extracted
using a Plant RNA Rapid Extraction Kit (HUAY
UEYANG Biotechnology, Beijing, China) and were used
to synthesize cDNA for RT-PCR with the transcription
kit. According to the specific procedure described by
Huang et al. [23] using Actin as a reference gene, the
genes closely related to petal morphogenesis, including
MADS-box, TCP, NAC, ARF, and WOX, were analyzed.
The primer sequences are shown in Additional file 11:
Table S5.

RT-PCR validation

To verify the accuracy of the transcriptome data of genes re-
lated to ray floret morphogenesis, qRT-PCR, prepared using
the SYBR Premix Ex Taq kit (Takara, Japan), was performed
on a CFX96™ real-time system (Bio-Rad Laboratories,
Hercules, CA, USA) using the procedure described by
Huang et al. [23]. The primer information is listed in Add-
itional file 12: Table S6. The relative gene expression was
normalized by comparison to the expression of SAND in C.
vestitum, and the analysis was performed using the 2744<T
method [62]. The data are presented as the mean + SD.
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Additional file 1: Figure S1. Expression analysis of flower development
related genes in different ray floret petals of CYW CVT and CVZ using RT-
PCR. The expression level of actin is used to normalize the mRNA levels
for each sample. R1-R5 indicated the five opening stages of ray floret
petals, F: flat ray floret petal, S: spoon ray floret petal, T: tubular ray floret
petal, D: disc floret corolla tube.

Additional file 2: Figure S2. The original and full-length gel images of
flower development related genes. R1-R5 indicated the five opening
stages of ray floret petals, F: flat ray floret petal, S: spoon ray floret petal,
T: tubular ray floret petal, D: disc floret corolla tube.

Additional file 3: Figure S3. PCA analysis of the 9 samples (T1, T2, T3,
S1, 52, 3, F1, F2, F3). Each group contains three biological replications.

Additional file 4: Table S1. Summary statistics of clean reads in the
transcriptomes of Chrysanthemum vestitum.
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annotation of DEGs in the Venn analysis.
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petal), S (spoon ray floret petal) and F (flat ray floret petal).

Additional file 8 Table S3. The DEGs encoding transcription factors
with a ten-fold or more difference in FPKM.

Additional file 9 Table S4. The DEGs related to plant hormones.

Additional file 10: Figure S6. qRT-PCR analysis of 15 DEGs in T (tubular
ray floret petal), S (spoon ray floret petal) and F (flat ray floret petal) of
vz

Additional file 11: Table S5. Primer sequences used in RT-PCR
experiments.

Additional file 12: Table S6. Primer sequences used in gRT-PCR

experiments.
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