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aInstitute of Materials Simulation, Department of Materials Science, Friedrich-Alexander-University Erlangen-Nürnberg, D-90762 Fürth, Germany;
and bDepartment of Life Sciences and Chemistry, Jacobs University Bremen, D-28759 Bremen, Germany

Edited by Terrence J. Sejnowski, Salk Institute for Biological Studies, La Jolla, CA, and approved June 18, 2020 (received for review November 11, 2019)

In models of excitable dynamics on graphs, excitations can travel
in both directions of an undirected link. However, as a striking
interplay of dynamics and network topology, excitations often
establish a directional preference. Some of these cases of “link-
usage asymmetry” are local in nature and can be mechanistically
understood, for instance, from the degree gradient of a link
(i.e., the difference in node degrees at both ends of the link).
Other contributions to the link-usage asymmetry are instead, as
we show, self-organized in nature, and strictly nonlocal. This is
the case for excitation waves, where the preferential propaga-
tion of excitations along a link depends on its orientation with
respect to a hub acting as a source, even if the link in ques-
tion is several steps away from the hub itself. Here, we identify
and quantify the contribution of such self-organized patterns
to link-usage asymmetry and show that they extend to ranges
significantly longer than those ascribed to local patterns. We
introduce a topological characterization, the hub-set-orientation
prevalence of a link, which indicates its average orientation with
respect to the hubs of a graph. Our numerical results show
that the hub-set-orientation prevalence of a link strongly corre-
lates with the preferential usage of the link in the direction of
propagation away from the hub core of the graph. Our method-
ology is embedding-agnostic and allows for the measurement
of wave signals and the sizes of the cores from which they
originate.
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The relationship between structure and function represents
one of the current conceptual hotspots of network theory

(1–5) and some of its most relevant applications (6–9). While
the structure-vs.-function debate was originated, at least using
this denomination, in the context of computational neuroscience,
the ability to predict dynamic patterns starting from topolog-
ical considerations has been for almost two decades among
the aims of network models for epidemiology, social sciences,
transportation infrastructures, and information systems, to name
just a few (10–12).

For two decades, statistical physics has been the core dis-
cipline contributing to the development of minimal models of
graphs with specific statistical properties, novel characterizations
of network topology, and fundamental relationships between
network architecture and dynamics (1, 13–16). This has led to a
productive dialogue with a range of disciplines, where network
concepts have been instrumental in unraveling some organi-
zational principles of the respective systems. Examples range
from systems biology and social sciences to manufacturing and
neuroscience.

In neuroscience, a wide range of investigations explores the
interplay of network topology and excitable dynamics. Two
research foci are particularly prominent: 1) the study of corre-
lations between structural connectivity (i.e., the brain network,
or connectome) and functional connectivity (derived from exci-
tation patterns) (17–21); and 2) the search for network mech-

anisms responsible for self-sustained activity (i.e., for ampli-
fying and maintaining excitations) (22–25). In particular, the
prominence of the so-called rich-club organization in brain net-
works has been variously invoked as a key factor in both of
the above contexts. By rich club, we refer to a limited set of
nodes which, by virtue of their enhanced connectivity or more
broadly defined centrality, play a systematic and predictable
role in the initiation and development of functional activity pat-
terns. The rich-club organization of brain networks has first
been observed in the cortical area network of the cat (26) and
is known to play an important role in the global information
integration in the human connectome (27). Changes in rich-
club organization have been identified in schizophrenia (28) and
Alzheimer’s disease (29, 30), as well as several other patholo-
gies (31, 32). This localized topological structure—a small set of
interconnected nodes with high connectivity and centrality—is
thus hypothesized to be of relevance to the dynamical function of
the network.

Here, we provide evidence that, even in simple network mod-
els, such a localized set can have global dynamical implications.
We show that a global, self-organized excitation pattern can be
predicted locally from a limited set of nodes, the source or hub
set, via the asymmetric usage of links throughout the network.

With their work on reaction-diffusion systems on graphs,
Nakao and Mikhailov (33) have drawn the attention to the
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pattern-forming capabilities of networks. In particular, they
emphasize that the degree heterogeneity of the network is
responsible for important features of the emerging (Turing)
patterns (33). In this way, due to their much-larger-degree het-
erogeneity, Barabási–Albert (BA) graphs can be expected to
display stronger patterns than Erdős–Rényi (ER) graphs. The
phenomenon of self-organized excitation waves around hubs was
discovered by Müller-Linow et al. (34) using the same discrete
model of excitable dynamics as used here. Such patterns have
also been experimentally confirmed in neuronal cultures in vitro
(35). There, the authors attribute the emergence of such periodic
global bursts to the noise-focusing effect facilitated by topolog-
ical features in the network (35). In large-scale simulations of
mammalian thalamocortical systems, one can also observe prop-
agating waves spontaneously emerging at different locations of
the cortex (36). In astrocyte networks, the emergence of calcium
waves has been discussed (37).

We note here that most modeling approaches for complex
networks have been node-centric in nature, i.e., they measure
properties of a network by considering nodes as their elemental
constituents. For instance, centrality measures aim at building a
node hierarchy in a network, ranking nodes according to their
degrees, their path betweenness, or their weights in a spec-
tral decomposition. Interestingly, link-based centrality measures
have received very little attention instead. A notable exception
is the definition of edge betweenness (38) and its recent appli-
cation to failure prediction in network models of materials and
structures under mechanical load (39, 40). Basic phenomena
such as wave propagation, simple in Euclidean geometries, may
need even more complex tools: The systematic advancement of
a wave front implies the systematic usage of certain links, and
systematically in one direction. Understanding how frequently
a given link (ij ) will host the passage of an excitation in each
direction requires a new toolset, which allows one to quantify
how central that link is (i.e., how close to the wave source), but
also how prevalent the wave propagation will be in the i → j
direction rather than in the j → i direction. This type of ori-
ented link centrality should allow one to predict the prevalence
of link usage in a given direction, providing fruitful informa-
tion e.g., for performance-critical systems where link overload
in a given direction may lead to disruption and failure, a type
of information that current models and techniques still cannot
provide.

We address this conceptual gap of a link-centric study of
network dynamics by introducing a structural measure. This
measure is based on oriented link centrality, the set-orientation
prevalence of a link with respect to a set of hubs. Our study is
motivated by the need to quantify wave patterns in networks,
as one of the most prominent forms of self-organized dynamic
patterns. In the simplest representation of such systems, nodes
can be in a susceptible, excited, or refractory state. In Euclidean
geometries, it is easy to visualize propagating fronts of each of
those phases invading one another, in what we commonly iden-
tify as a wave. In complex networks, instead, we do not have
a fixed spatial embedding of the networks, nor do we have a
unique distance on it—in other words, we lack an embedding-
independent way to visualize and measure waves. Our results
show that our newly defined orientation prevalence of a link with
respect to a set of source nodes correlates positively with the
probability of a link to preferentially propagate activity in the
direction away from that source set, within the standard shortest-
path metric. Our results are independent of the choice of graph
embedding—in fact, they do not require any. In passing, we are
able to show essential differences in wave propagation within
BA and ER graphs. For BA graphs, self-organized wave patterns
have been discussed and linked to the graph’s hubs as wave cen-
ters (34). Here, we show that ER graphs do produce waves, too,
although generated by a much larger core.

The phenomenon that in excitable dynamics on graphs some
links are systematically used in a unidirectional fashion has not
been explored in detail. Understanding how such asymmetric
link usage depends on the network architecture and on the
parameters of the dynamic can be expected to provide funda-
mental insight into the relationship of network topology and
dynamics.

Methods
Dynamical Model and Link-Usage Asymmetry. In the following, a three-state
stochastic cellular automaton is used as a stylized model of excitable dynam-
ics. The model operates on a state space of susceptible (S), excited (E), and
refractory (R) elements. Transitions are S→ E if an excitation is in the direct
neighborhood of the node in state S (i.e., the activation probability is one
in our model), E→ R (i.e., the duration of an excitation is one time step);
with the (recovery) probability p, R→ S, leading to a geometric distribution
of refractory periods around an average refractory time of 1/p; with the
(spontaneous activation) probability f , S→ E, even when there is no excita-
tion in the neighborhood. This model (or variants thereof) has been studied
in a range of investigations (34, 41–45).

Simulation runs of this model can then be used to compute the fol-
lowing quantities. Let xi(t)∈{S, E, R} be the state of node i at time t for
SER (susceptible–excited–refractory) dynamics on a network G = (V , E) with
a node set V and a link set E . The network can also be represented via
its adjacency matrix Aij . It is convenient to discuss the excitation pattern
instead:

ci(t) =

{
1, xi(t) = E
0, xi(t) = S∨ R.

In this way, we can define a sequential activation (or signal propagation)
matrix,

C(+)
ij = Ci→j =

∑
t

ci(t)cj(t + 1),

(see also refs. 6 and 43 for details on these quantities). In some cases, it is
more convenient to consider normalized version of this matrix. Let

c∗i =
∑

t

ci(t),

denote the total number of excitations of node i in the time series
under consideration. Then, the normalized quantities σi→j of the sig-
nal propagation matrix are defined as σi→j = Ci→j/min(c∗i , c∗j ). Quanti-
ties in this matrix are normalized such that each entry is between zero
and one. As the dynamics prohibit the excitation of the same node
across multiple time steps, the diagonal elements of this matrix are
zero, σi→j = 0.

The link-usage asymmetry α(ij) is the difference of the entries in the
sequential activation matrix for the “forward direction” (i→ j) and the
“backward direction” (j→ i) of a link (ij), i.e., α(ij) = (σi→j −σj→i)/(σi→j +

σj→i). The vector α(ij) is thus a vector with respect to the link set E . Values
for pairs of nodes that are not a link of the graph are not considered, as
such elements are second-order effects generated by the asymmetries along
the links of the graph.

A high positive value of α(ij) thus means that excitations are traveling
preferentially from node i to node j. A high negative value α(ij) means that
excitations are traveling preferentially from j to i, and a value of α(ij) close
to zero indicates no directional preference, as the contributions of both
directions essentially cancel out.

In Results, we analyze simulations for networks of sizes N = 103 and
N = 104, unless otherwise specified. Each simulation set includes multiple
realizations of a given network model (BA or ER graph, of a fixed size and a
given average degree 〈k〉). For each network realization, the SER dynamics
simulation is repeated for multiple random choices of initial states. Initial
states are assigned as described in ref. 43, as fixed fractions of susceptible,
excited, and refractory nodes. Each simulation set allows us to compute a
set of values α(ij), each one representing the link-usage asymmetry of an
individual link of a given network, averaged across the multiple runs of the
dynamics (multiple initial conditions).

Graph Models and Topological Properties. As network models, we use stan-
dard random (ER) and preferential attachment (BA) graphs. In both cases,
the two parameters are the network size N and the average degree 〈k〉.
All links are labeled according to i> j, while nodes i = 1, 2, . . . , N are
labeled such that ki ≥ kj . In this way, all degree gradients are nonnega-
tive, g = ki − kj ≥ 0. Note that our results do not depend on this choice of

Moretti and Hütt PNAS | August 4, 2020 | vol. 117 | no. 31 | 18333



labeling (see below). All results have also been verified by using a random
labeling of nodes and links.

The quantity π(ij)(H) measures the orientation “prevalence” of a link
with respect to a set of hubs H⊂V . The hub-set-orientation prevalence
counts the number of times a link is perceived as pointing “outward”
from a given hub h∈H minus the number of times the link is perceived
as pointing “inward” to the hub. The formal definition of “pointing out-
ward and inward” is the following: Given a link (ij)∈E ; i, j∈V in the
graph G = G(V , E) and one node h∈H⊂V out of the set of hubs H, we
compute the shortest-path distance from the hub h to the nodes i and
j defining the link, dhi , dhj . If dhi > dhj , the link is considered pointing
inward; if dhi < dhj , the link is considered pointing outward; cases where
dhi = dhj are neutral with respect to this prevalence count; in this case,
the link is oriented tangentially with respect to the hub h. More formally,
the orientation of a link (ij)∈E , i, j∈V with respect to the node h∈V is
given by

ω((ij), h) = Θ (d(i, h)− d(j, h)) [1]

with Θ(x) as the usual step function,

Θ(x) =


1, x> 0
0, x = 0
−1, x< 0

. [2]

The hub-set-orientation prevalence of the link (ij) is then

π(ij)(H) =
∑
h∈H

ω((ij), h). [3]

As in the case with the asymmetry, the prevalence is only evaluated for links
of the graph, i.e., Aij = 0 ⇒ π(ij) = 0. Note that we are assuming a certain
order of representing the (undirected) links of the graph in terms of pairs
of nodes. Considering the previous example of the link (ij) in the graph,
this means that (ij) is present in the list of links and, formally, (ji) is not.
In particular, the sign of π(ij)(H) depends on the ordering of the two nodes
forming the link, π(ij)(H) =−π(ji)(H). This arbitrary assignment of ordering of
nodes in the pair representing a link has no effect on the results presented
here, as it is done consistently for the dynamical assessment of a link (via the
link-usage asymmetry α(ij)) and the topological assessment (via the degree
gradient ki − kj and the prevalence π(ij)).

As for the link-usage asymmetry, each simulation set includes multiple
realizations of a given network model (the same as those used to compute
link-usage asymmetry). For each network realization and for each choice
of the hub-set size, a single value of the hub-set-orientation prevalence is
associated with every link of such network. This allows us to construct a
set of values of π(ij) in a one-to-one correspondence with the values of α(ij)

discussed above.

Pattern Predictability. We show in Results that the hub-set-orientation
prevalence introduced above correlates positively with asymmetric link
usage. To quantify this correlation, we define the “pattern predictability”
as the Pearson correlation coefficient between link-usage asymmetry and
hub-set-orientation prevalence. We recall here that for each simulation set,
and for each choice of the hub set, we compute a set of link asymmetries
and a corresponding set of hub-set-orientation prevalence values, one for
each link. Across network realizations, we identify classes of links character-
ized by the same degree-gradient value. For all links belonging to the same
degree-gradient class g, and for a given hub set H, we compute the Pear-
son correlation coefficient ρg between the values of α(ij) and π(ij)(H) with
i, j∈V , (ij)∈E , and ki − kj = g. The pattern predictability is then defined
as the average of ρg across degree-gradient classes. Pattern predictabil-
ity thus measures how strong the correlation is between the emergence
wave-like excitation patterns and the topological orientation of links with
respect to a restricted set of hub sources. It is by definition embedding-
independent, as it relies solely on the intrinsic shortest-path metric, through
the hub-set-orientation prevalence.

Pattern Strength. The pattern-predictability measure defined above allows
us to generalize the concept of waves to the intrinsic metric of a complex
network, in an embedding-agnostic fashion. The question remains, whether
such waves can actually be detected in the more traditional sense, i.e., as
emanating wave fronts in the Euclidean space, in which the graph is embed-
ded and the functional activity patterns develop. In order to address this
question, we introduce an embedding-dependent measure of wave-signal

strength, which we call “pattern strength.” Given a real networked system
and its spatial embedding S, S defines a d−dimensional Euclidean space,
in which we choose a frame of reference where the origin coincides with
the network center of mass. In polar/spherical coordinates, r identifies the
radial coordinate measured from the center. Starting from simulations for
an individual network realization (single network, multiple realizations of
the dynamics and variation of the initial state), we can identify the mr

nodes and nr = mr (mr − 1)/2 node pairs in the shell of radial coordinate
r for a certain bin size ∆r. The pattern strength at r, z(r), is thus defined
as the difference between the average simultaneous coactivation probabil-
ity for the nr pairs at r and the same probability for a random choice of
nr pairs across the network, normalized by the SD of the probability in the
set of random choices. This definition is equivalent to a statistical z-score,
in that it quantifies simultaneous coactivation in terms of its deviation from
the average behavior (or null hypothesis). Positive values of z(r) thus indi-
cate a node shell which exhibits higher-than-average coactivation, which we
identify as the signature of systematic wave propagation. This definition of
pattern strength requires a spatial embedding of the graph. We here use a
refined version of the standard spring embedding algorithm. Details of our
approach are given in SI Appendix.

Data Availability.
The code used to perform the analyses presented in the current
study and the produced data are available in the public repository
https://figshare.com/projects/Asymmetry/79461.

Results
Illustration of Hub-Set-Orientation Prevalence. We start with the
main topological quantity of our investigation, the hub-set-
orientation prevalence. The set-orientation prevalence of a link
with respect to a set H of hubs quantifies the typical (or
average) orientation of the link (which node of the link is
encountered first?), when passing from each hub in the hub
set to the two nodes forming the link (Methods). Fig. 1 illus-
trates the concept of a hub-set-orientation prevalence for a small
random graph (Fig. 1A) and for two 200-node representatives
of BA and ER graphs, respectively (Fig. 1B). In the exam-
ple in Fig. 1A, only two links have the same orientation with
respect to all |H |=4 hubs and, hence, have maximal prevalence.
These are shown in red in Fig. 1A. Already on this illustra-
tive level, a strong topological difference between BA graphs
(Fig. 1 B, Left) and ER graphs (Fig. 1 B, Right) becomes appar-
ent: In BA graphs, even for intermediate hub-set sizes, typically
many more links have maximal orientation prevalence than for
ER graphs.

On the level of the dynamics, the main quantity of interest is
the link-usage asymmetry. The predictive power of the hub-set-
orientation prevalence for this link-usage asymmetry is the focus
of our subsequent investigation.

Link-Usage Asymmetry in BA and ER Graphs. The main result of our
investigation, the systematically strong pattern predictability—as
quantified by the correlation between hub-set-orientation preva-
lence and link-usage asymmetry—is shown in Fig. 2 for different
networks and parameters of the dynamics. Fig. 2A shows the cor-
relation between asymmetry and prevalence in a BA graph of
1,000 nodes. The corresponding figure for an ER graph is given
in SI Appendix, Fig. S3. As a real-world application, Fig. 2 also
contains results for the human connectome from refs. 17 and 46.
We will discuss these results in detail below.

In order to assess the visual impression from Fig. 2A on a
more quantitative level, we compute the pattern-predictability
individually for each value of the degree gradient (Methods).
For BA graphs, this is depicted in Fig. 2B for different val-
ues of the rate of spontaneous activity, f . Similar results hold
for ER graphs. SI Appendix, Fig. S4 shows typical scatter plots
of link-usage asymmetry vs. hub-set-orientation prevalence for
individual degree-gradient classes.
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Fig. 1. Illustration of the hub-set-orientation prevalence. (A) For a small
random graph (N = 12 nodes, M = 30 links) and a hub-set size of |H|= 4 (with
the hub set H consisting of the |H| highest-degree nodes; shown in red), the
orientation prevalence π(ij)(H) of each link (ij) is computed. Links with max-
imal orientation prevalence |π(ij)(H)|= |H|= 4 are shown in red, and links
with an orientation prevalence of |H| − 1 are shown in light red. (B) Exam-
ples of graphs (Left, BA; Right, ER), for which the links with maximal (red)
or near-maximal (light red) orientation prevalence for an intermediate-size
hub set (|H|= 10; hub-set nodes shown in red) are highlighted.

Here, a purely topological quantity, the hub-set-orientation
prevalence, correlates with a quantity derived from the dynam-
ical excitation patterns, the link-usage asymmetry, even when
we account for the local topological contributions to this asym-
metry by looking at the pattern predictability for each degree
gradient individually. SI Appendix, Movie S1 illustrates our find-
ings using a small BA graph as an example. In this movie,
link-usage asymmetry is depicted in a cumulative fashion, which
highlights that the stable asymmetry pattern emerges from the
iterative action of consecutive waves. In addition to f , three other
parameters affect this result: the hub-set size |H |, the recovery
probability p, and the average node degree 〈k〉. Dependence
of pattern-predictability values for different degree-gradient
classes on these parameters are summarized in SI Appendix,
Figs. S5 and S6.

In Fig. 2B, one finds high positive correlations across the
whole range of degree gradients. Only at degree gradients close
to zero do the correlations depend systematically on the rate
of spontaneous activity f with increasing f reducing pattern
predictability. For other regimes of the degree gradients, the
predictability is essentially independent of f , provided f 6=1.
At high degree gradients, fluctuations increase due to the rare
occurrence of these cases. As already pointed out in earlier
work (43, 45), the discrete nature, in space, time, and state
space, of our minimal model of excitable dynamics is instru-
mental in defining the key quantities investigated here, namely,
the notion of sequential activation (as opposed to, e.g., coac-
tivation) and, hence, the quantitative assessment of link-usage
asymmetry.

An important parameter of our analysis is the size of the hub
set. In order to understand how this parameter affects pattern
predictability, Fig. 2C shows the pattern predictability (averaged

over all degree gradients) as a function of the hub-set size. For
both graph types, the curves are increasing with increasing hub-
set size, suggesting that the orientation prevalence established
by a small initial set of highest-degree nodes (even in the case of
ER graph, where the degree is more uniform) is not altered, but
strengthened with increasing hub-set size. The two most promi-
nent differences between BA and ER graphs in Fig. 2C are 1)
the steeper increase of the BA curve (fewer hubs already lead
to a prevalence capable of explaining the numerically observed
link-usage asymmetry, suggesting that individual hubs and small,
“rich-club”-type groups of hubs serve as organizers of the global
patterns); and 2) the higher values of the average correlation for
ER graphs, compared to BA graphs, for large hub sets (suggest-
ing that the global patterns are organized around a large group
of nodes, a “core” of the graph, and not around individual nodes
or rich clubs).

The rapid increase of this curve for the BA graphs in compari-
son to the much broader curve in the case of ER graphs in Fig. 2C
also suggests an interesting feature of the hub-set-orientation
prevalence on purely topological grounds: For BA graphs, the
information about the prevalence of the link is distributed among
few hubs. Increasing the hub set beyond these few nodes essen-
tially reiterates information already provided by these few hubs,
as shortest paths toward the link under consideration will tra-
verse one of these hubs. In the case of ER graphs, additional
nodes entering the hub set still can contribute new information
about the prevalence of a link.

Link-Usage Asymmetry in the Human Connectome. In order to see
whether our findings of self-organized, global excitation pat-
terns, together with their explanation via the hub-set-orientation
prevalence, can also be found beyond generic models of random
graphs in realistic architectures of biological neural networks,
we simulated activity patterns on the human connectome from
refs. 17 and 46. This 998-node network is known to have a pro-
nounced rich-club organization (27). At the same time, partly
due to its obvious spatial embedding, it has a strong modu-
lar structure (47, 48). Fig. 2 D and E show the various aspects
of pattern predictability discussed before—the scatter plot of
link-usage asymmetry and hub-set prevalence, the correlation
of these two quantities for different degree gradients, and the
average pattern predictability as a function of the hub-set size—
for this connectome architecture. Due to the higher connectivity
of this graph, we reduce the value of the recovery probability
p for better comparability to our previous results for BA and
ER graphs. It is quite striking that the same set of phenomena
is observed for the connectome architecture, confirming that,
here as well, the rich-club structure serves as an organizer of
collective excitation patterns. It is also seen, though, that the
initial increase of pattern predictability with the hub-set size
is much slower than for a BA graph and resembles more that
for an ER graph with its more distributed core. This is due
to the fact that the hubs in the human connectome are dis-
tributed across modules, thus effectively broadening the core:
With increasing hub-set size, new hubs joining the set continue
to contribute new information about the orientation prevalence
of links, in contrast to the BA graph, where, quite rapidly, the
information contributed by additional hubs becomes redundant,
as shortest paths toward individual links are the same as for
previous hubs.

Impact of Rich-Club Organization. The functional role of a rich-
club organization is under vivid debate in neuroscience (see, e.g.,
refs. 31, 49, and 50). We hypothesize that pattern predictabil-
ity (i.e., the explanation of link-usage asymmetry by the hub-set
prevalence) is greatly influenced by the rich-club organization of
a graph. In order to quantitatively test this hypothesis, we start
from the standard BA graph, which already has a pronounced
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Fig. 2. Link-usage asymmetry and pattern predictability. (A) Link-usage asymmetry in a BA graph correlates to both degree gradients and set-orientation
prevalence. Each point corresponds to a link in the network. Different colors indicate different degree gradients of each link. Asymmetry in link usage
correlated positively to both degree gradients (local patterns) and set-orientation prevalence (self-organized, nonlocal patterns). Set-orientation prevalence
is computed for link (ij), with respect to the forward direction i→ j for a hub-set size |H|= 50. As discussed in Methods, all links are labeled according
to i> j, while nodes i = 1, 2, . . . , N are labeled such that ki ≥ kj . Upon using a random node-labeling scheme, the cloud plot becomes symmetric around
the origin, and degree gradients appear with both signs. The positive correlations, however, remain qualitatively unaffected. In this figure, a BA graph of
N = 1,000 and 〈k〉= 8 was considered. Link-usage asymmetry was evaluated for SER dynamics, with f = 1× 10−5 and p = 0.1, which ensures nonvanishing
sustained activity. Data are collected from 100 realizations of the SER dynamics, each consisting of 2,000 time steps. (B) Pattern predictability for individual
degree-gradient classes is computed as Pearson correlation coefficients, which are averaged over 100 realizations of networks as in A and shown here as
a function of the degree gradient. Hub-set-orientation prevalence was computed for hub-set size |H|= 50. Link-usage asymmetry was evaluated for SER
dynamics, with varying f and fixed p = 0.1. The presence of positive correlation at intermediate values of the degree gradients signals the emergence of
nontrivial self-organized dynamic patterns. The case of f = 10−5 (black curve) is the one examined further in the following. Similar results are obtained for
any f other than f ≈ 1. (C) Influence of the hub-set size and evidence of a well-defined source core. The average pattern predictability is plotted against
varying choices of the hub-set size (for size one to the whole network size), for ER and BA graphs of N = 1,000 and 〈k〉= 8. Averages are taken over all
degree-gradient classes and over 100 network realizations. While increasing the hub-set size, BA graphs rapidly settle to a nearly stationary value, indicating
that the true core, from which dynamic patterns originate, is very limited in size, in agreement with our general understanding of scale-free network
topology. ER graphs, on the other hand, exhibit a much slower increase, suggesting that the equivalent concept of a core in ER graphs is significantly
larger and less localized. (D–F) Same as A–C, respectively, in the case of the human connectome structural network (N = 998). Note that the average pattern
predictability (F) has an initial quick increase, akin to that of the BA case (C), as a result of a strong hub set. The subsequent slowdown, instead, is due to
the less centralized, modular structure of the connectome.

rich-club structure, and systematically decrease and increase the
strength φ of the rich-club organization. Given a certain rich-
club size |R|, we count the number of links among these |R|
highest-degree nodes forming the set R and denote this situa-
tion as φ=1. Randomly removing 10% of these links leads to
φ=0.9, while randomly adding the same amount of links among
the |R| nodes yields φ=1.1, and so on.

Fig. 3 shows the pattern predictability as a function of the
hub-set size for BA graphs manipulated in this way for dif-
ferent values of the rich-club strength φ. The curve for φ=1
is the same as in Fig. 2C. We see that the sharp increase
of pattern predictability at small hub-set sizes is not strongly
affected. However, the asymptotic behavior of pattern pre-
dictability at large hub-set sizes varies systematically with φ.
This shows that, indeed, with increasing rich-club strength,
link-usage asymmetry aligns more and more strongly with
the topological layout measured by the hub-set-orientation
prevalence.

Further Interpretation of Pattern Predictability. Pattern pre-
dictability compares two quantities: 1) the link-usage asymmetry
obtained from numerical simulation of excitable dynamics on the
graph and 2) the hub-set-orientation prevalence obtained just
from the topology of the graph. Pattern predictability thus mea-
sures the association of a property of the excitation pattern with
the property of network architecture. Both quantities evaluated
on each link of the network do not depend on the embedding of
the graph in a reference space.

Regarding our terminology, a set-orientation prevalence can
be defined for any set of nodes, and we believe that other def-
initions of node sets may lead to a useful quantity for diverse
applications. Here, we compile node sets from the nodes with
the highest degrees in the network. In the case of BA graphs
and small set sizes, these are the hubs. In ER graphs, these
will be the nodes with a slightly higher-than-average degree.
With increasing set size, these “hub sets” get populated by ever
more lower-degree nodes. We nevertheless call these sets “hub
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https://www.pnas.org/cgi/doi/10.1073/pnas.1919785117


PH
YS

IC
S

Fig. 3. Pattern predictability and rich-club strength. Average pattern pre-
dictability for BA graphs, as a function of the rich-club strength φ, is shown.
We define the rich-club R as the set of the |R| highest degree nodes in a
graph. The φ= 1 curve is for the reference set of BA graphs, the same as in
Fig. 2C. The φ< 1 curves are for the same set, where a fraction 1−φ of links
connecting pairs of rich-club nodes is removed. The φ> 1 curves are for the
same set, where a fraction φ− 1 of links connecting pairs of rich-club nodes
is added. Here, we set |R|= 100. Qualitatively similar results are obtained
for different choices of |R|.

sets” and use the term “hub-set-orientation prevalence” to indi-
cate that our node sets are constructed from the nodes with the
highest degrees.

Here, the computation of the average of pattern predictabil-
ity over all degree gradients (i.e., over all points of a curve in
Fig. 2B) serves as a means of condensing the information con-
tent of Fig. 2B, in order to directly compare BA and ER graphs.
We checked that the result does not change qualitatively, when,
for example, computing an average weighted by the number
of cases in each degree-gradient class or when looking at indi-
vidual degree-gradient classes separately as a function of the
hub-set size.

At this level of consideration, the main difference between
BA graphs and ER graphs is that for BA graphs, the pat-
tern predictability (averaged over degree-gradient classes) as
a function of the size of the hub set saturates much more
rapidly at much smaller hub-set sizes, compared to ER graphs
(Fig. 2C). Following our hypothesis that this contribution to
the link-usage asymmetry is associated with waves of excitations
establishing themselves in the graph in a self-organized fash-
ion, this difference between BA and ER graphs suggests that
1) self-organized waves also emerge in ER graphs (as evidenced
by the very-high-prevalence asymmetry correlation coefficients)
and 2) a much larger set of nodes serves as the center of
the self-organized waves (as evidenced by the saturation of the
correlation coefficient at much larger hub-set sizes).

Relationship between Link-Usage Asymmetry and Collective, Self-
Organized Excitation Patterns. We hypothesize that the observed
link-usage asymmetry is a consequence of self-organized waves
on the graph. On this basis, we provide numerical evidence
that the hub-set-orientation prevalence, together with the local
degree gradient, explains the main features of link-usage asym-
metry. Waves can, from our perspective, only be meaningfully
defined (and quantitatively assessed) with respect to a spatial
embedding of the graph. Here, we introduce a direct mea-
sure of the self-organized patterns, via the coactivation statis-
tics of nodes in the same radial distance from the network
core, the pattern strength (Methods). If waves can be mea-

sured in a spatial embedding of some relevance to the system
under consideration, are those wave patterns the same ones that
we measure via the pattern of link-usage asymmetries in our
embedding-independent approach?

In order to address this question, we define the pattern
strength at distance r from the graph center of mass as the statis-
tical z-score z (r) of simultaneously active node pairs, averaged
across multiple realizations of our SER dynamics (Methods).
Distance and center of mass are defined starting from the nat-
ural embedding of the graph at hand. Since in our study we
deal with synthetic networks, we choose the natural embedding
based on information-theory considerations: In the absence of
further constraints, the most probable configuration will obey a
maximum-entropy principle. Our method is detailed in Methods
and is reminiscent of the approach proposed by Müller-Linow
et al. (34), who showed that clusters of coactivating elements
strongly overlap on the topological side with “topological shells,”
i.e., sets of nodes with the same distance from a dominant hub.
Fig. 4 shows pattern strength for BA and ER graphs of equal
sizes and average degrees.

Positive values of the pattern strength z (r) in the radial shell at
distance r from the center of mass indicate that the coactivation
at r is higher than the one obtained from a reference random
sampling (null model) of the same size. Conversely, negative val-
ues of z (r) for large r trivially indicate lower-than-average coac-
tivation rates: If sets of nodes at small radii show systematically
elevated coactivation and, hence, lead to high z scores, sets of
nodes at large radii will necessarily yield negative z scores, as the
collective of all nodes serves as the null model. The nonuniform,
decreasing radial dependence of the pattern strength points to a
persistent breaking of spatial symmetry, highlighting a preferen-
tial radial arrangement for coactive node pairs, which we identify
as a wave, in line with the previous investigation for BA graphs
(34). In passing, we note that, indeed, self-organized waves exist
in ER graphs as well, according to the data in Fig. 4. This
result confirms the observation of a larger core in ER graphs,
as the maximum pattern strength is reached at larger radial
distances.

Our analysis points to a tight coupling between the large-scale,
collective patterns, as measured by the pattern predictability,
and the self-organized excitation waves, quantified by the pattern
strength. It is in particular evident that both routes point to the
existence of a core, a set of source nodes from which waves prop-
agate. Our results show that the concept of core emerges from
the intrinsic network metric and is confirmed by the extrinsic
Euclidean metric induced by a standard embedding algorithm,
without any fine tuning. While this result is already remarkable
in its own right, we may wonder to which extent we can further
push this analogy. Do both methods identify the same cores? Do
they point to the same waves?

Fig. 4 shows that in BA graphs, the answer to these questions
is indeed affirmative. Across a population of 32 networks, we
monitor the correlation between our two indicators, 1) pattern
strength, for the inner shell in the spatial embedding (the 10
innermost nodes); and 2) pattern predictability, for increasing
sizes of the hub set. Pattern predictability (correlation between
asymmetry and orientation prevalence) and pattern strength
(nonrandom coactivation of radial node sets) will vary from net-
work realization to network realization. The positive correlation
in Fig. 4 indicates that in network realizations with a high pat-
tern predictability, also the pattern strength is high, and vice
versa. Not only is this correlation measure positive for small-to-
moderate set sizes, it actually peaks at values of the set size that
are comparable to the inner-shell size. Examples of the scatter
plots underlying these correlations are compiled in SI Appendix,
Fig. S8. It should be noted that the measurement of this covari-
ation signal is highly nontrivial: The pattern predictability itself
is a statistical quantity (a correlation coefficient averaged over
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Fig. 4. Collective patterns in embedded graphs. (A) Evidence of wave pat-
terns in embedded BA and ER graphs. We plot the pattern strength as
a function of the radial coordinate in a BA and ER graph. Radial coor-
dinates are computed for a spring-embedded BA graph of size N = 104,
obtained by means of the maximum-entropy principle (Methods). Positive
values along the vertical axis indicate a systematic presence of simulta-
neously active nodes at a given distance, the signature of a propagating
wave front. Coactivation data are computed starting from SER simula-
tions with f = 1× 10−5 and p = 0.1. Bin size is varied across the curves,
in such a way that all bins contain the same number of nodes. The
procedure is repeated for multiple realizations of each network model
(BA and ER), and the radial coordinates are each time normalized by
the network radius. (B) Correlation of pattern predictability and pat-
tern strength in BA graphs. We show here the Pearson correlation coef-
ficient of values of pattern predictability and pattern strength, across
multiple network realizations. Since the pattern predictability depends
on the size of the hub set |H|, we plot the correlation coefficient as a
function of |H|.

degree classes), and the pattern strengths at different radial
shells are not independent, as discussed above.

The systematic emergence of positive correlations in this con-
text thus confirms how strong the wave picture is in BA graphs
and how clear-cut the concept of a core is in such graph models.
While this is to be expected in graphs of this type, characterized
by a dominant hub structure, a related question would be how
this picture changes in graphs with less-centralized topological
features. To answer this question, we have extended the same
analysis to our set of ER graphs. Not surprisingly, a systemati-
cally positive curve such as the one in Fig. 4 cannot be obtained
in this case (SI Appendix, Fig. S7). Correlation values are highly
fluctuating and also depend erratically on the size of the inner
shell. This is due to fluctuations of the size of the self-organized
core serving as the center of the collective waves and provides
tangible evidence of the fact that, while waves are still recorded

in ER graphs, the core they originate from is broader, and the
separation between core and noncore nodes is weaker.

Discussion
Our findings touch upon the functional role of rich clubs in
complex networks (31, 49, 50) and the ongoing debate on the
relationship between structural and functional connectivity in
neuroscience (51–53). The application of our framework to the
human connectome from refs. 17 and 46 shows that the phe-
nomenon of link-usage asymmetry, together with its topological
interpretation via orientation prevalence, not only holds for
generic random graphs, but also for real biological connectivity
patterns.

Our statements about self-organized patterns on graphs have
been exemplified for the case of excitable dynamics. As illus-
trated by a range of investigations, wave phenomena (34, 36,
54), as well as spiral waves and other self-organized dynamical
phenomena of excitations on graphs (43, 54–56), are contribut-
ing to the systematic relationship between network topology and
dynamics (5, 57). Our investigation addresses the emergence of
link-usage asymmetry in excitable dynamics on networks and,
in particular, how self-organized collective excitation patterns
contribute to this asymmetry.

The general concept of self-organized patterns, its poten-
tial relation in link-usage heterogeneities and asymmetries, as
well as the new topological characterization of links via their
orientation prevalence, however, go far beyond this main appli-
cation domain. The emergence of asymmetries in the direction
in which a link is used is far from trivial. In the paradig-
matic example of a random walk, each link (ij ) is taken by
the walker in either direction with identical probabilities. This
can be understood easily, considering that the probability of
an i → j step is independent of i and j , as it is proportional
to the occupation probability of i , which is proportional to
the degree ki , times the probability of choosing j as the next
walker position, proportional to 1/ki . Recently, a variant of
link-usage asymmetry has been studied within a random-walk
paradigm (58). In other dynamic processes, more complex than
a random walk, it can be mechanistically clear that the differ-
ence between the degrees of the two nodes forming the link
under consideration, the degree gradient along the link, is pro-
portional to the probability of using this link in a particular
direction. This is certainly the case for the excitable dynamics
discussed here (see also the corresponding analytical treatment
in SI Appendix). Attributing asymmetry solely to degree gradi-
ents is, however, too simplistic when one’s focus is on collective
self-organized patterns. Degree gradients exclusively result in
local asymmetry—that is, asymmetry in the dynamics limited to
the link whose degree gradient is being evaluated. More com-
plex nonlocal dynamic patterns, such as waves, are notoriously
observed in lattice topologies, and, realistically, such patterns
may carry over to complex networks. Unlike lattices, where,
e.g., wave patterns may be easily quantified thanks to the nat-
ural geometric embedding of the graph and its metric structure,
complex networks require the definition of novel observables in
order to measure directional patterns of propagation, which go
beyond the local nature of degree gradients. As shown in Results,
within each degree gradient class, the numerically observed link-
usage asymmetry correlates very strongly with another, more
global topological quantity—the hub-set-orientation prevalence
of the link. This quantity, which characterizes the orientation
of the link with respect to a predefined set of hubs, thus pro-
vides a topological explanation for the other (mechanistically
less obvious) component of the dynamical signal, the link-usage
asymmetry.

Our minimal model of excitable dynamics has two parameters,
the recovery probability, p, and the probability of spontaneous
excitations, f . At high f , the dynamics become predominantly
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noise-governed, the sequential activation matrix σ becomes more
symmetric, and the cumulative asymmetry (sum of all asym-
metry values over all links) approaches zero. Changes of the
recovery probability p lead mostly to a temporal rescaling with
low p “slowing down” the dynamics, such that longer time
series are required to accumulate a statistically sufficient amount
of sequential activation data. Most importantly, the link-usage
asymmetries remain robust over a wide range of parameter
choices (p, f ): Except for the effect of small fluctuations, the
curves in Fig. 2B tend not to cross and are slowly changing over
a broad range of parameter values.

We stress here that our approach to the characterization of
dynamics in networks focuses on the measurement of spatiotem-
poral patterns. This is somewhat different from the statistical
physics perspective, which often centers around system-wide crit-
ical phenomena, such as spontaneous symmetry breaking and
continuous phase transitions. While the latter approach has been
crucial to fully understanding complex phenomena such as the
emergence and vanishing of epidemic thresholds, phase coher-
ence, and percolation transitions (7, 59, 60), we believe that
current advances in experimental data acquisition have exposed
us to a level of detail that is usually averaged upon by stan-
dard coarse-graining techniques. Such detail seems to be crucial,
e.g., to the inner workings of brain networks: While it is widely
accepted that globally, the brain works in a critical-like state (60,
61), an increasing number of studies have recently focused on
the mesoscopic dynamics, which shows traits of localization (24,
62, 63), coexistence, and pattern formation (6, 21, 42). Such pat-
terns are nonlocal in nature, yet not global, as those normally
take into account in models of continuous phase transitions.
Even in the case of epidemic threshold studies in scale-free
networks, such nonlocal patterns as the hub-reinfection mecha-
nism have been proposed, in order to explain anomalies in the
value of the threshold (7, 64). We note that this mechanism
is, in essence, a consequence of the wave emanation that we
study here.

We also reiterate that our approach is centered around links
and activation, rather than node and activity. While this distinc-
tion may seem academic at first, it is much less so in the case
of biological networks, which, unlike many techno-social net-
works, exhibit a hierarchy of links rather than (or on top of) a
hierarchy of nodes. Biological networks are modular and hier-
archical modular in nature, which means that different types
of links ensue, depending on whether they are intramodular or
intermodular and, in the latter case, to which hierarchical level
they belong (see also the distinction between “dependency links”
and “connectivity links” in interdependent networks in refs. 65
and 66). Inevitably, links belonging to different classes will natu-
rally exhibit different set-orientation prevalence values and host
different nonlocal dynamics patterns. In a complex system as
the brain, the addition of our link-centric perspective is, in our
opinion, essential, in order to complement the more traditional
node-centered approach.

Conclusion
We have introduced a methodology to address the study of
nonlocal activity patterns in graphs hosting excitable dynam-
ics. Complex networks are characterized by localized topological
features such as hubs or modules, small groups of nodes with
prominent roles in excitable dynamics, which may promote wave
patterns and sustained reactivation. These dynamic patterns are
themselves localized in nature, as they occur on length scales
much shorter than the correlation lengths emerging in critical

phenomena. Our methods allow for the identification of those
self-organized nonlocal patterns by the small sets of nodes act-
ing as sources and the large set of links relaying activity in a
preferential direction. Recent advances in neuroimaging and
network-modeling techniques have shown that brain function
may rely on a broad catalog of analogous self-organized nonlo-
cal patterns, promoted by certain localized regions, often dubbed
rich club, as well as by densely connected modules. Beyond the
classical notion of a rich club, where a cluster of hubs inter-
connects the network communities, we see here the role of a
rich club as a “network core” facilitating the emergence of com-
plex patterns. While these self-organized patterns are normally
coarse-grained over by standard statistical methods, they may
prove just as important to the normal brain function as the
global fluctuations of scalar-order parameters. This may espe-
cially be the case in pathological situations, in which the criticality
hypothesis cannot be invoked, such as traumatic brain injury or
Alzheimer’s disease (29, 30, 32).

In our study, we used excitable dynamics as the paradigmatic
process leading to pattern formation. These dynamics are rele-
vant to various other fields of applications beyond neuroscience.
Similar models to the SER model discussed here have been suc-
cessfully employed for the study of epidemic thresholds (64), the
effect of long-distance flight networks on disease propagation
(67, 68), and the impact of population distributions and recur-
rent mobility patterns on the spread of epidemic diseases (5).
The link-usage asymmetry studied here can, for example, guide
vaccination schemes beyond the established hub-based immu-
nization strategy (69, 70). Similar rules, as for the propagation
of epidemic diseases, underlie the spread of information in a
network (71). Realistic modeling of a specific system would, of
course, require finer and more complex multiparameter models.
The choice of such a purposely simple model is, however, nec-
essary, if our aim is that of highlighting a connection between
link-usage asymmetry and our newly introduced set-orientation
prevalence as a fundamental property, and not as the result of
parameter fine-tuning. Our stylized dynamics serves as a step-
ping stone in establishing fundamental relationships between
network topology and dynamics, rather than in parameterizing
a system-specific numerical model.

We expect that further details about the asymmetry may
depend on the exact model of excitable dynamics. In the model
discussed here, a single excitation is enough to trigger a subse-
quent excitation. Either absolute thresholds (like discussed in
other works; ref. 61) or relative thresholds (a certain percentage
of neighbors needs to be active to trigger an excitation; ref. 25)
can also be explored. It seems intuitive, for example, that in rela-
tive threshold models, the contribution from the degree gradient
will be less important.

Beyond the realm of neuroscience, our toolset appears rel-
evant to networked techno-social systems exhibiting forms of
eigenvector localization (72). Scale-free graphs of this type, like
the BA graphs analyzed here, exhibit localization at their cores,
identified by the highest-degree nodes or by the highest-ranking
nodes in the so called k -core decomposition (73). As our hub-set-
orientation prevalence relies on the accurate identification of a
core, the possibility of interfacing our toolset to spectral meth-
ods thus appears extremely promising in further characterizing
asymmetric propagation patterns.
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