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Purpose. To identify mRNA expression-based stemness index- (mRNAsi-) related genes and build an mRNAsi-related risk
signature for endometrial cancer.Methods. We collected mRNAsi data of endometrial cancer samples from+e Cancer Genome
Atlas (TCGA) and analyzed their relationship with the main clinicopathological characteristics and prognosis of endometrial
cancer patients. We screened the top 50% of the genes in TCGA for weighted gene correlation network analysis (WGCNA) to
explore mRNAsi-related gene sets. Among these mRNAsi-related genes, we further screened for those related to the prognosis of
endometrial cancer patients via univariate Cox regression analysis and least absolute shrinkage and selection operator (LASSO)
regression analysis. Using stepwise multivariate Cox regression analysis, a stemness index-related risk signature was constructed.
Finally, we identified potential prognostic biomarkers for endometrial cancer by combining the GEO database and immuno-
histochemical staining. Results. +e mRNAsi of endometrial cancer samples was significantly higher than that of normal samples
and was related to the International Federation of Gynecology and Obstetrics (FIGO) stage, pathological grade, postoperative
tumor status, and overall survival of endometrial cancer patients.We identified 21mRNAsi-related genemodules, and 1,324 genes
were obtained from the most relevant module. TCGA samples were divided into training and validation cohorts, and the training
cohort was used to construct a nine-mRNAsi-related gene signature (B3GAT2, CD3EAP, DMC1, FRMPD3, LINC01224,
LINC02068, LY6H, NR6A1, and TLE2). High-risk and low-risk patients had significant prognostic differences, and the risk
signature could accurately predict their 1-, 3-, and 5-year survival. +e nomogram composed of risk score and multiple
clinicopathological features could accurately predict 1-, 3-, and 5-year survival. Finally, CD3EAP was found to be a novel
prognostic biomarker for endometrial cancer. Conclusion. Endometrial cancer cell stemness is related to patient prognosis. +e
nine-gene risk signature is an independent prognostic factor and can accurately predict endometrial cancer patient prognosis.

1. Introduction

Endometrial cancer is the sixth most common cancer among
women worldwide, second only to cervical cancer in the
incidence of gynecological malignant tumors [1], and its
incidence continues to increase [2]. +e International Fed-
eration of Gynecology andObstetrics (FIGO) stage is themost
important prognostic factor for endometrial cancer. +e 5-
year survival rate of patients in stage I/II is 74–91%, while that
of patients in stages III and IV is only 57–66% and 20–26%,

respectively [3]. As approximately 90% of endometrial cancer
patients typically have early clinical symptoms, such as ab-
normal vaginal bleeding, approximately 75% of patients can
be diagnosed and treated at an early stage [4]. However, some
patients with early endometrial cancer also have a higher risk
of recurrence, and approximately 18% die from subsequent
recurring diseases [4].+erefore, it is particularly important to
explore predictive prognostic markers and construct prog-
nostic models to help clinicians prospectively predict patient
prognosis and treat them accordingly.

Hindawi
Journal of Oncology
Volume 2021, Article ID 6653247, 17 pages
https://doi.org/10.1155/2021/6653247

mailto:medecin@126.com
https://orcid.org/0000-0002-0814-5816
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/6653247


Endometrial cancer stem cells (ECSCs) can initiate
cloning, self-renewal, proliferation, and differentiation and
can form tumors that can be serially passaged in vivo [5].
Isolating and identifying ECSC biomarkers and further
studying their role in the occurrence and development of
endometrial cancer may provide new methods for treating
endometrial cancer. Many studies have confirmed that
targeting CD55 [6], SMOC-2 [7], and other ECSC stemness
markers can help overcome chemotherapy resistance and
inhibit tumor cell proliferation. However, the molecular
mechanism driving stemness cell presence and maintenance
in endometrial cancer remains unclear. Malta et al. used a
new one-class logistic regression machine learning algo-
rithm (OCLR) to extract indicators describing the stemness
characteristics of tumor cells, including the mRNA ex-
pression-based stemness index (mRNAsi) [8]. Studies have
explored genes related to mRNAsi in a variety of cancers and
have analyzed the effects of these genes on cancer patient
prognosis [9, 10].

In this study, we aimed to establish an mRNAsi-related
risk signature for endometrial cancer. Based on +e Cancer
Genome Atlas (TCGA) endometrial cancer database, we
evaluated the association between the mRNAsi and the
clinicopathological characteristics and prognosis of endo-
metrial cancer patients. We then constructed mRNAsi-re-
lated gene modules through weighted gene correlation
network analysis (WGCNA). +rough univariate Cox re-
gression analysis, we screened out genes related to endo-
metrial cancer patient prognosis from the brown modules,
which have the strongest correlation with the mRNAsi.
Further genetic screening was carried out through least
absolute shrinkage and selection operator (LASSO) re-
gression analysis and stepwise multivariate Cox regression
analysis, and the mRNAsi-related risk signature was con-
structed and validated in both the testing and entire cohorts.
+e GEO database and immunohistochemical staining
analysis indicated that CD3EAP could be a potential
prognostic biomarker for endometrial cancer patients. We
explored the genes related to endometrial cancer stemness
and constructed a stemness index-related risk signature.+is
signature provides ideas for exploring the mechanism of
tumor stem cell existence and maintenance in endometrial
cancer and also provides a new means for predicting en-
dometrial cancer patient prognosis.

2. Materials and Methods

2.1. Data Acquisition. +e RNA expression data (RNA-seq
HTSeq-Counts) and corresponding clinical data of the
TCGA endometrial cancer database were downloaded from
UCSC Xena (https://xenabrowser.net), including 548 en-
dometrial cancer samples and 35 normal endometrial
samples. In a previous study, Malta et al. used an OCLR to
calculate the mRNAsi of endometrial samples in the TCGA
endometrial cancer database, and the mRNAsi data of the
samples used in this study were obtained from this research
[8]. +e expression profile GSE63678 [11], including 7 cases
of endometrial cancer and 5 cases of normal endometrium,

was downloaded from the GEO database (https://www.ncbi.
nlm.nih.gov/geo/) and used for verification.

2.2. Weighted Gene Correlation Network Analysis. We used
the “WGCNA” package [12] in R language (v3.6.1) to
construct the coexpression network of the top 50% genes in
the TCGA endometrial cancer database. +e good-
SamplesGenes function was used to delete genes with
missing values.+en, 548 tumor samples were clustered, and
46 outliers were removed, using 260 as the cut line.We chose
4 as the optimal soft threshold to enhance matrix similarity
and construct a coexpression network.+e adjacency matrix
was further transformed into topological overlap matrix
(TOM) to detect the genetic connectivity in the network.
Finally, average linkage hierarchy clustering was carried out
based on the differences in the TOM.+e gene tree was then
divided into different modules using the dynamic shear
method (the minimum number of genes in each module was
set to 30), and theMEDiss+res was set to 0.25 to cluster and
merge similar modules.

2.3. Expression and Functional Enrichment Analysis. We
performed gene ontology (GO) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) functional enrichment ana-
lyses of the mRNAsi-related genes to explore their functions
and potential participating pathways. P< 0.01 and q< 0.01
were defined as statistically significant. +e results of the
enrichment analysis were visualized using the “ggplot” R
package.

2.4. Construction of a Prognostic Signature in the Training
Cohort. We randomly divided the endometrial cancer
samples (524 cancer samples, after removing the 24 samples
without follow-up information) from the TCGA database
into the training cohort and the testing cohort at a ratio of 7 :
3 (368 and 156 samples, respectively).

A univariate Cox regression analysis of key genes in the
training cohort was performed using the “survival” package
to identify genes significantly associated with overall survival
(P< 0.05). +en, using the “glmnet” R package, the LASSO
regression model was used to reduce the dimensionality of
candidate genes according to the best penalty factor (λ) [13].
Stepwise multivariate Cox regression analysis was subse-
quently performed to further screen genes and construct a
risk signature. Finally, the risk score of each patient was
calculated using the following formula:

risk score � 􏽘
n

i�1
βi × EXPi, (1)

where n represents the number of genes in the risk signature,
β represents the coefficient of each gene, and EXP is the
expression level of each gene.

We then used the median value of the risk score as the
cutoff value and divided the samples in the TCGA database
into high-risk and low-risk groups. +e Kaplan–Meier
method was used to analyze and assess the difference in
overall survival rates between the two groups. +e
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“survivalROC” R package was then used to plot ROC to
determine whether the risk score can accurately predict
patient survival status. Finally, the risk score maps, survival
status maps, and gene expression heat maps of the high-risk
and low-risk groups were drawn. +is was performed to
visualize the difference in survival between the two groups of
patients and the expression trend distribution of key genes.

2.5. Prognostic Value of the Nine-Gene Signature. We sought
to evaluate whether the risk signature can affect endometrial
cancer patient prognosis as an independent risk factor. We
used the “survival” and “SurvMiner” R packs for the training
cohort to conduct univariate and multivariate Cox regres-
sion analyses for risk score, age, FIGO stage, pathological
grade, myometrial invasion, and other clinical characteristic
parameters.

To determine the clinical application of the survival
prediction model, we used the “rms,” “foreign,” and “sur-
vival” R packages to draw a nomogram based on the risk
score and four clinicopathological factors. +is allowed the
prediction of the 1-, 3-, and 5-year overall survival rates. +e
accuracy of the nomogram was quantified by the concor-
dance index (c-index) [14]. A c-index between 0.50 and 0.70
represents low accuracy, a value between 0.71 and 0.90
represents medium accuracy, and a value greater than 0.90
represents high accuracy. We also plotted calibration curves
to evaluate the consistency between the overall survival rate,
as predicted by the nomogram, and the actual overall sur-
vival rate (1, 3, and 5 years).

2.6. Further Validation of the Prognostic Signature in the
Testing and Entire Cohorts. We divided the testing cohort
and the entire cohort into high- and low-risk groups
according to the same cutoff value and used the
Kaplan–Meier method to evaluate the prognostic difference
between the two groups. We then used the ROC to evaluate
the ability of the risk score to predict the 1-, 3-, and 5-year
survival rates in the entire testing cohort. In addition, we
drew the risk score map, survival status map, and gene
expression heat map of patients in the high-risk and low-risk
groups to visualize the difference in survival between the two
groups and the key gene expression trends.

2.7. Sample Sources and Clinical Data. Paraffin samples and
clinical data of patients with endometrial cancer admitted
from 2008 to 2014 in the Shengjing Hospital of China
Medical University were collected. All the included samples
were diagnosed as endometrial tumors by histopathology. A
total of 63 patients were enrolled, including 54 cases of
endometrial cancer, 4 cases of atypical hyperplasia endo-
metrium, and 5 normal controls (from which normal en-
dometrial samples were collected). +e median ages of the
above three groups were 57.5 years (33–69 years), 42.5 years
(33–49 years), and 46 years (41–53 years), respectively. +e
median age difference between the three groups was not
statistically significant (P> 0.05). Among the 54 patients
with malignant tumors, 29 had well-moderate

differentiation and 25 samples had poor differentiation.
According to the FIGO staging (FIGO 2009), 25 patients
were at stages I–II, and 29 patients were at stages III–IV. In
addition, there were 28 cases with myometrial invasion of
less than 50% and 26 cases with myometrial invasion of
greater than 50%. +is study was approved by the Ethics
Committee of China Medical University.

2.8. Immunohistochemical Staining. Endometrial tissue
paraffin blocks used for immunohistochemical staining were
processed into 5 μm thick sections. CD3EAP expression was
detected using a streptavidin-peroxidase (SP) method.
Human rectal cancer tissue slices showing CD3EAP ex-
pression were used as positive controls, phosphate-buffered
saline was used instead of the antibody as a negative control,
and each batch of slices was analyzed in parallel with positive
and negative control slices. Polyclonal antibody against
CD3EAP (Atlas Antibodies, Sweden; 1 : 500) was used to
evaluate the expression of CD3EAP. Staining steps were
performed using the SP kit. Staining of the membrane and
cytoplasm with brown-yellow particles was considered to
indicate positive CD3EAP staining. +e staining intensity
was scored as follows: nonstained, 0; light yellow, 1; brown-
yellow, 2; and dark brown, 3.+e stained area was calculated
as the average percentage of positively stained cells in 5
random high-powered fields, with positively stained per-
centages of <5%, 5–25%, 26–50%, 51–75%, and >75% rated
at 0, 1, 2, 3, and 4 points, receptively. +e final staining score
of each sample is the product of the above two scores: 0–2
scores (−), 3–4 scores (+), 5–8 scores (++), and 9–12 scores
(+++). Among them, 3–12 scores were defined as positive
and 5–12 scores were defined as high positive. Each tissue
section was reviewed independently by two researchers to
eliminate scoring error.

3. Statistical Analysis

Statistical analysis of measurement data was performed by a
t-test and visualized by the “ggpubr” and “ggplot2” R
packages in R language (v3.6.1), whereas a chi-square test
was used for statistical analysis of count data. Kaplan–Meier
analysis and a log-rank test were used for survival analysis
using the “survival” and “survminer” R packages.+e critical
mRNAsi scores and key gene expression levels were grouped
using the median values. P< 0.05 was defined as statistically
significant.

4. Results

4.1. mRNA Expression-Based Stemness Index in Uterine
Corpus Endometrial Carcinoma. +e mRNAsi evaluates the
similarity between tumor cells and stem cells. TCGA da-
tabase was used to analyze the difference in mRNAsi be-
tween endometrial carcinoma tissues and normal
endometrial tissues. We also evaluated the correlation
among the mRNAsi, clinicopathological features (including
pathological grade, FIGO stage, postoperative tumor status,
and myometrial invasion), and endometrial carcinoma
patient prognosis. +e mRNAsi of endometrial carcinoma
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was significantly higher than that of normal endometrium
(P< 2.22×10−16; Figure 1(a)). In addition, a high mRNAsi
was associated with poor pathological differentiation
(Figure 1(b)), a later tumor stage (Figure 1(c)), and post-
operative tumor recurrence (P � 0.003, Figure 1(d)). +e
mRNAsi did not have a significant correlation with the
degree of myometrial invasion of endometrial cancer
(P � 0.053, Figure 1(e)). Finally, Kaplan–Meier analysis
found that a high mRNAsi was associated with poor overall
survival of endometrial cancer patients (P � 0.046,
Figure 1(f)). +ese results indicate that the mRNAsi is
significantly related to the occurrence, clinicopathological
characteristics, and prognosis of endometrial cancer.

4.2. Identification of mRNAsi-Related Modules and Genes.
We first clustered the endometrial cancer samples in the
TCGA database. After removing 46 outliers, the remaining
502 endometrial cancer samples were entered for subsequent
analysis (Figure 2(a)). +e cutting line was 260. As shown in
Figure 2(b), β� 4 was the soft threshold to cluster genes into
21 different modules (Figure 2(c)). We analyzed the cor-
relation between these 21 gene modules and mRNAsi and
epigenetically regulated mRNAsi (EREG-mRNAsi). Among
them, the brown module (R2 � 0.84, P< 0.001) had the
strongest positive correlation with the mRNAsi and EREG-
mRNAsi, while the black module (R2 � −0.65, P< 0.001) and
the purple module (R2 � −0.31, P< 0.001) had the strongest
negative correlation with mRNAsi and EREG-mRNAsi,
respectively (Figure 2(d)). +e 1324 genes in the brown
module are related to the mRNAsi and EREG-mRNAsi of
endometrial cancer, and these genes were used for subse-
quent risk signature establishment (Figure 2(e), Supple-
mentary Table 1).

4.3. Function Analysis of mRNAsi-Related Genes. To explore
the biological functions of mRNAsi-related genes and their
associated pathways, we performed GO function annotation
and KEGG pathway enrichment analysis on 1,324 genes in
the brown module. +e results of GO function annotation
suggest that these genes are mainly related to basic cell
functions, such as nuclear division, chromosome segrega-
tion, and DNA replication (Figure 2(f)). +e results of
KEGG pathway enrichment analysis suggest that the genes
are mainly involved in the cell cycle, oocyte meiosis, and the
p53 signaling pathway (Figure 2(g)).

4.4. Establishment and Evaluation of anmRNAsi-Related Risk
Signature inEndometrialCancer. +e above analysis showed
that high mRNAsi is related to poor overall survival in
endometrial cancer patients. We sought to evaluate the
prognostic role of the mRNAsi-related genes in endometrial
cancer and screen key genes to develop a risk signature. To
this end, we randomly divided the 524 endometrial cancer
samples in the TCGA database (postexclusion of the 24
samples that lacked follow-up information) into training
and testing cohorts at a ratio of 7 : 3 (368 and 156 samples,
respectively).

4.5. Identification of Genes Related to the Overall Survival of
Endometrial Cancer Patients in the Training Cohort. In the
training cohort, univariate Cox regression analysis was used
to evaluate the prognostic effects of 1,324 mRNAsi-related
genes in endometrial cancer. With P< 0.05 as the standard,
504 genes related to the overall survival of endometrial
cancer patients were screened (Supplementary Table 2).

4.6. Construction of a Risk Signature. Next, LASSO regres-
sion analysis was performed on the 504 prognostic-related
genes in the training cohort (Figures 3(a) and 3(b)).
Fourteen genes were screened for subsequent stepwise
multivariate Cox regression analysis, and nine genes were
screened to construct the risk signature (Table 1). Among
these nine genes, B3GAT2, CD3EAP, FRMPD3, LINC01224,
LINC02068, LY6H, and NR6A1 are risk-associated genes
(HR> 1), while DMC1 and TLE2 are protective genes
(HR< 1). +e endometrial cancer samples in the TCGA
database were divided into high and low expression groups
according to the median gene expression value. +e results
of Kaplan–Meier prognostic analysis showed that high ex-
pression of the risk-associated genes (B3GAT2, CD3EAP,
FRMPD3, LINC01224, LINC02068, LY6H, and NR6A1) is
related to poor prognosis in endometrial cancer patients
(P< 0.05, Supplementary Figure 1). Among the protective
genes, there was no significant correlation between high
DMC1 expression and endometrial cancer patient prognosis
(P � 0.10, Supplementary Figure 1), while patients with high
TLE2 expression had significantly better prognosis
(P � 0.0014, Supplementary Figure 1). +ese results are
consistent with the results of the risk signature.

4.7. Evaluation of the Efficacy of the Nine-Gene Risk Signature
in Predicting Endometrial Cancer Patient Survival. +e risk
score of the patients was calculated using the following
formula:

Risk score� (0.21068∗ expression value of B3GAT2) +
(0.39158∗ expression value of CD3EAP) + (−0.37543∗ ex-
pression value of DMC1) + (0.143698∗ expression value of
FRMPD3) + (0.116141∗ expression value of LINC01224) +
(0.145936∗ expression value of LINC02068) + (0.144605∗
expression value of LY6H) + (0.161021∗ expression value of
NR6A1) + (−0.28575∗ expression value of TLE2).

According to the median risk score, we divided the
training cohort samples into high-risk and low-risk groups
(Figure 3(c)). +ere were more deaths in the high-risk group
(Figure 3(c)). Among the nine genes constituting the risk
signature, DMC1 and TLE2 showed a decreasing expression
trend in the high-risk group samples, while the remaining
seven genes showed a higher expression trend (Figure 3(c)).
Kaplan–Meier survival analysis showed that patients in the
high-risk group had significantly poorer overall survival
than those in the low-risk group (P � 1.766×10−8,
Figure 3(d)). Next, we used a time-dependent ROC to assess
the predictive efficacy of this risk signature on survival rates.
+e results showed that the area under the curve (AUC)
values of the risk signature for predicting 1-, 3-, and 5-year
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survival rates in the training cohort were 0.832, 0.850, and
0.850, respectively (Figure 3(e)).

4.8. Evaluation of the Clinical Application Value of the Nine-
Gene Risk Signature. We sought to assess whether the risk
score of the corresponding signature can be used as an
independent risk factor affecting endometrial cancer patient
prognosis. We, therefore, performed univariate and multi-
variate Cox regression analyses on the risk score and clinical
feature parameters in the training cohort. +e results of
univariate Cox regression analysis showed that the FIGO
stage, pathological grade, myometrial invasion, and risk
score can significantly affect endometrial cancer patient
prognosis. Further multivariate Cox regression analysis
showed that the FIGO stage, pathological grade, and risk
scores are independent risk factors affecting patient prog-
nosis (Figure 4(a)). Based on the above results, we further
constructed a nomogram based on the risk scores and

clinicopathological parameters to predict the 1-, 3-, and 5-
year survival rates of patients. +e risk scores of risk sig-
nature contributed to the largest risk value (range 0–100),
suggesting that this risk signature has the most significant
effect of all nomogram variables (Figure 4(b)).+e c-index of
the nomogram was 0.84835598. Figure 4(c) shows the cal-
ibration curve of the nomogram. +e 1-, 3-, and 5-year
survival rates predicted by the nomogram were relatively
consistent with the actual survival rates. +ese results sug-
gest that the nomogram can play a role in predicting the
survival rates of patients with endometrial cancer.

4.9. Verification and Comparation of the Risk Signature.
According to the cutoff value of the risk score of the training
cohort, we divided the samples of the testing cohort and the
entire cohort into high-risk and low-risk groups
(Figures 5(a) and 5(b)). In both cohorts, the number of
deaths in the high-risk group was greater than that in the

Normal
UCEC

Normal

0.2

0.4

m
RN

A
si

0.6

UCEC
Sample_type

p < 2.22e – 16

(a)

G1

0.2

0.4m
RN

A
si

0.6

0.8

G3G2
Histologic_grade

p < 2.22e – 16
4e – 10

0.068

G1
G2
G3

(b)

Stage I
Stage II

Stage III
Stage IV

Stage I Stage II Stage III Stage IV

0.25

0.50m
RN

A
si

0.75

1.00

Clinical_stage

0.047
0.011

0.26
0.0031

0.052
0.86

(c)

Tumor free
With tumor

Tumor free

0.2

0.3

0.1

0.4

0.5

m
RN

A
si

0.6

With tumor
Cancer_status

0.003

(d)

< 50
≥ 50

< 50

0.2

0.4

m
RN

A
si

0.6

≥ 50
Myometrial_invasion_status

0.053

(e)

1.00

0.75

0.50

Su
rv

iv
al

 p
ro

ba
bi

lit
y

0.25
p = 0.046

0.00

0 5 10
Time in years

15 20

St
ra

ta Low 263
High 263

55
52

3
4

1
1

0
0

Number at risk

0 5 10
Time in years

15 20

mRNAsi low
mRNAsi high

(f )

Figure 1: Relationships between the mRNAsi and the clinicopathological factors and prognosis of UCEC patients. (a) mRNAsi score of
UCEC samples and normal endometrial samples in the TCGA database. (b–e) Relationship between mRNAsi and histologic grade, clinical
stage, tumor status, and myometrial invasion status in the TCGA database. (f ) Kaplan–Meier analysis of the relationship between mRNAsi
and OS in the TCGA database. mRNAsi: mRNA expression-based stemness index; UCEC: uterine corpus endometrial carcinoma; TCGA:
+e Cancer Genome Atlas; OS: overall survival.

Journal of Oncology 5



100

150

200

Sample clustering to detect outliers
H

ei
gh

t

250

300

100

150

200

Sample dendrogram and trait heatmap

H
ei

gh
t

250

mRNAsi

EREG-
mRNAsi

(a)

1200

1000

600

800

M
ea

n 
co

nn
ec

tiv
ity

400

200

0

1.0

0.8

0.6

Sc
al

e f
re

e t
op

ol
og

y 
m

od
el

 fi
t,

sig
ne

d 
R2

0.4

0.2

0.0

5 10
So� threshold (power)

15 20 5 10
So� threshold (power)

Scale independence Mean connectivity

15 20

(b)

Cluster dendrogram

H
ei

gh
t

Dynamic
tree cut
Merged
dynamic

1.0

0.9

0.8

0.7

0.6

0.5

(c)

MEred
MEmagenta

MEbrown
MEgrey60

MEturquoise

MEdarkred
MEdarkgreen

MEmidnightblue
MEsalmon

MElightcyan
MEpurple
MEyellow

MEblue
MEcyan

MElightyellow
MElightgreen
MEroyalblue

MEpink
MEblack

MEtan
MEgrey

mRNAsi

Module-trait relationships

EREG-mRNAsi

1

0.5

0

–0.5

–1

(d)

Figure 2: Continued.

6 Journal of Oncology



low-risk group (Figures 5(a) and 5(b)). Among the nine
genes in the risk signature, the expression of the risk-as-
sociated genes (B3GAT2, CD3EAP, FRMPD3, LINC01224,
LINC02068, LY6H, and NR6A1) increased with an in-
creasing risk score. Meanwhile, the protective genes DMC1
and TLE2 decreased when the risk score increased
(Figures 5(a) and 5(b)). In the testing cohort, the results of
Kaplan–Meier survival analysis showed that high-risk pa-
tients were associated with poor prognosis (P � 6.727e − 03;
Figure 5(c)), and the result of ROC curve showed that the

AUC values of the risk signature for predicting 1-, 3-, and 5-
year survival were 0.629, 0.638, and 0.687 (Figure 5(c)),
respectively. In the entire cohort, we validated the risk
signature and compared it with another stemness-associated
risk signature constructed by Liu et al. [15]. Patients in the
high-risk group divided by our risk signature had a worse
prognosis than did those in the low-risk group
(P � 3.719e − 10; Figure 5(d)), and this difference was more
significant than that of Liu’s risk signature (P � 2.025e − 07).
Furthermore, the AUC values of our risk signature for

0.6

G
en

e s
ig

ni
fic

an
ce

 fo
r m

RN
A

si

0.4

0.2

0.0
0.2 0.4

Module membership in brown module
0.6 0.8

Module membership vs. gene significance
cor = 0.92, p < 1e – 200

0.2 0.4
Module membership in brown module

0.6 0.8

Module membership vs. gene significance
cor = 0.67, p = 2.9e – 173

0.4

G
en

e s
ig

ni
fic

an
ce

 fo
r E

RE
G

-m
RN

A
si

0.3

0.2

0.1

0.0

(e)

Nuclear division
Organelle fission

Chromosome segregation
Nuclear chromosome segregation

Mitotic nuclear division
DNA replication

Sister chromatid segregation
DNA-dependent DNA replication

Chromosomal region
Condensed chromosome

Chromosome, centromeric region
Condensed chromosome, centromeric region

Kinetochore
Spindle

Condensed chromosome kinetochore
Condensed nuclear chromosome

Catalytic activity, acting on DNA
DNA-dependent ATPase activity

 DNA helicase activity
DNA replication origin binding

Single-stranded DNA-dependent ATP-dependent DNA helicase activity
Single-stranded DNA-dependent ATPase activity

ATP-dependent DNA helicase activity
ATP-dependent helicase activity

0 30 60 90

M
F

CC

p. adjust

1e – 07

2e – 07

3e – 07

BP

(f )

Cell cycle

Oocyte meiosis

Cellular senescence

DNA replication

Fanconi anemia pathway

Progesterone-mediated oocyte maturation

Homologous recombination

p53 signaling pathway

Mismatch repair

One carbon pool by folate

0.025 0.050
Gene ratio

0.075

Count

p-adjust

0.01

0.02

10

20

30

40

(g)
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gene modules in UCEC. Different colors represent different gene modules. (d) Correlation between gene modules and clinical traits,
including mRNAsi and EREG-mRNAsi. Each row corresponds to a different gene module. +e numbers in each cell represent the
correlation coefficient and P value. Red and blue cells represent the positive and negative correlations between the gene module and the
index, respectively. +e color intensity indicates the correlation intensity. (e) +e genes in the brown module correlated with mRNAsi (left)
and EREG-mRNAsi (right). (f ) Gene ontology analysis of genes in the brown module. +e color of the bar represents the size of the P value.
+e horizontal axis represents the number of genes involved in the function. (g) KEGG pathway enrichment analysis of genes in the brown
module. +e color of the bubble represents the P value. +e size of the bubble represents the number of genes involved in the pathway. +e
horizontal axis represents the percentage of genes involved in the pathway to all genes of the pathway. mRNAsi: mRNA expression-based
stemness index; UCEC: uterine corpus endometrial carcinoma; KEGG: Kyoto Encyclopedia of Genes and Genomes.
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predicting 1-, 3-, and 5-year survival were 0.734, 0.771, and
0.796 (Figure 5(e)), respectively, while those of Liu’s risk
signature for predicting 1-, 3-, and 5-year survival were
0.636, 0.703, and 0.696 (Figure 5(e)), respectively. +is
means that the accuracy of our signature for predicting the
prognosis of endometrial carcinoma patients is significantly
better than that of Liu’s signature.

4.10.CeRelationshipbetweenRiskScore ofRiskSignatureand
the Clinicopathological Characteristics of Endometrial Cancer
Patients. We used the TCGA database to analyze the

relationship between the risk score and the main clinico-
pathological characteristics of endometrial cancer. Patients
with advanced age (Figure 6(a)), poor differentiation
(Figure 6(b)), and in a later stage (Figure 6(c)) have a higher
risk score, while risk score was not significantly associated
with myometrial invasion (Figure 6(d)).

4.11. Identification of Prognostic Biomarkers from the Nine
Genes Constituting the Risk Signature. We constructed a
prognostic risk signature related to the stemness of endo-
metrial cancer tumor cells. Among the 9 genes in the risk

0.00

0.25

0.50

0.75

Tr
ue

-p
os

iti
ve

 ra
te

1.00

0.00 0.25

AUC

0.50 0.75
False-positive rate

1.00

1-year AUC: 0.832
3-year AUC: 0.850
5-year AUC: 0.850

(e)

Figure 3: Construction of the risk signature in the training cohort. (a) +e LASSO model was adjusted based on the minimum criteria
(regularization parameter λ). +e partial likelihood deviance calculated by LASSO regression cross-validation is plotted as a function of log
(λ). +e ordinate represents the partial likelihood deviation, the abscissa represents log (λ), the number above the abscissa represents the
average number of predictors, and the red dot represents the average deviation value of each model with a given λ. +e vertical lines
represent the upper and lower limits of the deviation. +e two vertical dashed lines from left to right, respectively, represent the minimum
error λ value and the maximum λ value. (b) LASSO coefficient distribution of 504 prognostic-related genes. (c) +e risk score map (top),
survival status map (middle), and gene expression heat map (bottom) of patients in the high-risk and low-risk groups.+e green curve in the
risk score map represents the risk score of the low-risk group, and the red curve represents the risk score of the high-risk group. +e green
dots in the survival status map represent samples whose survival state is alive, while red dots represent samples whose survival state is dead.
In the gene expression heat map, red represents high expression and blue represents low expression; color intensity represents the
magnitude of the difference in gene expression. (d) Kaplan–Meier survival curves of patients in the high-risk and low-risk groups. (e) ROC
curve to evaluate the predictive performance of the risk signature for 1-, 3-, and 5-year overall survival in the training cohort. LASSO: least
absolute shrinkage and selection operator; AUC: area under the curve; ROC: receiver operating characteristic curve.

Table 1: Results of the nine key genes in the multivariable Cox regression analysis.

Genes Coefficient HR HR.95L HR.95H P value
B3GAT2 0.21068 1.234517 0.964433 1.580237 0.094431
CD3EAP 0.39158 1.479317 1.07395 2.037691 0.016548
DMC1 −0.37543 0.686996 0.583058 0.809463 7.27E-06
FRMPD3 0.143698 1.154535 0.966738 1.378814 0.112628
LINC01224 0.116141 1.123154 0.982203 1.284333 0.089603
LINC02068 0.145936 1.157122 0.972205 1.377211 0.10045
LY6H 0.144605 1.155583 1.01099 1.320857 0.033987
NR6A1 0.161021 1.17471 0.937391 1.47211 0.161978
TLE2 −0.28575 0.751448 0.639238 0.883355 0.000534
HR: hazard ratio; L: low; H: high.
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signature, 4 genes showed a significant correlation with
patient prognosis after stepwise multivariate Cox regression
analysis (CD3EAP, DMC1, LY6H, and TLE2, P< 0.05; Ta-
ble 1). Among them, CD3EAP and LY6H are prognostic risk
genes for patients with endometrial cancer (HR> 1, Table 1),
while DMC1 and TLE2 are prognostic protective genes
(HR< 1, Table 1).

+rough the TCGA database and the GSE63678 profile
in the GEO database, we verified the differential expression
of these four genes in normal endometrial and endometrial
cancer tissues at the mRNA level. Combined with the
verification results of TCGA and external databases, we
found that the expression of the prognostic risk gene
CD3EAP in endometrial cancer was significantly increased
(Figure 7(a)). We then validated the protein expression of

CD3EAP by immunohistochemical staining in a total of 63
samples in our hospital, including 54 endometrial cancer
samples, 4 atypical hyperplasia endometrium samples, and 5
normal endometrial samples. +e positive rate of CD3EAP
in endometrial cancer tissue (83.33%) was significantly
higher than that in atypical hyperplasia endometrium
(25.00%) and normal endometrial tissue (0%) (Table 2;
Figure 7(b) shows typical staining images). In addition, we
further analyzed the relationship between the expression of
CD3EAP and the clinicopathological characteristics of en-
dometrial cancer patients in the TCGA database. +e high
expression of CD3EAP in endometrial cancer was related to
a higher pathological grade, later clinical stage, and post-
operative tumor recurrence (Figure 7(c)). +ese results were
partially demonstrated in our patient samples. +e high
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Figure 4: Evaluation of the clinical application value of the risk signature in the training cohort. (a) Univariate and multivariate Cox
regression analyses of risk score and clinicopathological characteristics. (b) +e nomogram constructed by risk scores and clinicopath-
ological characteristics predicts the 1-, 3-, and 5-year survival rates of patients in the training cohort. (c) +e calibration curves describe the
consistency between the nomogram predicted 1-, 3-, and 5-year survival and actual survival. +e red solid line represents the predicted
performance of the nomogram, and the 45° dashed line represents an ideal predictionmodel. A higher overlap between the red solid line and
the dashed line indicates better nomogram prediction performance.
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Figure 5: Validation of the risk signature in the testing and entire cohorts. (a) +e risk score map (top), survival status map (middle), and
gene expression heat map (bottom) of patients in the high-risk and low-risk groups in the testing cohort. (b) +e risk score map (top),
survival status map (middle), and gene expression heat map (bottom) of patients in the high-risk and low-risk groups in the entire cohort.
+e green curve in the risk score map represents the risk score of the low-risk group, and the red curve represents the risk score of the high-
risk group. +e green dots in the survival status map represent samples whose survival state is alive, while red dots represent samples whose
survival state is dead. In the gene expression heat map, red represents high expression and blue represents low expression; color intensity
represents the magnitude of the difference in gene expression. (c) Kaplan–Meier survival and ROC curves of our risk signature in the testing
cohorts. (d) Kaplan–Meier survival curves of our risk signature and that of Liu in the entire cohort. (e) ROC for evaluating the predictive
performance of our risk signature and that of Liu in predicting the 1-, 3-, and 5-year overall survival rates of patients in the entire cohorts.
AUC: area under the curve; ROC: receiver operating characteristic curve.
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positive rate of CD3EAP in endometrial cancer patients was
significantly higher at stages III–IV (55.17%) than at stages
I–II (20.00%) (P � 0.008; Table 3).

To further verify the effect of CD3EAP on the prognosis
of patients with endometrial cancer, all 56 endometrial
cancer patients enrolled from our hospital were followed up:
22 died (40.74%) and 5 were lost to follow-up (9.26%). +e
result of Kaplan–Meier analysis indicated that the high
expression of CD3EAP was significantly correlated with the
poor overall survival of patients with endometrial cancer
(P � 0.00017; Figure 7(d)). +e univariate Cox regression
analyses on the expression of CD3EAP and the clinico-
pathological characteristics of endometrial cancer patients
showed that grade (HR� 3.027, P � 0.015), FIGO stage
(HR� 2.651, P � 0.042), myometrial invasion (HR� 2.447,
P � 0.044), and the expression of CD3EAP (HR� 4.820,
P< 0.001) are significantly correlated with the poor prog-
nosis of patients (Figures 7(e)). +e result of multivariate
Cox regression analyses showed that the expression of
CD3EAP (HR� 4.501, P � 0.004) can be used as an inde-
pendent prognostic factor to predict the survival of patients
with endometrial cancer (Figure 7(f )).

5. Discussion

ECSCs play an important role in the occurrence, develop-
ment, drug resistance, and recurrence of endometrial cancer.
+erefore, identifying genes related to ECSCs and exploring
their potential mechanisms of action will aid in under-
standing the mechanism of endometrial carcinogenesis and
may provide a new direction for cancer treatment. +e
stemness index describes the characteristics of tumor stem
cells. Malta et al. previously calculated the mRNAsi value of
each sample in the TCGA database [8]. In this study, we
explored the difference between the mRNAsi in normal
endometrium and endometrial cancer samples and its re-
lationship with the clinicopathological characteristics of
endometrial cancer patients. As expected, the mRNAsi of
endometrial cancer was significantly higher than that of
normal endometrium.+e mRNAsi was significantly related
to the pathological grade, FIGO stage, and postoperative
tumor status of patients.+ese results are consistent with the
current view that cancer stem cells can affect tumor oc-
currence, differentiation, maintenance, spread, and recur-
rence [16].
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Figure 6: Relationship between risk score and the main clinicopathological characteristics of endometrial cancer. (a–d) Relationship
between risk score and age, pathological grade, International Federation of Gynecology and Obstetrics (FIGO) stage, and myometrial
invasion in endometrial cancer patients.
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+rough WGCNA, we obtained the gene module with
the strongest positive correlation with mRNAsi. Function
and pathway enrichment analyses of the genes in this
module showed that they are mainly involved in the cell
cycle, oocyte meiosis, and p53 signaling pathway. +e cell
cycle is related to the self-renewal of cells, which is consistent

with the characteristics of cancer stem cells. Some stem cell
markers can regulate the cell cycle of endometrial cancer
cells. +e RNA-binding protein Musashi-1 is a human stem
cell marker that maintains the development and regenera-
tion of stem cells. It is highly expressed in endometrial
cancer and can regulate the endometrial cancer cell cycle and
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Figure 7: CD3EAP can be used as a prognostic marker for patients with endometrial cancer. (a) +e differential expression of CD3EAP,
DMC1, LY6H, and TLE2 in TCGA (up) and GSE63678 (down), respectively. (b) Typical immunohistochemical staining images of CD3EAP
expression in 54 cases of endometrial cancer tissues, 4 cases of atypical hyperplasia endometrium, and 5 cases of normal endometrial tissues
(upper: SP∗200, lower: SP∗400). (c) +e relationship between the expression of CD3EAP and the patient pathological grade, clinical stage,
myometrial invasion, and postoperative tumor recurrence status in the TCGA endometrial cancer database. (d) Kaplan–Meier curve of the
effect of CD3EAP on the overall survival of the enrolled endometrial cancer patients. (e, f ) +e results of univariate and multivariate Cox
regression analyses of CD3EAP expression and clinicopathological characteristics of the enrolled endometrial cancer patients. SP: scaled
pixels.

Table 2: CD3EAP expression in endometrial tissues.

Groups Cases
CD3EAP staining

Low High
Positive rates (%) High positive rates (%)

(−) (+) (++) (+++)
Normal 5 5 0 0 0 0 0
Atypical hyperplasia 4 3 1 0 0 25.00 0
Malignant 54 9 24 13 8 83.33∗ 38.89
∗P< 0.05.

Table 3: Relationship between CD3EAP expression and clinicopathological features of 54 endometrial cancer cases.

Characteristics Cases
CD3EAP staining

Low High
Positive rates (%) P value High positive rates (%) P value

(−) (+) (++) (+++)
Age 0.465 0.780
<60 27 6 10 5 6 77.78 40.74
≥60 27 3 14 8 2 88.89 37.04
FIGO stage 0.088 0.008∗
I-II 25 7 13 3 2 72.00 20.00
III-IV 29 2 11 10 6 93.10 55.17
Differentiation 0.329 0.474
Well-moderate 29 3 16 5 5 89.66 34.48
Poor 25 6 8 8 3 76.00 44.00
Myometrial invasion 0.180 0.291
<1/2 28 7 12 4 5 75.00 32.14
≥1/2 26 2 12 9 3 92.31 46.15
∗P< 0.05. FIGO: International Federation of Gynecology and Obstetrics.
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cell apoptosis by interacting with the stem cell-related factor
Notch-1 and its downstream targets (transcription factor
Hes-1 and cell cycle regulator WAF1/CIP1) [17].

Studies have explored the effect of the stemness index on
patient prognosis in glioma [9] and lung cancer [10], and a
risk signature based on mRNAsi-related genes has been
established. +rough Kaplan–Meier analysis, we found that
endometrial cancer patients with a high mRNAsi had sig-
nificantly poorer overall survival (P � 0.046) than patients
with a low mRNAsi. Among mRNAsi-related genes, we
screened and constructed a nine-gene signature based on the
mRNAsi. In the training cohort, testing cohort, and entire
cohort, the risk score was significantly correlated with the
overall survival of patients (P � 1.766×10−8, 6.727×10−3,
and 3.719×10−10, respectively). +e risk score could also
predict the 1-, 3-, and 5-year survival rates of the patients. In
the training cohort, after incorporating the risk score of the
risk signature and some clinicopathological indicators into
univariate and multivariate Cox regression analyses, we
found that the risk score, pathological grade, and FIGO stage
are independent risk factors affecting endometrial cancer
patient prognosis. We constructed a nomogramwith the risk
score and clinicopathological indicators to predict the 1-, 3-,
and 5-year survival rates of patients. +e results showed that
the nomogram had a relatively accurate predictive effect (c-
index� 0.84835598).+is indicates that the risk signature we
constructed can be used with clinicopathological charac-
teristics to assess the prognostic risk of patients, allowing
individualized patient management and treatment.

Among the nine genes in the risk signature, B3GAT2,
CD3EAP, FRMPD3, LINC01224, LINC02068, LY6H, and
NR6A1 are risk-associated genes for endometrial cancer
patients, while DMC1 and TLE2 are protective genes. Some
of the above risk-associated genes have been found to play a
role in cancer. B3GAT2 is hypermethylated in lung cancer
[18] and colorectal cancer [18], and its hypermethylation has
been used in colorectal cancer diagnosis [19]. +e mutation
of CD3EAP is a risk factor for lung cancer [20], and it has
been found to be one of the genes with the highest mutation
rate in hepatoid adenocarcinoma of the stomach [21].
LINC01224 is a long-chain noncoding RNA, and current
studies have shown that its expression is elevated in liver
cancer [22] and epithelial ovarian cancer [23] and promotes
tumor development. +e lymphocyte antigen 6 family
member LY6H has elevated expression in ovarian cancer,
colorectal cancer, gastric cancer, breast cancer, and many
other cancers, and it is related to poor prognosis in cancer
patients [24]. NR6A1 is a nuclear receptor with elevated
expression in prostate cancer and is significantly related to
tumor cell proliferation and cancer stage [25]. However, our
research appears to be the first to identify the role of these
genes in endometrial cancer and tumor cell stemness. Be-
tween the two prognostic genes, studies have shown that
DMC1 expression is reduced in ovarian cancer and is as-
sociated with good patient prognosis [26]. In addition,
studies have shown that DMC1 expression in ovarian cancer
stem cells may enhance the ability of cancer stem cells to
repair DNA, leading to resistance to PARP inhibitors [27].
Research on gliomas also shows that the loss of DMC1 can

inhibit tumor cell growth in mice and prolong their survival
[28]. +erefore, the role of DMC1 in tumors is still con-
troversial. Our research shows that its expression in en-
dometrial cancer may be related to good patient prognosis.
Many studies have shown that TLE2 has a tumor suppressor
effect. Its expression is reduced in bladder cancer and is
associated with better overall survival of patients [29]. In-
hibition of TLE2 expression in ovarian cancer increases the
proportion of side population cells in tumors. +ese newly
generated side population cells have stronger single-cell
cloning ability and tumorigenicity in vivo [30]. Other studies
have shown that TLE2 is downregulated by NDRG1 over-
expression in esophageal squamous cell carcinoma, thereby
promoting tumor occurrence and development by activating
the Wnt signaling pathway [31]. Our research also shows
that TLE2may play a tumor suppressor effect in endometrial
cancer and that it is related to tumor cell stemness.

In addition to being associated with endometrial cancer
patient prognosis, we found that risk scores were associated
with the age, pathological grade, and FIGO stage of patients.
+is is consistent with the results showing that advanced age,
poor differentiation, and higher clinical stage are associated
with poor prognosis of endometrial cancer patients.

Finally, by combining TCGA, GEO database, and our
patient samples, we verified the expression and prognostic
value of key genes in the risk signature. It was found that
CD3EAP could be a novel prognostic biomarker for en-
dometrial cancer patients.

In summary, we analyzed tumor cell stemness-related
genes in endometrial cancer and established an mRNAsi-
related risk signature. +is provides a novel avenue for
studying the mechanism of tumor cell stemness and pre-
dicting endometrial cancer patient prognosis. In addition,
CD3EAP was found to be a potential prognostic biomarker
of endometrial cancer. However, our study had a limitation.
Because the prognostic information of the endometrial
cancer patients cannot be obtained from other databases,
such as GEO and ICGC, we cannot use external datasets to
verify the efficiency of the risk signature. In future studies,
more endometrial samples and detailed clinical information
should be collected for verification.

6. Conclusions

+rough the above analysis, we discovered 1,324 genes closely
related to the characteristics of endometrial cancer stem cells
and constructed a nine-gene risk signature based on these
genes. We showed that this risk signature is an independent
prognostic factor for patients with endometrial cancer. +e
nomogram based on risk score and clinicopathological in-
dicators, such as age, FIGO stage, and pathological grade can
effectively predict the 1-, 3-, and 5-year survival rates of
patients. Furthermore, CD3EAP was identified as a new
prognostic biomarker for endometrial cancer.

Data Availability

+e expression and clinical data in the TCGA endometrial
cancer database analyzed in this study are available in the
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UCSC Xena (https://xenabrowser.net). Previously reported
mRNAsi data were used to support this study and are
available at DOI: 10.1016/j.cell.2018.03.034. +ese prior
studies (and datasets) are cited at relevant places within the
text as references [8]. +e expression profile GSE63678 [14]
in the GEO database (https://www.ncbi.nlm.nih.gov/geo/)
was used to verify the mRNA expression level of the key
genes in our risk signature.
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