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Machine learning accelerates identification
of lithiated phases
in X-ray images of battery hosts
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Santos et al. (2022) propose a machine learning-based approach to identify various lithiated phases across
lengthscales in X-ray images of battery particles, thus enabling automatic interpretation of such information
in much bigger datasets and creating opportunities to unravel previously inaccessible scientific under-
standing.
Have you ever wondered how physicians

and radiologists read medical X-rays?

Their interpretation of X-ray images largely

relies on having looked at numerous

images of healthy and ailed bodies and

consequently recognizing unusual fea-

tures. Now wonder how exhausting it

would be if someone had to interpret thou-

sands of images simultaneously. Would

they be able to maintain the same level of

accuracy while interpreting each of those

thousand images? In lithium-ion batteries,

there are thousands of particles,1,2 and

our interest is understanding the lithium

distribution in each of these particles.

Scanning transmission X-ray microscopy

(STXM) is one of the X-ray imaging tech-

niques with a spatial resolution of tens of

nanometers and a large enough field of

view to simultaneously capture lithium

distribution in multiple such particles.3

However, such information is difficult to

accurately interpret, especially for mate-

rials exhibiting multiple lithiated phases

(e.g., V2O5), and consequently, the chal-

lenge is to convert the STXM images to

reliable lithiation maps. In the latest study,

Santos et al. (2022)4 propose a machine

learning approach to sift through such

large datasets of V2O5 electrodes and

accurately identify the underlying lithiated

phases.

As shown inFigure 1A, the sameparticle

is imaged at multiple X-ray energies.

These energies are chosen such that the

X-ray transmission changesas theparticle

lithiates. This dataset is further analyzed

using reference spectra of pure uniformly

lithiated phases (Figure 1B) to obtain the
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lithiation map in Figure 1C. The lithiation

map is composed of the underlying distri-

bution of these phases. While such an

analysis may seem straightforward, our

ability to implement it in practice relies

on (1) having accurate spectra of pure

lithiated phases and (2) a deconvolution

technique that can convert the STXM

data to lithiation maps.

Herein, theauthorsmeticulouslyaddress

both these aspects. First, they obtain pure

lithiated phases by chemically lithiating

V2O5 particles in stoichiometric quantities,

so their composition is precisely known.

These particles are subsequently used

to generate the accurate reference

spectra in Figure 1B. The authors use ma-

chine learningalgorithms like singular value

decomposition (SVD) and k-means clus-

tering to create a robust analysis scheme

that deconvolves the STXM data (images

at multiple X-ray energies) to generate

the corresponding lithiation map. The au-

thors further demonstrate the usefulness

of this approach by analyzing different

STXMdatasetsofV2O5particlesatmultiple

lengthscales.

The cleverness of this approach lies in

using the reference spectra to create the

deconvolution scheme. In addition to the

reference spectra being true references

(e.g., notbasedon theoretical assumptions

of the underlying atomistic picture), they

implicitly account for instrumentation non-

linearities with X-ray energies. Unlike con-

volutional neural networks (CNNs) and

other machine learning techniques that

would have just correlated the STXMdata-

set directly to the lithium distribution, the
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approach proposed here deconvolves the

X-ray images using reference spectra and

creates the corresponding lithiation maps.

Hence, it is equally applicable to any

STXM dataset of the same materials with

a different resolution or field of view. As a

result, the authors can apply the same

approach to obtain lithiation maps across

lengthscales ranging from within a single

particle to multiple particles. Additionally,

as the authors showed, the same analysis

is also valid for interpreting X-ray ptychog-

raphy data for lithiation maps at length-

scales smaller than STXM. The authors

also make these datasets and the devel-

oped tools open access for the broader

scientific community.

While the results shown here by the au-

thors refer to ex situ imaging of the battery

particles, one can extend the usefulness

of the proposed approach by selectively

imagingonlya few representativeenergies,

thus effectively enabling operando mea-

surements.2 Yet another extension can be

imaging these particles from different an-

gles to create a 3D tomographic recon-

struction of the lithiation fields in these par-

ticles.5 With parallel advances in X-ray

imaging of electrolyte concentration field,6

we may now be able use a single setup to

map concentration fields in both the en-

ergy-storing particles and the adjoining

ion transporting electrolyte.

Besides such instrumentation advances

allowing us to visualize fields that were

inaccessible just a few years ago,

such schemes enable us to pose impor-

tant scientific questions to build better

batteries. The operation of any battery is
al Laboratory. Published by Elsevier Inc. 1
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Figure 1. Different steps for machine learning-enabled identification of lithiated phases
(A) Representative STXM dataset of a V2O5 particle imaged at different X-ray photon energies.
(B) Reference X-ray spectra of different lithiated V2O5 phases.
(C) The corresponding lithium distribution interpreted from the STXM dataset using reference spectra of pure phases.
The images are reproduced from Santos et al. (2022).4
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microscopically a combination of interac-

tions between multiple fields, such

as species concentrations, mechanical

stresses, and electric potentials. Conse-

quently, understanding the mechanisms

causing spatiotemporal inhomogeneities

and asymmetries is quite important. The

approach of Santos et al.4 and its afore-

mentionedextensionscanhelpunderstand

many such mechanisms. For example,

the coupled effects of lithiation and me-

chanical stress have been described in

many different ways in the literature.4,5,7

Each of these descriptions for lithiation–

mechanics coupling predicts a distinct lith-

iationdynamics for the sameoperation.We

can combine such predictions with the ob-

servations of lithiation fields to characterize

the lithiation–mechanics behavior in the

intercalation material being examined.

This will not only be useful for cathodema-

terials8 like V2O5 but also relevant in next-

generation anodes like silicon and other al-

loying materials. Apart from electrode

manufacturing defects, carbon-binder do-

mains are an intrinsic sourceofgeometrical

inhomogeneity in battery electrodes. Imag-

ing lithiation fields with different carbon-

binder distributions would help to identify

the relevance of their hypothesized contri-

butions.1 Equivalently, one can formulate

an operando study to underpin the role of

grain structure in battery particles9 and

how it can alter lithiation preferences at

the scale of an individual particle. In a

similar spirit, such spatiotemporal informa-

tion about lithiation fields can help eluci-

date the potential field distribution, specif-
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ically in low conductivity materials.5,10 The

electric potential is expected to vary even

within such particles and in turn skew the

intercalation reaction at the particle-elec-

trolyte interface, which in turn causes a

distinct evolution in the particle-scale lithia-

tion field.

Thus, being able to accurately observe

the concentration field in battery parti-

cles at relevant lengthscales opens up

a range of opportunities to explore

previously inaccessible aspects of the

battery operation and accordingly make

systematic improvements to build better

batteries.
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