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Abstract 

Background  The diagnosis and treatment of epilepsy continue to face numerous challenges, highlighting 
the urgent need for the development of rapid, accurate, and non-invasive methods for seizure detection. In recent 
years, advancements in the analysis of electroencephalogram (EEG) signals have garnered widespread attention, 
particularly in the area of seizure recognition.

Methods  A novel hybrid deep learning approach that combines feature fusion for efficient seizure detection 
is proposed in this study. First, the Discrete Wavelet Transform (DWT) is applied to perform a five-level decomposition 
of the raw EEG signals, from which time–frequency and nonlinear features are extracted from the decomposed sub-
bands. To eliminate redundant features, Support Vector Machine-Recursive Feature Elimination (SVM-RFE) is employed 
to select the most distinctive features for fusion. Finally, seizure states are classified using Convolutional Neural 
Network-Bidirectional Long Short-Term Memory (CNN-Bi-LSTM).

Results  The method was rigorously validated on the Bonn and New Delhi datasets. In the binary classification 
tasks, both the D-E group (Bonn dataset) and the Interictal-Ictal group (New Delhi dataset) achieved 100% accuracy, 
100% sensitivity, 100% specificity, 100% precision, and 100% F1-score. In the three-class classification task A-D-E 
on the Bonn dataset, the model performed excellently, achieving 96.19% accuracy, 95.08% sensitivity, 97.34% speci-
ficity, 97.49% precision, and 96.18% F1-score. In addition, the proposed method was further validated on the larger 
and more clinically relevant CHB-MIT dataset, achieving average metrics of 98.43% accuracy, 97.84% sensitivity, 
99.21% specificity, 99.14% precision, and an F1 score of 98.39%. Compared to existing literature, our method out-
performed several recent studies in similar classification tasks, underscoring the effectiveness and advancement 
of the approach presented in this research.

Conclusion  The findings indicate that the proposed method demonstrates a high level of effectiveness in detecting 
seizures, which is a crucial aspect of managing epilepsy. By improving the accuracy of seizure detection, this method 
has the potential to significantly enhance the process of diagnosing and treating individuals affected by epilepsy. This 
advancement could lead to more tailored treatment plans, timely interventions, and ultimately, better quality of life 
for patients.
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Introduction
Epilepsy is a chronic disease characterized by sudden 
abnormal discharges of neurons in the brain, resulting 
in transient brain dysfunction, affecting the physical and 
mental health of nearly 70 million people worldwide [1, 
2]. Seizures can present in various forms, including gen-
eralized seizures, which impact both hemispheres of the 
brain and often result in loss of consciousness and gener-
alized convulsions, and partial (or focal) seizures, which 
initially affect a specific area of the brain and may or may 
not lead to loss of awareness [3, 4]. Despite the availabil-
ity of treatment, many individuals in low- and middle-
income countries face barriers to effective prevention and 
management of epilepsy due to limited medical resources 
and economic constraints [5].

In this context, Electroencephalography (EEG) has 
emerged as a low-cost and highly efficient technique for 
epilepsy EEG identification. EEG records brain activity 
via electrodes on the head, enabling clinicians to diag-
nose diseases based on distinct signals during different 
activities or physiological changes [6]. Initially, the clini-
cal utility of EEG was limited by technical constraints; 
however, advancements in computer technology have 
ushered in a new era of rapid development in EEG signal-
assisted diagnosis [7, 8].

Despite its advantages, EEG presents significant chal-
lenges due to the inherent randomness and complexity 
of brain signal data. This complexity can impede the effi-
ciency of clinical diagnoses and increase the likelihood of 
human error [9, 10]. Further complicating the diagnos-
tic process are the variabilities among patients and the 
impacts of external factors, which can lead to difficul-
ties in accurately diagnosing epilepsy and administering 
effective drug treatments. These challenges highlight the 
necessity for enhanced diagnostic techniques [11].

Recent developments in Artificial Intelligence (AI), 
particularly through machine learning and deep learn-
ing frameworks, offer promising solutions to these chal-
lenges. These technologies can significantly alleviate 
clinicians’ workloads while enhancing diagnostic effi-
ciency and accuracy in detecting epileptic seizures [12, 
13]. Consequently, a growing body of research is being 
dedicated to refining machine learning and deep learn-
ing models for epileptic seizure detection, with methods 
becoming increasingly sophisticated [14–16].

In recent literature, many methods for seizure detec-
tion based on machine learning and deep learning frame-
works have been proposed. These methods involve three 
main steps: signal analysis, feature extraction, and clas-
sification. In the signal analysis process, various signal 
analysis techniques are used to decompose EEG signals, 
such as Discrete Wavelet Transform (DWT) [17], Varia-
tional Mode Decomposition (VMD) [18], Wavelet Packet 

Transform (WPT) [19], Empirical Mode Decomposition 
(EMD) [20], and Short-Time Fourier Transform (STFT) 
[21]. Given the complexity and diversity of EEG signals, 
DWT can localize in both time and frequency domains 
simultaneously; by transforming only a portion of the 
signal, the frequency domain information for that por-
tion can be obtained [16]. Furthermore, DWT can adap-
tively select wavelet bases according to the characteristics 
of the signal, allowing it to better fit different types of 
signals [17]. The next step is to extract multi-domain 
features from the EEG signals. The third step is to distin-
guish between seizure and non-seizure EEG signals.

The motivation behind the proposed method is mul-
tifaceted, as existing approaches face several challenges. 
Firstly, extracting the most representative features from 
EEG signals in epilepsy is a huge challenge due to the 
complex diversity of brain signals [20]. Secondly, non-
epileptic seizure EEG segments may exhibit oscillatory 
and fractal characteristics similar to those of epileptic 
seizure segments [22]. Therefore, extracting the most dis-
criminative features from EEG signals is also a challenge. 
Previous methods [15, 19, 23–27] have failed to fully 
capture the distinct information within seizure record-
ings, leading to inaccurate classification of EEG signals. 
To address these challenges, this paper introduces a 
scheme that combines time–frequency domain features 
with nonlinear features. In this scheme, time–frequency 
domain features and nonlinear features are extracted 
from the subbands after DWT decomposition, and these 
two types of features are fused into a single feature vec-
tor. To select the most discriminative features from the 
extracted feature vector, this paper introduces a feature 
selection strategy that ranks features based on their dis-
criminative power and selects the top-ranked features as 
input for the final classification model. Moreover, accu-
rately distinguishing between epileptic and non-epileptic 
seizure EEG signals is also difficult, as the two categories 
(epileptic and non-epileptic seizures) may overlap in fea-
tures. Therefore, the performance of the classification 
model becomes a key factor for accurate classification. 
Previous literature has demonstrated that Convolutional 
Neural Network (CNN) can effectively extract local fea-
tures, particularly in images and time series data, by cap-
turing essential patterns within signals through multiple 
convolutional and pooling operations, thus enhancing 
classification accuracy. For example, Zhang et  al. [28] 
proposed a lightweight solution that consists of two 
stages. The first stage calculates the Pearson correlation 
coefficient to obtain a correlation matrix, and the second 
stage uses a simple CNN model to classify the correlation 
matrix, achieving excellent results in binary classifica-
tion. Long Short-Term Memory (LSTM) networks excel 
at handling sequence data, capturing time dependencies 
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and long-term memory, which makes them particu-
larly suitable for analyzing the dynamic features of EEG 
signals that change over time. For instance, Tuncer and 
Doğru Bolat [29] extracted instantaneous frequency and 
spectral entropy features from EEG signals, using a Bidi-
rectional Long Short-Term Memory (Bi-LSTM) network 
model for signal classification, achieving excellent binary 
classification accuracy on the Bonn dataset. However, by 
combining CNN with LSTM, it becomes possible to per-
form spatial feature extraction and time-series modeling 
simultaneously, thereby enhancing classification per-
formance for complex signals, leading to more efficient 
detection and recognition of epileptic seizures. There-
fore, in this work, we propose using a hybrid deep learn-
ing model, Convolutional Neural Network-Bidirectional 
Long Short-Term Memory (CNN-Bi-LSTM), for the final 
classification to effectively address the issue of class over-
lap. The proposed method is validated on the Bonn and 
New Delhi datasets. The main contributions of this paper 
are as follows.

First, the time–frequency domain features and nonlin-
ear features of the EEG signals are extracted, and then 
these two sets of features are combined to more compre-
hensively capture the subtle changes and hidden infor-
mation within the EEG signals.

Second, the proposed method introduces a feature 
selection approach based on support vector machines 
and recursive feature elimination, which ranks the dis-
criminative power of the extracted features to select the 
most informative ones.

Thirty, the proposed method was tested not only on the 
Bonn and New Delhi datasets but also underwent fur-
ther validation on the larger, clinically relevant CHB-MIT 
dataset. The multi-dataset validation strategy enhances 
the robustness and clinical applicability of the method.

Finally, this paper explores the application of feature 
fusion combined with a hybrid deep learning model for 
detecting epilepsy seizures, providing researchers and 
clinicians with a new EEG signal classification method.

The paper is organized as follows. Section II states the 
work related to seizure detection. Section III describes 
the dataset used for the experiments, and the algorithms 
for data processing. Section IV shows the experimental 
results. Finally, Section V summarizes the conclusion and 
contributions of this paper.

Related work
In recent years, due to advancements in machine learn-
ing and deep learning technologies, there has been signif-
icant interest in using EEG to detect and classify epileptic 
seizures. The main purpose of this section is to explore 
the notable progress made in the recognition and classifi-
cation of seizures.

Extracting the most suitable and distinctive features 
from EEG signals is a crucial task in seizure detection, 
leading to extensive discussions in the literature on vari-
ous feature extraction methods. Deivasigamani et al. [30] 
extracted time-domain features such as mean and stand-
ard deviation from subbands after decomposing the EEG 
signals. In addition to the simplest time-domain features, 
energy analysis has also been widely applied in EEG sig-
nal analysis. For example, Gao et al. [31] represented the 
power of epileptic EEG signals using power spectral den-
sity energy maps. Nonlinear features are often used for 
classifying EEG signals. Ali et al. [32] analyzed the effec-
tiveness of Distribution entropy, Shannon entropy, Renyi 
entropy, and Lempel–Ziv complexity as classification 
features for seizures in EEG signals. By leveraging the 
advantages of Fuzzy entropy and Distribution entropy, 
Aung and Wongsawat [33] proposed an improved Dis-
tribution entropy for seizure detection, achieving high 
classification accuracy on the Bonn dataset. Building 
on this, several other studies conducted feature fusion. 
Many researchers chose to fuse nonlinear features with 
other types of features. Fathillah et  al. [34] combined 
features such as the Hurst exponent, Kolmogorov com-
plexity, Shannon entropy, and Sample entropy for EEG 
signal analysis by introducing resolution analysis. Male-
kzadeh et al. [35] used the tunable Q-wavelet transform 
to decompose EEG signals, extracting time–frequency 
domain features and nonlinear features (fractal dimen-
sion and entropy), achieving satisfactory results on the 
Bonn dataset.

Traditional machine learning methods such as Sup-
port Vector Machines (SVM), Random Forests (RF), and 
K-nearest Neighbors (KNN) have been widely used for 
seizure detection. Qin et  al. [36] proposed an EEG sig-
nals recognition framework based on improved VMD 
and deep forest. The raw signals were decomposed using 
a modified VMD algorithm, using a weighted minimum 
redundancy maximum correlation criterion to perform 
feature selection, and the EEG signals were classified 
using a deep forest model. Suykens et al. [37] proposed a 
Least Squares-Support Vector Machine (LS-SVM) algo-
rithm based on SVM to classify two-level seizure and 
non-seizure EEGs using the Bonn dataset, and achieved 
excellent results. Altan and Inat [38] analyzed EEG 
recordings from different experiments using empiri-
cal wavelet transform based on feature extraction algo-
rithms, and classified and compared the results using 
Decision Tree, KNN, Multilayer Perceptron, and SVM. 
Zarei and Asl [39] used a five-level DWT and orthogo-
nal matching pursuit technique to extract different coef-
ficients from EEG signals. They then calculated some 
nonlinear features using these coefficients and employed 
a sequential forward feature selection algorithm to 
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automatically select the most discriminative features. 
Finally, they used SVM for classification, achieving an 
average accuracy of 97.78% on the New Delhi dataset.

Selection of appropriate classifiers is a major chal-
lenge in epileptic seizure recognition, and deep learning 
shows greater advantages over machine learning in this 
area [40]. Chen et al. [41] proposed an automatic epilepsy 
EEG signal recognition method based on feature fusion 
and selection, using convolutional neural networks for 
classification, achieving an average binary classification 
accuracy of over 98% on the New Delhi dataset. Molla 
et al. [42] decomposed the EEG signal by DWT, extract-
ing different entropies as well as a set of features used to 
characterize the spiking events, selecting a discriminative 
subset of features from the feature vectors using a Graph 
Eigen Decomposition (GED) based approach, and per-
formed binary classification using Feed-forward Neural 
Network (FfNN) to achieve a classification accuracy of 
99.55%. Bajpai [43] proposed using time–frequency spec-
tra to convert EEG signals into the image domain. The 
spectral images are then applied to CNN to learn robust 
features that aid in the automatic detection of pathologi-
cal and normal EEG signals. Altan et  al. [44] explored 
the efficiency of various CNN architectures and machine 
learning algorithms, notably innovatively using lower-tri-
angular and upper-triangular extreme learning machines 
to optimize the CNN model, achieving excellent results 
on the EEGMMI dataset.

However, there are some drawbacks to using single 
machine learning and deep learning model. Many stud-
ies have begun to try to combine existing learning models 
so that the advantages of different models can be syn-
thesized to improve the accuracy of the overall model. 
Wang et al. [45] proposed a novel deep learning method 
that combines a CNN with an LSTM network, creating 
a hybrid CNN-LSTM model capable of automatically 
acquiring knowledge with memory function and feature 
extraction capability. The model demonstrates outstand-
ing performance in the Bonn binary classification task. 
Hassan et  al. [46] proposed a combination of CNN and 
machine learning classifiers to efficiently learn features 
and process complex EEG waveforms with 98% accuracy 
on the CHB-MIT dataset. Subasi et al. [47] developed a 
hybrid model with Genetic Algorithm (GA) and Particle 
Swarm Optimization (PSO) for epileptic seizure detec-
tion, using both GA and PSO based methods to optimize 
the SVM parameters, with a binary classification accu-
racy of up to 99.38% for the Bonn dataset.

Material and method
Dataset description
As shown in Fig.  1, the Bonn dataset contains five sub-
sets (A, B, C, D, and E), with each subset consisting of 
100 EEG data segments. Each segment lasts for 23.6 s and 
contains 4097 data points. The EEG signal has a resolu-
tion of 12 bits and a sampling frequency of 173.61  Hz. 

Fig. 1  Visualization of signals in the Bonn dataset
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All signals have been manually filtered to remove possi-
ble interference, retaining useful signals in the range of 
0.53  Hz to 40  Hz. Each subset in the figure represents 
EEG data from different sources, described as follows:

(1)	 Subset A and Subset B (control group): EEG signals 
from five healthy individuals. During data collec-
tion, electrodes were placed on the scalp to record 
the brain activity of subjects with their eyes open 
and closed. This data serves as a control group to 
help study the brain activity patterns associated 
with healthy states. Subset A signals appear rela-
tively stable, while Subset B signals show increased 
volatility, displaying more complex patterns.

(2)	 Subset C: EEG signals from the hippocampal 
region of epilepsy patients. Data collection took 
place in the hippocampal area on the side oppo-
site the lesion. This data reflects the brain activity 
of epilepsy patients, particularly signals captured 
from the area opposite the lesion, to aid in the 
study of the origin and propagation patterns of sei-
zures. Subset C signals exhibit larger fluctuations, 
which are more intense compared to Subset A and 
Subset B.

(3)	 Subset D and Subset E: EEG signals from the lesion 
area of epilepsy patients. Data were collected from 
the brain lesion area of epilepsy patients to observe 

features and abnormal activities related to seizure 
occurrences. Although Subset D signals fluctuate 
within a smaller amplitude, they still demonstrate 
significant volatility. In contrast, while Subset E 
fluctuates within a larger amplitude, the overall sig-
nal appears much more stable.

The New Delhi dataset was collected from exemplary 
segmented EEG time series recordings of ten epileptic 
patients from Neurology and Sleep Center, Hauz Khas, 
New Delhi. Specific details are shown in Fig.  2. The 
data was acquired using Grass Telefactor Comet AS40 
amplification system at a sampling rate of 200 Hz. Dur-
ing acquisition, gold-plated scalp EEG electrodes were 
placed according to a 10–20 electrode placement sys-
tem. Signals were filtered between 0.5 Hz and 70 Hz and 
then categorized into pre-ictal, interictal, and ictal. Each 
downloadable folder contains 50 MAT files of EEG time 
series signals. Each MAT file consists of 1024 samples of 
one EEG time series data with a duration of 5.12 s.

The CHB-MIT dataset was developed by the Mas-
sachusetts Institute of Technology (MIT) and Boston 
Children’s Hospital (CHB). It is publicly available and 
contains scalp EEG recordings from multiple patients, 
widely used in epilepsy research. It employs a bipolar 
lead method based on the international 10–20 system, 
capturing EEG signals from 22 electrodes at a sampling 

Fig. 2  Visualization of signals in the New Delhi dataset
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rate of 256 Hz and a precision of 16 bits. Table 1 provides 
detailed information about the CHB-MIT dataset, which 
typically includes 23 EEG signal channels, with some 
cases having 18 channels. The data from CHB01 and 
CHB21 were collected from the same patient, with a gap 
of 1.5 years between them. Each case has approximately 
9 to 42 continuous EEG files, most of which contain one 
hour of EEG recordings. The EEG files in this dataset 
include 182 seizure events, each marked with a start and 
end time.

Method
Figure  3 provides a detailed introduction to the entire 
process of the epilepsy seizure detection system. The 
main steps include using DWT to decompose the raw 
signal, followed by feature extraction from the decom-
posed subset signals, which includes approximate 
entropy (ApEn), fuzzy entropy (FuEn), root mean square 
(RMS), and Hurst exponent (Hurst). Next, feature selec-
tion techniques are employed to filter the features, and 
finally, the distinction of the epileptic state is made. The 
results of the evaluation metrics are used to assess the 

performance of the proposed technique in classifying the 
epileptic state.

Data preprocessing
EEG signals are often affected by various interference 
factors, such as electrical noise, artifacts produced by 
eye movements (like blink artifacts), and cardiac inter-
ference. To effectively remove these interference signals, 
we first applied a Butterworth bandpass filter to the EEG 
signals. The Butterworth filter is widely used in electro-
encephalogram processing due to its smooth frequency 
response characteristics, which effectively eliminate non-
stationary noise [48].

Considering the complexity and randomness of EEG 
signals, we used DWT for signal decomposition. DWT 
can transform signals from the time or spatial domain 
into a special domain known as the wavelet domain, 
allowing for more effective capture of the signal’s detailed 
features [17]. In DWT, each level of decomposition is 
achieved by applying low-pass and high-pass filters. 
The low-pass filter extracts the approximate informa-
tion of the signal (low-frequency components), while 

Table 1  Summary of CHB-MIT EEG dataset

a The two seizures are merged when the second seizure occurs within the interval following the first one

Patient Gender Age Number of Seizures Total duration (h) Duration 
of seizure 
(s)

CHB01 F 11 7 40.55 442

CHB02 M 11 3 35.3 172

CHB03 F 14 7 38 402

CHB04 M 22 4 155.9 160

CHB05 F 7 5 39 558

CHB06 F 1.5 10 66.7 153

CHB07 F 14.5 3 68.1 325

CHB08 M 3.5 5 20 919

CHB09 F 10 4 67.8 276

CHB10 M 3 7 50 447

CHB11 F 12 2 (3)a 34.8 806

CHB12 F 2 21 (40)a 23.7 822

CHB13 F 3 11 (12)a 33 440

CHB14 F 9 8 26 169

CHB15 M 16 17 (20)a 40 1,992

CHB16 F 7 9 (10)a 19 84

CHB17 F 12 3 21 293

CHB18 F 18 6 36 317

CHB19 F 19 3 30 236

CHB20 F 6 8 29 294

CHB21 F 13 4 33 199

CHB22 F 9 3 31 204

CHB23 F 6 7 28 424

Total - - 157 (182) 965.85 10,134
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the high-pass filter extracts the detail information (high-
frequency components). As the number of decomposi-
tion levels increases, the detail information of the signal 
is gradually separated and stored at different levels. The 
low-frequency part of each level represents the larger-
scale features of the signal, while the high-frequency part 
reflects finer local variations.

Figure  4 illustrates the five-level decomposition pro-
cess of the EEG signal. The choice of five-level decom-
position is based on the fact that EEG signals typically 
contain multiple frequency components and tempo-
ral features [39]. Through five levels of decomposition, 
we are able to fully capture signal variations from rapid 
to slow changes. In the first level of decomposition, the 
original signal is decomposed into a low-frequency part 
(A1) and a high-frequency part (D1). In the second level 
of decomposition, the low-frequency part (A1) continues 
to be decomposed into a low-frequency part (A2) and a 

high-frequency part (D2). This pattern is followed until 
the fifth level of decomposition, where the low-frequency 
part (A4) continues to be decomposed into a low-fre-
quency part (A5) and a high-frequency part (D5). Fig-
ure 5 shows the detail of the subband signals for Subset B 
and Subset E after a five-level DWT decomposition.

Feature extraction
Epileptic EEG signals are characterized by complexity 
and nonlinearity. The nonlinear characteristics of EEG 
signals can provide more comprehensive, sensitive and 
accurate information. Entropy plays a very important role 
as a measure of nonlinear features. The physical nature 
of approximate entropy is a measure of the logarith-
mic conditional probability mean of the emergence of a 
new pattern in the signal sequence when the number of 
dimensions varies, which makes the approximate entropy 
be of great significance in characterizing the stochasticity 

Fig. 3  Epilepsy seizure detection flowchart

Fig. 4  Five-level DWT decomposition of EEG signals
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Fig. 5  Five-level decomposition of (a) Subset B, (b) Subset E using DWT technique
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and complexity of the signal sequence. The approximate 
entropy retains the time-series information in the origi-
nal signal sequence and reflects the characteristics of the 
signal sequence in terms of structural distribution. This 
characteristic makes the approximate entropy more accu-
rate and effective in extracting the characteristic infor-
mation in the signal. Moreover, approximate entropy 
requires only fewer data points to achieve the purpose of 
describing the signal sequence statistically. Fuzzy entropy 
quantifies the probability of time series generating novel 
patterns as the dimension varies, which is achieved by 
employing the exponential function to obscure the simi-
larity measure formula. This results in the fuzzy entropy 
value undergoing continuous and gradual changes as 
the parameter is altered. Fuzzy entropy can quantify the 
uncertainty, and it is not sensitive to the size of fuzzy 
sets. Therefore, it is suitable for the analysis of EEG sig-
nals. The original derivation of approximate entropy and 
fuzzy entropy can be found in Ref. [49].

The Hurst exponent is a nonlinear feature that takes 
values between 0 and 1, where H = 0 indicates that 
the time series has inverse persistence (randomness), 
0 < H < 0.5 indicates that the series has long-term negative 
correlation, 0.5 < H < 1 indicates that the series has long-
term correlation, H = 1 indicates that the time series has 
persistence (determinism), and H = 0.5 indicates that the 
time series is a kind of random wandering. The value of 
H can be used to measure the deviation of brain activity 
from normal during seizures [50]. The rescaled polar R/S 
method is the most commonly used in the Hurst expo-
nential estimator algorithm. Assuming that X = [x1, x2,…, 
xN] is the EEG signal and N is the length of x, the value of 
H can be calculated by Eq. (1).

where R stands for the difference between the maximum 
and minimum values of the deviation of X and S stands 
for the standard deviation of X.

The time-domain characteristic Root Mean Square 
(RMS) is a statistical feature used to describe the ampli-
tude magnitude of a signal. It is the RMS value of a sig-
nal and represents the total energy of the signal over the 
entire time domain. The calculation process is shown as 
Eq. (2).

Feature selection
Support Vector Machine-Recursive Feature Elimination 
(SVM-RFE) is a kind of machine learning feature selec-
tion algorithm [51, 52]. In this experiment, twenty-four 

(1)H =
log (R/S)

log (N )

(2)RMS = (x0 + x1 + ...+ xN−1)/N

features were acquired through feature extraction. The 
selection of these features was accomplished by apply-
ing a nonlinear support vector machine recursive feature 
elimination algorithm, resulting in the choice of twelve 
features. In the case of linear indivisibility, the SVM maps 
the input variables to a high-dimensional feature space by 
some pre-selected nonlinear mapping (kernel function), 
turning them into linearly divisible in the high-dimen-
sional space in which the optimal classification hyper-
plane is constructed. We map the samples to a higher 
dimensional feature space by Eq. (3).

In the new eigenspace, the samples are linearly differ-
entiable, and the dyadic form of the Lagrangian formula-
tion of the problem is shown in Eq. (4).

Here, to avoid computing the inner product of φ(xi) 
and φ(xj), a new function K(xi, xj) is created. Their equiv-
alence relationship is shown in Eq. (5).

In this way, we get the result of the high dimensional 
operation of mapping and inner product by the low 
dimensional operation of K(xi, xj). This is the advantage 
of the kernel function, which effectively reduces the 
amount of computation. Therefore, we need to directly 
view the objective optimization function J, and we let 
J(-k) be the optimization function after removing the 
kth feature. We take δJ(k) as the difference between the 
optimization function with the kth feature retained and 
the optimization function after removing the kth feature. 
δJ(k) is a measure of the impact of the kth feature on the 
objective optimization function, i.e., the score of the kth 
feature. They are calculated as in Eqs. (6– 8). We find out 
the feature with the smallest sorting score and update 
the feature set by removing the feature with the smallest 
score. Then the next iteration is performed until the pre-
set number of features is reached. The detailed working 
of the technique can be found in Ref. [53].
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CNN‑Bi‑LSTM classification model
In this study, we propose an epilepsy seizure detection 
model based on CNN and Bi-LSTM. This model com-
bines the advantages of CNN in spatial feature extraction 
with the capabilities of Bi-LSTM in time series modeling, 
aiming to improve the accuracy of epilepsy seizure detec-
tion. Specifically, the CNN extracts local features from 
EEG signals through convolutional operations, while the 
Bi-LSTM performs temporal modeling on these features 
to capture long-term dependencies within the signal. 
Finally, classification output is generated through fully 
connected layers. The framework proposed in this study 

(7)

J (−k) = min
α
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2

n
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∣

provides an effective deep learning method for analyzing 
EEG signals and detecting epilepsy seizures.

The model architecture is shown in Fig.  6, primarily 
composed of the input layer, CNN layer, Bi-LSTM layer, 
and fully connected layer. Detailed information regard-
ing the network architecture can be found in Table 2. The 
input data first passes through the convolutional layers to 
extract spatial features. The convolutional layer consists 
of two layers: the first layer uses 16 convolutional ker-
nels, while the second layer uses 32 convolutional ker-
nels, both employing a kernel size of [1, 3] with a stride of 
[1, 1]. Notably, the number of filters in the convolutional 
layer significantly affects the model’s performance. We 
experimented with different quantities of convolutional 
filters and found that using 32 convolutional kernels 
allowed the model to capture the complex features within 
the EEG signals more effectively. The choice of a [1, 3] 
kernel size is based on the noticeable variations of EEG 
signals in the temporal dimension, as smaller kernels 
can effectively capture short-term dependencies. Next, 
the max pooling layer reduces the dimensionality of the 
feature maps with a pooling window size of [1, 3] and a 

Fig. 6  CNN-Bi-LSTM architectural model for epilepsy seizure detection
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stride of [1, 1]. The extracted features are then passed 
on to the Bi-LSTM layer, which can simultaneously pro-
cess both forward and backward information in the time 
series, thereby better capturing the temporal dependen-
cies of the EEG signals. The Bi-LSTM layer contains 10 
hidden units and outputs the hidden state from the final 
time step. It is worth mentioning that when the number 
of LSTM units is small, the model struggles to effec-
tively learn the dependencies in the time series, whereas 
increasing the number of LSTM units (such as to 10) 
significantly enhances model performance. However, 
when the number of LSTM units is further increased (for 
example, to 20), although performance gains diminish, 
the computational load also increases correspondingly. 
Finally, the extracted features are classified through a 
fully connected layer, with the number of output classes 
set to num_class (2 or 3 classes), utilizing the Softmax 
activation function to generate the probability distribu-
tion for each class.

The hyperparameter configuration is shown in 
Table  3. During the model training process, we 
employed the Adam optimizer, setting the learning rate 
to 0.001. After tuning, it was found that this learning 

rate enabled rapid and stable convergence in the Adam 
optimizer. To prevent overfitting, we applied L2 regu-
larization between the Bi-LSTM layer and the fully 
connected layer, with a regularization coefficient of 
0.0001. Experimental results indicate that this configu-
ration effectively prevents overfitting.

Convolutional Neural Network (CNN)  CNN, as a deep 
learning algorithm, has emerged as a widely adopted 
neural network architecture [54]. Additionally, in recent 
years, its utilization has expanded to perform classifica-
tion tasks, owing to its superior model training efficiency 
and generalization capability. CNN can be regarded as a 
specialized variant of the multilayer perceptron, resem-
bling traditional neural networks, where each neuron 
is assigned a specific input. These self-learning neurons 
acquire knowledge from the data by adjusting weights 
and biases through operations such as dot-multiplication.

CNN consists of three key components: the convolu-
tional layer, pooling layer, and fully connected layer. Each 
convolutional layer comprises multiple convolutional 
kernels responsible for extracting distinct features. These 
kernels perform convolution operations on the input data 
using a sliding window approach. The pooling layer, on 
the other hand, reduces the dimensionality of the feature 
map, thereby decreasing the computational complexity of 
the model. By stacking multiple convolutional and pool-
ing layers in a specific order, higher-level features can 
be extracted. The fully connected layer consolidates the 
features learned from the pooling layer through weighted 
fusion, mapping them into the sample label space. For 
detailed information about the CNN structure, please 
refer to Ref. [55].

Long Short‑Term Memory (LSTM) Network  In order 
to solve the long-standing problems of gradient degree 
explosion and gradient vanishing in Recurrent Neural 
Network (RNN) models, Schmidhuber et  al. [56] pro-
posed the LSTM model. The processing layer of an RNN 
is usually a single-tanh layer, which obtains the current 
output by using the current input and the output of the 
previous moment. And there are four such modules in 
the LSTM module and they operate interactively in a 
special way. LSTM mainly contains three gates (forget 
gate, input gate, output gate) and one memory unit [57]. 
The horizontal line at the top of Fig.  7 is known as cell 
state which can act as a conveyor belt and can control the 
transfer of information to the next moment. The LSTM is 
calculated as follows:

Table 2  Model structure of CNN- Bi-LSTM

Name of the layer Parameters

Conv_1 Filters number: 16,
Kernel Size: [1, 3],
Stride: [1, 1]

Conv_2 Filters number: 32,
Kernel Size: [1, 3],
Stride: [1, 1]

Maxpool Size: [1, 3],
Stride: [1, 1]

Bi-LSTM Layer: 1,
Hidden Units: 10,
Output Mode: ’last’

Fully Connected Output Size: num_class (2 or 3),
Activation = “softmax”

Table 3  Hyper-parameter configuration

Configuration Value

Optimization function Adam

Epoch 100

Batch size 64

Learning rate 0.001

Loss function Cross entropy

L2 Regularization 0.0001
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(1)  In the first step, the "forget gate" layer controls 
what information can pass through the cell state 
by means of a sigmoid, which generates an output 
value from 0 to 1 based on the output of the previ-
ous moment and the input of the current time, and 
decides whether to allow the information learned 
in the previous moment to pass or partially pass, as 
shown in Eq. (9).

where Wf represents the weight of the forgetting gate, 
ht−1 represents the output value at the previous time, xt 
represents the input value at the current time, and bf rep-
resents the bias of the forgetting gate.

(2) The second step consists of two processes. Firstly, 
the input gate layer decides which values are updated 
by sigmoid. Secondly, new candidate values are gen-
erated by tanh layer, as shown in Eqs. (10– 11).

where Wi represents the weight of the input gate, bi 
represents the bias of the input gate, Wc represents the 
weight of the candidate input gate, and bc represents the 
bias of the candidate input gate.

(9)ft = σ(Wf · [ht−1, xt ]+ bf )

(10)it = σ(Wi · [ht−1, xt ]+ bi)

(11)Ĉt = tanh (Wc · [ht−1, xt ]+ bc)

(3)  In the third step, the previous cell state was 
updated. We multiply the previous cell state by ft to 
forget the information we don’t need and then add 
it with it*Ĉt to get the candidate value, as shown in 
Eq. (12).

(4)  The fourth step is to decide the output of the 
model. Firstly, an initial output is obtained through 
the sigmoid layer, then the value is scaled to 
between −1 and 1 through tanh, and finally the out-
put value of the LSTM is obtained by multiplying 
pairwise with the output obtained from the sigmoid 
layer, as shown in Eqs. (13– 14).

Bi-LSTM combines forward and backward LSTM 
structures as shown in Fig.  8. It runs two LSTM net-
works simultaneously at each time step, one propagat-
ing from the forward direction and the other from the 
backward direction. It can simultaneously consider 
information from both the front and back directions in 
a sequence, and it can capture not only the past but also 
the future.

(12)Ct = ft ∗ Ct−1 + it ∗ Ĉt

(13)ot = σ(Wo[ht−1, xt ]+ bo)

(14)ht = ot ∗ tanh (Ct)

Fig. 7  Network structure of the LSTM
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CNN‑Bi‑LSTM Training and Prediction Process
The training process of CNN-Bi-LSTM is shown in Fig. 9. 
The main steps are as follows:

(1)	 Inputting data: The data required for the CNN-Bi-
LSTM training process is input.

(2)	 Standardizing input data: In order to ensure that 
the network can converge effectively, here we use 
z-score to standardize the input data as shown in 
Eq. (15).

	

(3)	 Initializing network: Neural networks are trained 
using a backpropagation algorithm to update the 
weights. If the initial weights are inappropriate (too 
large or too small), it can cause the problem of gra-
dient explosion or gradient vanishing. Therefore, 
each layer of CNN-Bi-LSTM has to initialize the 
weights and bias.

(4)	 CNN layer calculation: The input features of shape 
12 × 1 × 1 are passed into the convolutional layer, 
where 16 3 × 1 convolutional kernels are applied to 
convolve with the input data. The convolution oper-
ation produces a set of feature maps. For each fea-
ture map, the ReLU activation function is applied to 
activate it. Additionally, the feature maps undergo 
the maximum pooling operation to reduce compu-
tational complexity. The above convolution, activa-
tion and pooling operations are repeated to extract 
multiple feature mappings, and the extracted fea-
ture mappings are used as input data for Bi-LSTM.

(5)	 Bi-LSTM layer calculation: The output data of the 
CNN layer is calculated through the hidden layer of 
Bi-LSTM to get the output value.

(15)yi = (xi − x)/s

Fig. 8  Double-layer LSTM in the Bi-LSTM network structure

Fig. 9  Activity diagram of CNN-Bi-LSTM training process
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(6)	 Output layer calculation: The output values of the 
model are obtained by calculating the output values 
of the Bi-LSTM layer.

(7)	 Error calculation: The output value is compared 
with the true value and the error is calculated.

(8)	 Conditional judgment: During the training process, 
the change of the loss function value of each epoch 
is observed. If the loss function stabilizes in several 
consecutive epochs, and there is no longer an obvi-
ous downward trend, the training process will stop. 
Otherwise, the training continues.

(9)	 Error backpropagation: The obtained error is 
updated with weights and biases for each layer of 
the model by the backpropagation algorithm.

The prediction process of CNN-Bi-LSTM is shown in 
Fig. 10. The main steps are as follows:

(1)	 Inputting data: The data required for the CNN-Bi-
LSTM prediction process is input.

(2)	 Normalizing input data: The normalization result is 
calculated by Eq. (15).

(3)	 Prediction: The standardized results are obtained by 
modeling the computed output values.

(4)	 Output: The model outputs results to complete the 
prediction.

Results and discussions
Experimental setup
In this experiment, the number of training epochs is 
set to 100, with a batch size of 64. The Adam optimizer 
combines the advantages of Adaptive Gradient and Root 
Mean Square Propagation optimization algorithms. The 
model’s loss function uses categorical cross-entropy. All 
experimental steps are implemented using MATLAB 
2022a on a NVIDIA GeForce RTX 3060.

Evaluation indicators
For this experiment, to evaluate the performance of the 
model, we used Accuracy, Sensitivity, Specificity, Precision, 
and F1-score as evaluation metrics, whose calculation are 
shown in Eqs.  (16– 20). Among them, accuracy is a met-
ric for evaluating the performance of the epilepsy detection 
model, indicating the proportion of correctly predicted 
samples to the total number of samples. Sensitivity indi-
cates the ability of the model to recognize epilepsy in 
patients and indicates the proportion of samples predicted 
as positive cases that are actually positive. Specificity indi-
cates the ability of the model to correctly exclude patients 
with non-epilepsy and indicates the proportion of samples 
predicted to be negative cases that were actually negative 
cases. Precision indicates the accuracy of the model’s abil-
ity to detect epilepsy seizure, indicating the proportion of 

samples predicted as positive cases that were actually posi-
tive cases. The F1-score is the reconciled mean of sensitiv-
ity and precision, and is used to reflect the model’s ability to 
predict for positive and negative cases.

(16)Accuracy =
TP + TN

TP + FN + FP + TN

(17)Sensitivity =
TP

TP + FN

(18)Specificity =
TN

TN + FP

(19)Precision =
TP

TP + FP

Fig. 10  Activity diagram of CNN-Bi-LSTM prediction process
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where TP represents the number of samples with actual 
seizure periods and correctly predicted as seizure peri-
ods, FP represents the number of samples with actual 
interictal periods but incorrectly predicted as seizure 
periods, FN represents the number of samples with 

(20)F1− score =
2TP

2TP + FP + FN

actual seizure periods but incorrectly predicted as inter-
ictal periods, and TN represents the number of samples 
with actual interictal periods and correctly predicted as 
interictal periods.

Experimental results
In this work, five subsets of the Bonn dataset are grouped 
into fifteen categories, A-E, B-E, AB-E, C-E, D-E, CD-E, 
AC-E, AD-E, BC-E, BD-E, ABC-E, ABD-E, ACD-E, 
BCD-E, ABCD-E, A-D-E, and AB-CD-E. The New Delhi 
dataset was divided into three categories including Preic-
tal-Ictal, Interictal-Ictal and Non-ictal-Ictal. The catego-
rization is shown in the Table 4.

Two‑class classification
In the above categorization, there are eighteen groups of 
dichotomous tasks. The subdivisions are Normal vs. Ictal, 
Interictal vs. Ictal and Non-ictal vs. Ictal.

Scenario 1: Normal vs. Ictal  The first case contains 
three groups, A-E, B-E and AB-E, and the results of the 
experimental evaluation metrics are shown in Table  5. 
The accuracy is illustrated by the bar chart in Fig. 11. In 
the case of group A-E, all five classifiers achieve more 
than 99% accuracy and F1-score, and achieve 100% speci-
ficity and precision. Compared with group A-E, the eval-
uation metrics of group B-E decreased significantly. The 
subset B signals exhibit more complex patterns compared 
to the subset A signals, while subset E, despite having 
larger fluctuations, shows relatively stable overall sig-
nals. This difference in signal stability results in the B-E 
group demonstrating lower classification accuracy dur-
ing evaluation. However, the accuracy of CNN-Bi-LSTM 

Table 4  Detail of categorization tasks

Description Cases Classes Type

Normal vs. Ictal I Bonn(A-E) Two

II Bonn (B-E) Two

III Bonn (AB-E) Two

Interictal vs. Ictal IV Bonn (C-E) Two

V Bonn (D-E) Two

VI Bonn (CD-E) Two

VII New Delhi (Interictal-Ictal) Two

VIII New Delhi (Preictal-Ictal) Two

Non-ictal vs. Ictal IX Bonn (AC-E) Two

X Bonn (AD-E) Two

XI Bonn (BC-E) Two

XII Bonn (BD-E) Two

XIII Bonn (ABC-E) Two

XIV Bonn (ABD-E) Two

XV Bonn (ACD-E) Two

XVI Bonn (BCD-E) Two

XVII Bonn (ABCD-E) Two

XVIII New Delhi (Non-ictal-Ictal) Two

Normal vs. Interictal vs Ictal XIX Bonn (A-D-E) Three

XX Bonn (AB-CD-E) Three

Table 5  Results of assessment indicators for Normal vs. Ictal groups

Classifier Classes Accuracy Sensitivity Specificity Precision F1-score

SVM A-E 99.42 98.86 100.00 100.00 99.42

B-E 94.42 92.79 96.18 96.20 94.34

AB-E 95.17 96.38 93.07 96.58 96.44

CNN A-E 99.25 98.55 100.00 100.00 99.26

B-E 97.58 96.87 98.04 98.33 97.55

AB-E 98.50 98.64 98.36 99.16 98.89

LSTM A-E 99.17 98.32 100.00 100.00 99.13

B-E 97.17 97.10 97.38 97.26 97.15

AB-E 98.17 98.06 98.34 99.14 98.59

Bi-LSTM A-E 99.44 98.96 100.00 100.00 99.47

B-E 97.29 96.14 98.50 98.72 97.39

AB-E 98.33 97.88 98.73 98.64 98.23

CNN-Bi-LSTM A-E 99.50 99.01 100.00 100.00 99.50

B-E 98.17 97.52 98.81 98.86 98.16

AB-E 98.60 98.34 99.14 99.57 98.95
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still exceeds 98%, and the overall performance of CNN-
Bi-LSTM is significantly better than the other four classi-
fiers. In the case of group AB-E, the deep learning classi-
fiers clearly outperform the machine learning classifiers. 
In summary, CNN-Bi-LSTM performs the best perfor-
mance in terms of accuracy, specificity, precision and 
F1-score in all three cases mentioned.

Scenario 2: Interictal vs. Ictal  The second case contains 
five groups, C-E, D-E, CD-E, Interictal-Ictal and Preictal-
Ictal, and the results of the experimental evaluation met-
rics are shown in Table 6. The accuracy is illustrated by 
the bar chart in Fig.  12. In the C-E group, all four clas-
sifiers, with the exception of SVM, achieve over 99% for 
all metrics. Deep learning has stronger nonlinear mod-
eling and feature extraction capabilities compared to tra-
ditional machine learning classifiers like SVM, making it 
more robust when dealing with signals of varying charac-
teristics. In the D-E group, LSTM, Bi-LSTM, and CNN-
Bi-LSTM achieved 100% across all metrics. Although the 
fluctuations in subset D signals are smaller and those in 
subset E signals are larger, there is still a certain regular-
ity overall. Deep learning classifiers can extract sufficient 
features from these signals to classify them accurately. In 
the CD-E group, the deep learning classifiers exhibit a 

slight decrease in performance compared to the previous 
two groups, but they remain consistently above 98%, with 
CNN-Bi-LSTM maintaining the highest accuracy. In the 
Interictal-Ictal group, all four classifiers achieve 100% in all 
metrics. In the Preictal-Ictal group, the evaluation metrics 
of CNN-Bi-LSTM are significantly better than the other 
three classifiers. Overall, for the dichotomous task of Inter-
ictal vs. Ictal, CNN-Bi-LSTM demonstrates robust perfor-
mance and outperforms other classifiers in various metrics.

Scenario 3: Non‑ictal vs. Ictal  The third case contains 
ten groups of AC-E, AD-E, BC-E, BD-E, ABC-E, ABD-
E, ACD-E, BCD-E, ABCD-E and Non-ictal-Ictal, and the 
results of the experimental evaluation metrics are shown 
in Table 7. The accuracy is illustrated by the bar chart in 
Fig.  13. In terms of accuracy, CNN-Bi-LSTM achieved 
the best results across all groups. Except for the BD-E 
group, all other groups achieved an accuracy of over 98%. 
However, when the subset B is included in the combina-
tion, there is a noticeable decrease in accuracy. This may 
be due to significant overlap in certain EEG signal fea-
tures between subset B and subset E, leading to a decline 
in classifier precision. Additionally, in terms of other 
performance metrics, CNN-Bi-LSTM generally outper-
formed other classifiers.

Fig. 11  Classification accuracy of Normal vs. Ictal groups
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In summary, the CNN-Bi-LSTM model demonstrated 
the best performance in binary classification tasks. This 
is due to its combination of CNN’s strengths in spatial 
feature extraction and Bi-LSTM’s capabilities in mod-
eling time series, allowing it to effectively capture both 
local features and global contextual information in EEG 
signals. This integration enables the model to not only 
identify important spatial patterns within the signals but 
also to understand how these patterns change over time, 
leading to more accurate classification of different types 
of epileptic seizures.

Three‑class classification
Compared to binary classification, distinguishing EEG 
into three categories is a challenging task. In this study, 
A-D-E and AB-CD-E represent the three-class cases. 
These cases involve the classification between normal, 
interictal, and seizure categories. As shown in Table 8 and 
Fig.  14, although the model performance for the three-
class classification task significantly declines compared 
to the binary classification task, the CNN-Bi-LSTM out-
performs the other three classifiers, with CNN, LSTM, 
and Bi-LSTM showing a significant increase in accuracy 

compared to SVM. This performance difference arises 
because, in a three-class task, the model must differen-
tiate between more categories, which means it needs to 
identify and process more feature dimensions. Compared 
to binary classification, the interference among features 
may increase, thereby affecting overall performance. 
Additionally, three-class classification requires the model 
to learn more decision boundaries. This complexity 
can make the training process more difficult, especially 
when there are overlapping features between different 
categories.

Analysis of effectiveness of feature selection
During epileptic EEG feature extraction, there will 
be certain features that are not clearly distinguished, 
and the presence of these features will reduce the clas-
sification performance of the model. SVM-RFE is an 
importance assessment method based on SVM that 
recursively eliminates unimportant features to gradu-
ally optimize the feature subset. For the epilepsy 
detection task, the variations in EEG signals are often 
complex and nonlinear, and feature selection can focus 
on the important signal features that are related to 

Table 6  Results of assessment indicators for Interictal vs. Ictal groups

Classifier Classes Accuracy Sensitivity Specificity Precision F1-score

SVM C-E 98.18 99.23 97.04 97.10 98.11

D-E 97.50 98.84 96.40 96.09 97.39

CD-E 98.22 98.95 97.28 98.82 98.72

Interictal-Ictal 100.00 100.00 100.00 100.00 100.00

Preictal-Ictal 96.17 95.84 97.00 96.40 95.95

CNN C-E 99.67 99.82 99.85 99.82 99.66

D-E 99.00 99.20 98.77 98.89 99.04

CD-E 98.72 98.96 98.39 99.18 99.05

Interictal-Ictal 100.00 100.00 100.00 100.00 100.00

Preictal-Ictal 95.33 94.37 96.77 96.66 95.30

LSTM C-E 99.17 99.19 99.16 99.18 99.17

D-E 100.00 100.00 100.00 100.00 100.00

CD-E 99.06 99.27 98.78 99.30 99.28

Interictal-Ictal 100.00 100.00 100.00 100.00 100.00

Preictal-Ictal 94.17 96.27 92.25 92.85 94.34

Bi-LSTM C-E 99.33 99.29 99.33 99.35 99.31

D-E 100.00 100.00 100.00 100.00 100.00

CD-E 99.10 99.68 97.95 99.01 99.34

Interictal-Ictal 100.00 100.00 100.00 100.00 100.00

Preictal-Ictal 97.80 98.39 96.55 98.39 99.20

CNN-Bi-LSTM C-E 99.75 99.69 99.84 99.83 99.74

D-E 100.00 100.00 100.00 100.00 100.00

CD-E 99.11 99.48 98.45 99.14 99.31

Interictal-Ictal 100.00 100.00 100.00 100.00 100.00

Preictal-Ictal 98.83 99.33 98.46 98.27 98.76
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epileptic seizures. We selected 12 groups of features 
based on their high rankings in SVM-RFE; these fea-
tures can provide better discriminatory information, 
helping the model make more accurate classification 
judgments between seizure and non-seizure states. 
The results are shown in Table 9, where "Yes" indicates 
a label for features that are retained and "No" indicates 
a label for features that are discarded.

To illustrate the necessity of feature selection, we 
compared the accuracy metrics before and after fea-
ture selection, which is in Fig. 15. It can be found that 
the accuracy of CNN-Bi-LSTM classification can be 
significantly improved after feature selection.

Analysis of differences in classifier performance
Twenty replicated trials were conducted in this study 
for the seizure versus non-seizure task. The stability of 
the classifier performance is verified by box plot and 
standard deviation values, and the performance advan-
tages of CNN-Bi-LSTM in both forms are illustrated.

Scenario 1: Box plot form
A box plot is a chart used to show the distribution of data, 
which is characterized by the ability to visually display 
information such as the center of the data, the degree 
of dispersion, and outliers. The rectangle represents the 

data between the lower quartile and the upper quartile. 
A narrower box in the boxplot indicates a higher concen-
tration of data distribution, suggesting a reduced level of 
dispersion. The line in the middle of the rectangle repre-
sents the median. The vertical lines represent the mini-
mum and maximum values. The white dots represent 
the mean values of the data, and the gray dots represent 
the outliers in the data. From Fig.  16, it can be clearly  
observed that CNN-Bi-LSTM obtains better results 
than the other classifiers in terms of accuracy, sensitiv-
ity and F1-score, with a more centralized distribution of 
the data and maintaining the highest mean and median 
values.

Scenario 2: Standard Deviation Analysis
Standard deviation is a statistical measure used to meas-
ure the degree of data dispersion in a data set. Figure 17 
illustrates the standard deviation values of the results of 
twenty replicate experiments. It reveals that the CNN-
Bi-LSTM group exhibits the smallest standard deviation 
values in accuracy, sensitivity, and F1-score. In terms of 
specificity and precision, the standard deviation value of 
the CNN-Bi-LSTM group is only marginally higher than 
that of the CNN group. The experiment results indicate 
that the CNN-Bi-LSTM classifier demonstrates a higher 
level of performance stability.

Fig. 12  Classification accuracy of Interictal vs. Ictal groups
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Table 7  Results of assessment indicators for Non-ictal vs. Ictal groups

Classifier Classes Accuracy Sensitivity Specificity Precision F1-score

SVM AC-E 98.97 98.96 98.97 99.53 99.24

AD-E 98.72 98.52 99.16 99.58 99.04

BC-E 94.00 94.81 92.78 96.19 95.44

BD-E 93.56 94.87 91.16 95.49 95.13

ABC-E 96.79 97.79 93.89 97.94 97.85

ABD-E 94.83 95.89 91.89 97.25 96.55

ACD-E 98.67 98.77 98.32 99.45 99.10

BCD-E 95.04 95.97 92.09 97.53 96.72

ABCD-E 95.60 96.87 89.94 97.74 97.29

Non-ictal-Ictal 96.56 96.38 97.12 98.50 97.37

CNN AC-E 99.39 99.26 99.62 99.84 99.55

AD-E 98.89 98.67 99.27 99.68 99.17

BC-E 98.23 97.90 98.95 99.51 98.69

BD-E 97.50 97.65 97.20 98.56 98.09

ABC-E 98.92 99.02 98.53 99.57 99.29

ABD-E 98.13 98.68 96.45 98.84 98.76

ACD-E 99.29 99.72 98.03 99.33 99.53

BCD-E 98.21 98.33 97.81 99.29 98.79

ABCD-E 98.90 99.00 98.55 99.62 99.31

Non-ictal-Ictal 98.00 97.98 97.74 99.07 98.50

LSTM AC-E 99.00 99.15 98.74 99.31 99.23

AD-E 99.44 99.51 99.29 99.69 99.59

BC-E 97.00 97.18 96.73 98.46 97.78

BD-E 97.06 97.96 95.25 97.70 97.82

ABC-E 98.38 98.63 97.47 99.24 98.93

ABD-E 98.00 98.40 96.92 98.94 98.66

ACD-E 99.33 99.55 98.61 99.56 99.55

BCD-E 97.71 98.41 95.56 98.57 98.48

ABCD-E 98.07 98.87 94.95 98.70 98.78

Non-ictal-Ictal 97.33 98.31 95.35 97.65 97.97

Bi-LSTM AC-E 99.10 98.98 99.33 99.65 99.31

AD-E 99.56 99.67 99.44 99.64 99.65

BC-E 97.33 96.72 98.60 99.34 98.00

BD-E 97.56 97.16 98.27 98.90 98.02

ABC-E 98.50 98.72 97.75 99.37 99.03

ABD-E 98.16 98.30 98.04 99.33 98.80

ACD-E 99.33 99.35 99.33 99.78 99.56

BCD-E 97.83 97.44 99.05 99.80 98.60

ABCD-E 98.40 98.50 98.00 99.49 98.99

Non-ictal-Ictal 98.67 99.18 96.43 99.18 99.18

CNN-Bi-LSTM AC-E 99.33 99.43 99.11 99.60 99.51

AD-E 99.61 99.75 99.39 99.65 99.70

BC-E 98.28 98.40 98.14 98.96 98.67

BD-E 97.94 97.67 98.47 99.25 98.44

ABC-E 99.08 99.21 98.71 99.55 99.37

ABD-E 98.17 98.53 97.17 98.98 98.75

ACD-E 99.50 99.72 98.87 99.61 99.66

BCD-E 98.08 98.63 96.46 98.84 98.73

ABCD-E 98.93 99.23 97.85 99.46 99.34

Non-ictal-Ictal 99.67 99.69 99.72 99.82 99.75
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CHB‑MIT dataset validation
Given the relatively modest sample sizes of the Bonn 
and New Delhi datasets, they may not adequately repre-
sent the diverse types and stages of epilepsy in patients. 
To further ascertain the generalization prowess of our 
proposed method, we undertook supplementary exper-
iments utilizing the comprehensive CHB-MIT dataset. 
This dataset, being larger and more varied compared 
to the Bonn and New Delhi datasets, serves as a robust 
testing ground for assessing the efficacy of our seizure 
detection model across varied scenarios.

The validation results obtained from the CHB-MIT 
dataset are nothing short of remarkable, as highlighted 
in Table  10. Our method consistently demonstrated 
high accuracy across numerous patient cases, surpass-
ing 97% in a vast majority (22 cases) and achieving over 
99% accuracy in nearly half of the cases. Furthermore, 
other performance metrics also exhibited exceptional 
results, suggesting that the model is adept at accurately 
pinpointing seizure events while minimizing false posi-
tives. However, it is noteworthy that the accuracy for 
the CHB16 case notably lags behind the others. Upon 

Fig. 13  Classification accuracy of Non-ictal vs. Ictal groups

Table 8  Results of assessment indicators for A-D-E and AB-CD-E groups

Classifier Classes Accuracy Sensitivity Specificity Precision F1-score

SVM A-D-E 92.73 91.45 94.06 94.52 92.87

AB-CD-E 91.17 90.78 91.78 92.88 91.73

CNN A-D-E 95.97 94.90 97.16 97.32 96.01

AB-CD-E 95.59 95.27 95.77 96.64 95.90

LSTM A-D-E 95.42 94.01 97.18 97.28 95.22

AB-CD-E 95.11 94.51 95.77 96.62 95.66

Bi-LSTM A-D-E 96.00 94.81 97.26 97.33 96.05

AB-CD-E 95.33 94.74 95.95 96.00 95.36

CNN-Bi-LSTM A-D-E 96.19 95.08 97.34 97.49 96.18

AB-CD-E 95.71 94.90 96.80 97.05 95.91
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closer scrutiny, the likely culprit in the CHB16 case is 
the significant imbalance in data, with seizure periods 
being vastly underrepresented even after oversampling. 
The challenge of dataset imbalance remains a pivotal 
concern in the ongoing research of epilepsy EEG sig-
nal detection. Fortunately, disregarding the CHB16 
anomaly, the remaining cases maintained robust evalua-
tion metrics. On average, the five key metrics achieved 
impressive figures: an accuracy of 98.43%, a sensitivity 
of 97.84%, a specificity of 99.21%, a precision of 99.14%, 
and an F1-score of 98.39%. The outstanding perfor-
mance in the majority of cases, coupled with the mini-
mal variance across different cases, underscores the 
robust generalization capability and stability of our 
proposed method.

Comparing with previous works
The results obtained from our proposed method were 
compared with those from other previous works, as pre-
sented in Table 11. In Ref. [58], traditional EMD was used 
to decompose EEG signals into a set of finite intrinsic 
mode functions, which were then represented in analytic 
form using Hilbert transform. Features were extracted 
from these analytic forms, and SVM was employed for 
classification, achieving an accuracy of over 83% in a three-
class task. In Ref. [59], researchers used the Covariance 
Matrix Determinant (Cov–Det) for feature extraction, 
combined with Kolmogorov–Smirnov (KST) and Mann–
Whitney U (MWUT) techniques for feature selection, 
and finally applied AdaBoost BP Neural Network (AB_
BP_NN) for classification. Although Cov–Det effectively 

Fig. 14  Classification accuracy of Normal vs. Interictal vs. Ictal groups

Table 9  Feature selection results

Feature Label Feature Label Feature Label Feature Label

D1ApEn Yes D1RMS No D1FuEn No D1Hurst Yes

D2ApEn Yes D2RMS No D2FuEn No D2Hurst No

D3ApEn Yes D3RMS Yes D3FuEn Yes D3Hurst Yes

D4ApEn No D4RMS Yes D4FuEn Yes D4Hurst Yes

D5ApEn No D5RMS Yes D5FuEn Yes D5Hurst No

A5ApEn No A5RMS No A5FuEn No A5Hurst No
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reduced the dimensionality of EEG signals, enhancing 
the efficiency of subsequent classification algorithms, 
both KST and MWUT are statistical testing methods 

primarily assessing the significance of feature distribu-
tions, which may struggle with complex nonlinear rela-
tionships, limiting their performance in high-dimensional 

Fig. 15  Comparison of accuracy results before and after feature selection

Fig. 16  Data distribution of the results of the twenty experiments



Page 23 of 28Cao et al. BMC Medical Informatics and Decision Making            (2025) 25:6 	

complex data. In contrast, the SVM-REF used in our study 
effectively handles nonlinear problems, providing a com-
parative advantage. References [60] and [41] both utilized 
DWT to decompose EEG signals. The former extracted 
temporal, spectral, nonlinear, and pattern features, using 
Information Gain (InfoGain) and variance analysis strate-
gies to select the most distinguishing features. The latter 
extracted nonlinear features and employed random forest 
techniques for feature selection. EEG signals exhibit high 
complexity and nonlinearity; the combination of various 
features, especially those including nonlinear characteris-
tics, can effectively capture subtle changes in brain activity. 
This feature combination can deeply reflect the dynamic 
characteristics exhibited by the brain in different states. In 
our study, we combined time–frequency domain features 
and nonlinear features, using SVM-REF, which efficiently 
addresses nonlinear issues, for feature selection, achiev-
ing better classification results. In Ref. [45], no additional 
preprocessing was performed, and the CNN-LSTM model 
was directly used to classify the raw signals, yielding good 
binary classification results. However, some preprocessing 
can enhance the distinguishability of the signals, thereby 
improving classification outcomes. Reference [61] pro-
posed a neural network recognition method based on a 
Self-attention Temporal Convolutional Network (TCN-
SA). It includes two main components: one for extracting 
time-varying features from EEG signals using TCN, fol-
lowed by a self-attention layer that assigns importance to 

Fig. 17  Standard deviation of the results of twenty experiments

Table 10  Results of assessment indicators on the CHB-MIT 
dataset

Case Accuracy Sensitivity Specificity Precision F1-score

CHB01 99.30 99.21 99.52 99.57 99.37

CHB02 97.78 97.14 100.00 100.00 98.33

CHB03 99.23 98.70 99.55 99.44 99.04

CHB04 98.91 98.99 98.89 99.00 98.97

CHB05 99.82 99.70 100.00 100.00 99.85

CHB06 98.67 98.33 98.57 98.89 98.50

CHB07 99.06 98.22 100.00 100.00 99.08

CHB08 99.01 99.14 98.82 98.97 99.05

CHB09 99.26 98.56 100.00 100.00 99.26

CHB10 99.09 98.50 99.62 99.44 98.96

CHB11 99.38 99.32 99.49 99.48 99.39

CHB12 98.84 97.99 99.73 99.72 98.84

CHB13 97.91 97.35 98.72 98.51 97.87

CHB14 98.09 96.73 98.75 98.89 97.68

CHB15 98.13 97.69 98.56 98.61 98.14

CHB16 93.33 91.67 96.67 97.50 93.71

CHB17 98.28 98.19 98.92 98.26 98.16

CHB18 98.39 97.86 98.81 98.58 98.19

CHB19 97.83 95.46 100.00 100.00 97.54

CHB20 99.15 98.56 100.00 100.00 99.26

CHB21 97.37 97.41 98.46 97.50 97.21

CHB22 97.50 96.07 99.33 98.33 97.02

CHB23 99.52 99.44 99.50 99.57 99.49

Average 98.43 97.84 99.21 99.14 98.39



Page 24 of 28Cao et al. BMC Medical Informatics and Decision Making            (2025) 25:6 

these features. By focusing on key features, the classifica-
tion accuracy of epilepsy detection is improved.

It is well known that the EEG signals from the Bonn data-
set and the New Delhi dataset have been manually pro-
cessed, such as through filtering and denoising, while the 
EEG signals from the CHB-MIT dataset have not undergone 
any additional processing. Therefore, the EEG recordings 
from the CHB-MIT dataset largely reflect clinical realities. 

In this experiment, we conducted additional experiments 
using the CHB-MIT dataset to demonstrate that the method 
we proposed has good generalization capabilities and clini-
cal application potential. To evaluate the usability of the 
proposed epilepsy seizure detection method, Table  12 lists 
comparisons with other literature that has used the CHB-
MIT EEG dataset in recent years. Reference [62] utilized 
time and frequency features of EEG signals for seizure 

Table 11  Comparison of findings based on the Bonn and New Delhi dataset

Reference Year Strategies Case Accuracy (%)

 [58] 2018 EMD + Hilbert Transform + SVM A-D-E
AB-CD-E

85.00
83.00

 [59] 2021 Cov–Det + KST-MWUT + AB–BP–NN C-E
D-E
AB-E
CD-E
ACD-E
ABCD-E

98.50
99.00
98.00
98.20
98.00
98.50

 [35] 2021 TQWT + (Statistical + Frequency + 
Fractal and Entropy Features) + CNN–RNN

C-E
D-E

99.51
99.82

 [60] 2022 DWT + InfoGain and Variance + FRNN C-E
D-E
CD-E

99.67
99.50
98.00

 [41] 2023 DWT + Entropy Features + RF + CNN A-E
B-E
AD-E
BD-E
ABC-E
ABD-E
BCD-E
Interictal-Ictal
Preictal-Ictal
Non-ictal-Ictal

99.30
98.10
99.28
97.46
98.95
97.30
97.65
100.00
97.33
98.33

 [45] 2023 CNN-LSTM C-E
D-E
AB-E
CD-E
ABCD-E

98.20
97.60
98.30
97.90
98.70

 [61] 2024 TCN-SA A-E
B-E

97.37
93.50

Proposed Method 2024 DWT + (Time domain + Non-linear Features) + SVM-
REF + CNN-Bi-LSTM

A-E
B-E
C-E
D-E
AB-E
AC-E
AD-E
BC-E
BD-E
CD-E
ABC-E
ABD-E
ACD-E
BCD-E
ABCD-E
A-D-E
AB-CD-E
Interictal-Ictal
Preictal-Ictal
Non-ictal-Ictal

99.50
98.17
99.75
100.00
98.60
99.33
99.61
98.28
97.94
99.11
99.08
98.17
99.50
98.08
98.93
96.19
95.71
100.00
98.83
99.67
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states and classified seven selected cases using a fuzzy clas-
sifier. However, the small sample size raised concerns about 
potential sample bias affecting the results. Reference [63] 
achieved high accuracy in 21 cases by employing a channel-
embedded spectral-temporal squeezing excitation network 
and SVM. Additionally, Reference [64] demonstrated signifi-
cant accuracy in 23 cases using discrete wavelet transform, 
a compatibility framework, and a Convolutional Neural 
Network-Bidirectional Long Short-Term Memory-Attention 
Mechanism (CNN-Bi-LSTM-AM) model. Reference [65] 
adopted a custom convolutional neural network, exhaustive 
random forests, and an RNN-Bi-LSTM model framework, 
achieving 98% classification accuracy across all 24 patients. 
In Ref. [66], researchers utilized wavelet transform to decom-
pose the signals into five levels, obtaining features of different 
frequency components and extracting a series of time–fre-
quency features from the wavelet coefficients. These differ-
ent features were then used to train a multi-channel Long 
Short-Term Memory-like Spiking Neural P (LSTM-SNP) 
model, achieving an average accuracy of 98.25%.

In summary, compared to previous research, this 
study demonstrates significant innovative advantages. 
We innovatively integrated time–frequency domain fea-
tures with nonlinear features and employed SVM-RFE 
technology for feature selection, successfully addressing 
the challenges posed by nonlinear problems and signifi-
cantly enhancing classification performance. By conduct-
ing DWT decomposition on the original EEG signals, we 
extracted diversified features from various sub-band sig-
nals, providing a richer source of information for epilepsy 
detection. In terms of classification model construction, 
we adopted the CNN-Bi-LSTM model, which combines 
the advantages of CNN in spatial feature extraction with 
the capabilities of Bi-LSTM in time series modeling, 
thereby greatly enhancing the feature representation abil-
ity of EEG signals and further improving classification 
accuracy. During the experimental validation phase, we 
not only achieved excellent results on the Bonn and New 
Delhi datasets, but also demonstrated outstanding gen-
eralization ability and stability on the more challenging 
CHB-MIT dataset, further validating the effectiveness 
and practicality of our method.

Conclusion
Epilepsy is a prevalent neurological disorder that imposes 
significant distress. The detection of epilepsy seizure is a 
crucial undertaking, as accurate classification plays a vital 
role in effectively managing this condition. In this study, 
DWT technology was applied to decompose the original 
EEG signals. Time–frequency domain features and nonlin-
ear features were extracted from the decomposed sub-band 
signals. To eliminate redundant features, the SVM-RFE 
strategy was employed to select the most distinguishing 
features. Finally, CNN-Bi-LSTM was used for the classifica-
tion of epileptic states. The research was evaluated on the 
Bonn and New Delhi datasets using accuracy, sensitivity, 
specificity, precision, and F1-score metrics. In the binary 
classification task based on the Bonn dataset, group D-E 
achieves 100% accuracy, 100% sensitivity, 100% specificity, 
100% precision, and 100% F1-score. Similarly, in the binary 
classification task based on the New Delhi dataset, group 
Interictal-Ictal achieves 100% accuracy, 100% sensitivity, 
100% specificity, 100% precision, and 100% F1-score. In the 
three-classification task, the A-D-E group achieves 96.19% 
accuracy, 95.08% sensitivity, 97.34% specificity, 97.49% pre-
cision, and 96.18% F1-score. In addition, the experiments 
verify the necessity of feature selection and the stability of 
the CNN-Bi-LSTM model. Furthermore, we confirmed the 
efficacy of our methodology on the larger and more clini-
cally pertinent CHB-MIT dataset, achieving remarkable 
results with an average accuracy of 98.43%, a sensitivity of 
97.84%, a specificity of 99.21%, a precision of 99.14%, and 
an F1-score of 98.39% across all 23 cases. However, this 
study also has certain limitations. The CNN-Bi-LSTM 
model used in this study, while showing outstanding per-
formance, has a high computational complexity and a large 
number of model parameters, which may lead to lower 
computational efficiency and real-time issues in practi-
cal applications. Therefore, future research will focus on 
exploring lightweight deep learning models to improve 
real-time and computational efficiency, especially when 
deploying on resource-constrained devices.

In summary, the detection method proposed in this 
study has achieved excellent results on the existing data-
sets and shows good application potential. However, to 

Table 12  Comparison of findings based on the CHB-MIT dataset

Reference Year Strategies # of patients Accuracy (%)

 [62] 2021 Time and frequency domain feature + fuzzy classifier 7 96.48

 [63] 2020 Channel-embedding spectral-temporal squeeze and excitation network + SVM 21 95.96

 [64] 2022 DWT + compatibility framework + CNN- Bi-LSTM-AM 23 96.87

 [65] 2023 Customized CNN + exhaustive random forest + RNN-Bi-LSTM 24 98.00

 [66] 2024 DWT + time–frequency domain features + LSTM-SNP 23 98.25

Proposed Method 2024 DWT + (Time domain + Non-linear Features) + SVM-REF + CNN-Bi-LSTM 23 98.43
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ensure the reliability of this method in practical appli-
cations, future research will further address the limi-
tations present in this study and explore new model 
optimization strategies and validation methods. Fur-
thermore, it is important to explore its practical applica-
tion effects in clinical practice. This will help to better 
assess the performance of the method in real clinical 
environments, ensuring that it meets patient needs and 
enhances the effectiveness and safety of treatment.
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