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Abstract

Motivation: Very low-depth sequencing has been proposed as a cost-effective approach to capture

low-frequency and rare variation in complex trait association studies. However, a full characterization

of the genotype quality and association power for very low-depth sequencing designs is still lacking.

Results: We perform cohort-wide whole-genome sequencing (WGS) at low depth in 1239 individu-

als (990 at 1� depth and 249 at 4� depth) from an isolated population, and establish a robust pipe-

line for calling and imputing very low-depth WGS genotypes from standard bioinformatics tools.

Using genotyping chip, whole-exome sequencing (75� depth) and high-depth (22�) WGS data in

the same samples, we examine in detail the sensitivity of this approach, and show that imputed 1�
WGS recapitulates 95.2% of variants found by imputed GWAS with an average minor allele con-

cordance of 97% for common and low-frequency variants. In our study, 1� further allowed the dis-

covery of 140 844 true low-frequency variants with 73% genotype concordance when compared to

high-depth WGS data. Finally, using association results for 57 quantitative traits, we show that very

low-depth WGS is an efficient alternative to imputed GWAS chip designs, allowing the discovery of

up to twice as many true association signals than the classical imputed GWAS design.

Availability and implementation: The HELIC genotype and WGS datasets have been deposited to

the European Genome-phenome Archive (https://www.ebi.ac.uk/ega/home): EGAD00010000518;

EGAD00010000522; EGAD00010000610; EGAD00001001636, EGAD00001001637. The peakplotter

software is available at https://github.com/wtsi-team144/peakplotter, the transformPhenotype app

can be downloaded at https://github.com/wtsi-team144/transformPhenotype.

Contact: eleftheria.zeggini@helmholtz-muenchen.de

Supplementary information: Supplementary data are available at Bioinformatics online.
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1 Introduction

The contribution of low-frequency and rare variants to the allelic

architecture of complex traits remains largely uncharted. Power to de-

tect association is central to genetic studies examining sequence var-

iants across the full allele frequency spectrum. Whole-genome

sequencing (WGS)-based association studies hold the promise of prob-

ing a larger proportion of sequence variation compared to imputed

genome-wide genotyping arrays. However, although large-scale high-

depth WGS efforts are now underway (Brody et al., 2017), compara-

tively high costs do not yet allow for the generalized transposition of

the GWAS paradigm to high-depth sequencing. As sample size and

haplotype diversity are more important than sequencing depth in

determining power for association studies (Alex Buerkle and

Gompert, 2013; Le and Durbin, 2011), low-depth WGS has emerged

as an alternative, cost-efficient approach to capture low-frequency

variation in large studies. Improvements in calling algorithms have

enabled robust genotyping using WGS at low depth (4–8�), leading

to the creation of large haplotype reference panels (1000 Genomes

Project Consortium et al., 2015; McCarthy et al., 2016), and to sev-

eral low-depth WGS-based association studies (Astle et al., 2016;

Tachmazidou et al., 2017; UK10K Consortium et al., 2015). Very

low-depth (<2�) sequencing has been proposed as an efficient way to

further improve the cost efficiency of sequencing-based association

studies. Simulations have shown that in whole-exome sequencing

(WES) designs, extremely low sequencing depths (0.1–0.5�) are ef-

fective in capturing single-nucleotide variants (SNVs) in the common

(MAF > 5%) and low-frequency (MAF 1–5%) categories compared

to imputed GWAS arrays (Pasaniuc et al., 2012). The CONVERGE

consortium demonstrated the feasibility of such approaches through

the first successful case-control study of major depressive disorder in

4509 cases and 5337 controls (Converge Consortium, 2015), and we

previously showed that 1�WGS allowed the discovery of burdens of

low-frequency and rare variants that replicate in cosmopolitan and di-

verse populations (Gilly et al., 2016). However, a systematic examin-

ation of genotyping quality from 1� WGS and its implications for

power in association studies is lacking, posing the question of the gen-

eralizability of such results in the wider context of next-generation as-

sociation studies. Here, we perform very low depth (1�), cohort-wide

WGS in an isolated population from Greece, show that imputation

tools commonly used with chip data perform well using 1� WGS,

and establish a detailed quality profile of called variants. We then

demonstrate the advantages of 1� WGS compared to the more trad-

itional imputed GWAS design both in terms of genotype accuracy and

power to detect association signals.

2 Results

As part of the Hellenic Isolated Cohorts (HELIC) study, we whole-

genome sequenced 990 individuals from the Minoan Isolates (HELIC-

MANOLIS) cohort at 1� depth, on the Illumina HiSeq2000 platform.

In addition, 249 samples from the MANOLIS cohort were sequenced

at 4� depth (Southam et al., 2017). Imputation-based genotype re-

finement was performed on the cohort-wide dataset using a combined

reference panel of 10 244 haplotypes from MANOLIS 4� WGS, the

1000 Genomes (1000 Genomes Project Consortium et al., 2015) and

UK10K (UK10K Consortium et al., 2015) projects (Fig. 1).

2.1 Variant calling pipeline
Prior to any imputation-based refinement, our approach allowed the

capture of 80 and 100% of low-frequency (MAF 1–5%) and com-

mon (MAF > 5%) SNVs, respectively, when compared to variants

present on the Illumina OmniExpress and HumanExome chips gen-

otyped in the same samples. In 10 control samples from the

Platinum Genomes dataset (Eberle et al., 2017) with high-depth

WGS data (50�) downsampled to 1�, joint calling with MANOLIS

resulted in pre-imputation false-positive and false-negative rates of

12 and 24.6%, respectively (see Section 4).

In order to improve sensitivity and genotype accuracy, we com-

pared 13 genotype refinement and imputation pipelines using tools

commonly used for genotyping chip imputation, using directly typed

OmniExpress and ExomeChip genotypes as a benchmark (see

Section 4). We used a reference panel containing haplotypes from

4873 cosmopolitan samples from the 1000 Genomes and UK10K

projects, as well as the phased haplotypes from 249 MANOLIS sam-

ples sequenced at 4� depth. The best-performing pipeline, described

in Figure 1, captures 95% of rare, 99.7% of low-frequency and

99.9% of common variants present in chip data, with an average

minor allele concordance of 97% across the allele frequency spec-

trum (see Section 4, Fig. 2a, Supplementary Fig. S1 and Table S1).

About 79.7% of 1� WGS variants were found using high-depth

WGS at 22� in a subset of the MANOLIS samples (n ¼ 1127), al-

though this positive predictive value varied across the MAF spec-

trum, from 8.9% for singletons to 95.1% for common variants

(Fig. 2b). Genotype concordance was similar, although slightly

lower, when compared to the chip variants. Due to the 22� data

being aligned to a different build and the unmappable regions result-

ing from a lift-over, we were unable to compute genome-wide false-

positive rates, however by comparing 1� calls with those produced

by WES in five individuals from the MANOLIS cohort, we estimate

a false-positive rate of 2.4% post-imputation in the coding parts of

the genome (see Section 4).

2.2 Comparison of variant call sets with an imputed

GWAS
The genotype refinement and imputation step yielded 30 483 136

non-monomorphic SNVs in 1239 MANOLIS individuals. The num-

ber of variants discovered using 1� WGS is nearly twice as high as

that from array-based approaches. In a subset of 982 MANOLIS

individuals with both 1�WGS, OmniExpress and ExomeChip data,

we called 25 673 116 non-monomorphic SNVs using 1�WGS data,

Fig. 1. Processing pipeline for the MANOLIS 1� data. Tools and parameters

for the genotype refinement and phasing steps were selected after bench-

marking 13 pipelines involving four different tools (see Section 4)
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compared to 13 078 518 non-monomorphic SNVs in the same sam-

ples with chip data imputed up to the same panel (Southam et al.,

2017) without any imputation INFO score filtering. The main dif-

ferences are among rare variants (MAF<1%) (Fig. 3): 13, 671, 225

(53.2%) variants called in the refined 1� WGS are absent from the

imputed GWAS, 98% of which are rare. About 82% of these rare

unique SNVs are singletons or doubletons, and therefore 9.5% of all

variants called in the 1� WGS dataset were unique variants with

minor allele count >2.

A crucial question is the proportion of true positives among these

additional SNVs not found by GWAS and imputation. By compar-

ing their positions and alleles with high-depth WGS in the same

samples, we find that the positive predictive value (PPV) profile for

these variants is much lower compared to when all variants are

examined (Figs 4 and 2b). As expected, PPV is almost zero for add-

itional singletons and doubletons, and just above 40% for the few

additional common variants. About 62% of low-frequency variants

unique to the 1� are true positives, which correspond to 140 844

low-frequency variants with high genotyping quality that are missed

by the imputed GWAS. Minor allele concordance is lower than for

all variants, with a lower bound at 55% for rare variants and reach-

ing 73% for novel low-frequency variants.

2.3 Comparison of association summary statistics with

imputed GWAS
1� WGS calls a larger number of variants and is noisier than

imputed GWAS in the same samples. To evaluate how this differ-

ence affects association study power, we performed genome-wide

association of 57 quantitative traits in 1225 overlapping samples

with both imputed OmniExome and 1�WGS using both sources of

genotype data. We then compared independent suggestively associ-

ated signals at P < 5�10�7 (Supplementary Table S2). These signals

were then cross-referenced with a larger (n ¼ 1457) study based on

22�WGS on the same traits in the same cohort (Gilly et al., 2018).

We only considered signals to be true if they displayed evidence for

association with at most a two order of magnitude attenuation com-

pared to our suggestive significance threshold (P < 5 �10�5).

According to this metric, 52 of 182 independent signals (28.5%)

were true in the imputed GWAS, in contrast to 108 of 462 (23.4%)

Fig. 2. Concordance and call rate for low-depth WGS genotypes. (a) Genotype

(blue circles) and minor allele (yellow circles) concordance is computed for

1239 samples in MANOLIS (4� and 1�) against merged OmniExpress and

ExomeChip data. Call rate is assessed for the refined (purple) and refined

plus imputed (green) datasets. (b) Non-reference allele concordance (green

circles) and PPV (fuchsia bars) are computed for 1127 MANOLIS samples

with both 22�WGS and low-depth calls

Fig. 3. Unique variants called by sequencing and imputed GWAS. Variants

unique to either dataset, arranged by MAF bin. Both datasets are unfiltered

apart from monomorphics, which are excluded. MAF categories: rare

(MAF<1%), low-frequency (MAF 1–5%), common (MAF>5%)

Fig. 4. Frequency and positive predictive value of variants in 1� sequencing

not found by GWAS and imputation; 1� variants not found in the GWAS

data, arranged by MAF bin, in raw numbers (top). Green bars count variants

recapitulated in the 22� (true positives). The proportion of these over the total

(positive predictive value) is displayed in each bin in the bottom panel. The

black line indicates minor allele concordance for true positive variants. The

first category (0–0.1%) contains singletons and doubletons only
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in the 1� study (Fig. 5). With an equal sample size and identically

transformed traits, 1� therefore allowed to discover twice as many

independent GWAS signals with almost identical truth sensitivity.

Seven rare and three suggestive low-frequency variant associations

in the 1� WGS data (9.2% of all signals) were driven by a variant

not present and without a tagging SNP at r2 > 0.8 in the imputed

GWAS, whereas the converse is true for only two rare variants in

the imputed GWAS. Among variants called or tagged in the imputed

GWAS, 4 rare, 11 low-frequency and 5 common SNV associations

detected in the 1� (19% of total) are not seen associated below that

threshold in the imputed GWAS. As expected, there are significantly

fewer (3.8%, P ¼ 0.01, one-sided chi-square proportion test) true

associations in the imputed GWAS not recapitulated by the 1�
study.

3 Discussion

In this work, we empirically demonstrate the relative merits of very

low-depth WGS both in terms of variant discovery and association

study power for complex quantitative traits compared to GWAS

approaches. However, the advantages of 1� WGS have to be

weighed against compute and financial cost considerations. As of

summer 2018, 1� WGS on the HiSeq 4000 platform was approxi-

mately half of the cost of a dense GWAS array (e.g. Illumina

Infinium Omni 2.5Exome-8 array), the same cost as a sparser chip

such as the Illumina HumanCoreExome array, and half of the cost

of WES at 50� depth. By comparison, 30�WGS was 23 or 15 times

more costly depending on the sequencing platform (Illumina HiSeq

4000 or HiSeqX, respectively). The number of variants called by 1�

WGS is lower than high-depth WGS, but is in the same order of

magnitude, suggesting comparable disk storage requirements for

variant calls. However, storage of the reads required an average

650 Mb per sample for CRAMs, and 1.3 Gb per sample for BAMs.

Genome-wide refinement and imputation of very low-depth

WGS generates close to 50 times more variants than a GWAS chip.

The complexity of the imputation and phasing algorithms used in

this study is linear in the number of markers, linear in the number of

target samples and quadratic in the number of reference samples

(Browning and Browning, 2016), which results in a 50-fold increase

in total processing time compared to an imputed GWAS study of

equal sample size. In MANOLIS the genome was divided in 13 276

chunks containing equal number of SNVs, which took an average of

31 h each to refine and impute. The total processing time was 47

core-years (see Section 4 and Supplementary Fig. S2). This parallel-

ization allowed processing the 1239 MANOLIS samples in under a

month, and as imputation software continue to grow more efficient

(Bycroft et al., 2017), future pipelines should greatly simplify post-

processing of very low-depth sequencing data.

As a proof of principle, we used imputed GWAS, 1 and 22�
WGS in overlapping samples from an isolated population to assess

how genotyping quality influences power in association studies. As

we only wanted to study the implications of varying genotype qual-

ities afforded by different designs on association P-values in a dis-

covery setting, we considered only suggestively associated signals

and did not seek replication in a larger cohorts for the discovered

signals. In our study of 57 quantitative traits, we show that an

1�-based design allows the discovery of twice as many of the signals

suggestively associated in the more accurate 22� WGS study, com-

pared to the imputed GWAS design. Almost 10% of the suggestive

signals arising in the 1� data are not discoverable in the imputed

GWAS, but the great majority (96%) of imputed GWAS signals is

found using the 1�.

The 1�-based study seems to discover more signals than the

imputed GWAS across the MAF spectrum, and this remains true

whether or not the signals are filtered for suggestive association

P-value in the more accurate 22� based study (Supplementary Table

S3). At first glance this suggests 1�WGS has better detection power

than the imputed GWAS across the MAF spectrum, however it is un-

likely that this is true for common variants, which are reliably

imputed using chip data. Instead, this phenomenon may be due to a

slightly less accurate imputation than in the GWAS dataset caused

by a noisier raw genotype input (Supplementary Text). This effect is

marginal, as evidenced by genome-wide concordance measures

(Fig. 2) which are very high at the common end of the MAF spec-

trum. However, it is important to note that this slightly less accurate

imputation can attenuate some signals as well as boosting others.

For this reason, we would recommend relaxing the discovery signifi-

cance threshold in 1� studies in order to capture those less well

imputed, signal-harboring variants, followed by rigorous replication

in larger cohorts and direct validation of genotypes.

Our study’s intent was to focus on the performance on common-

ly used general-purpose tools for low-depth sequencing data in iso-

lates, both for genotype calling (GATK) and imputation (BEAGLE,

IMPUTE). There are ongoing efforts to leverage the specificities of

both low-depth sequencing (Davies et al., 2016) (https://www.gen

cove.com) and of isolated populations (Livne et al., 2015). The

popularity and long-term support of established generic methods is

an advantage when running complex study designs, as has been

shown in other isolate studies (Herzig et al., 2018). This study

focused on SNVs, excluding INDELS due to high expected noise lev-

els, poor call rate and genotype accuracy, as well as lower

Fig. 5. Association signals in the 1� WGS and imputed GWAS at P<5� 10�7

for 57 quantitative traits in the 1225 samples with both imputed GWAS and

low-depth WGS. Purple dots represent significant results in the imputed

GWAS (a) and the 1�WGS (b) analysis. Orange dots, if present, denote the P-

value of the same SNP in the other study. Blue dots represent the association

P-value in a larger (n¼1457) association study based on 22� WGS. Signals

with a 22�WGS P-value above 5�10�5 were considered as false-positives in

both studies and excluded from the plot. Red dashes indicate the minimum

P-value among all tagging SNVs in the other dataset (r2>0.8). Absence of an

orange dot and/or a red dash means that the variant was not present and/or

no tagging variant could be found for that signal in the other study
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imputation quality using general-purpose tools. Very low-depth-

based studies rely heavily on imputation to complete the sparse pic-

ture of variation painted by few and far between reads. The accurate

detection and genotyping of larger variants such as structural var-

iants, which relies more heavily on read-based evidence such as split

reads, insert size or depth anomalies, and which are currently poorly

imputed, is therefore likely to remain a methodological challenge for

low-depth WGS studies.

We show that very low-depth WGS allows the accurate assess-

ment of most common and low-frequency variants captured by

imputed GWAS designs and achieves denser coverage of the low-

frequency and rare end of the allelic spectrum, albeit at an increased

computational cost. This allows very low-depth sequencing studies

to recapitulate signals discovered by imputed chip-based efforts, and

to discover significantly associated variants missed by GWAS imput-

ation (Gilly et al., 2016). Although cohort-wide high-depth WGS

remains the gold standard for the study of rare and low-frequency

variation, very low-depth WGS designs using population-specific

haplotypes for imputation remain a viable alternative when studying

populations poorly represented in existing large reference panels.

4 Materials and methods

4.1 Cohort details
The HELIC (www.helic.org) MANOLIS (Minoan Isolates) collec-

tion focuses on Anogia and surrounding Mylopotamos villages on

the Greek island of Crete. All individuals were required to have at

least one parent from the Mylopotamos area to enter the study.

Recruitment was primarily carried out at the village medical centers.

The study includes biological sample collection for DNA extraction

and lab-based blood measurements, and interview-based question-

naire filling. The phenotypes collected include anthropometric and

biometric measurements, clinical evaluation data, biochemical and

hematological profiles, self-reported medical history, demographic,

socioeconomic and lifestyle information. The study was approved

by the Harokopio University Bioethics Committee and informed

consent was obtained from every participant.

4.2 Sequencing
Sequencing and mapping for the 990 MANOLIS samples at 1�
depth has been described previously (Gilly et al., 2016), as well as

for 249 MANOLIS samples at 4� (Southam et al., 2017), and for

1457 samples at 22� (Gilly et al., 2018). For comparison, five sam-

ples from the cohort were also whole-exome sequenced at an aver-

age depth of 75�. We use a standard read alignment and variant

calling pipeline using samtools (Li et al., 2009) and GATK

(McKenna et al., 2010), which is described in detail in the

Supplementary Text. A Venn diagram detailing the overlap between

the sequenced and genotyped datasets is given in Supplementary

Figure S3.

4.3 Variant filtering
Variant quality score recalibration was performed using GATK

VQSR v.3.1.1. However, using the default parameters for the VQSR

mixture model yields poor filtering, with a Ti/Tv ratio dropoff at

83% percent sensitivity and a transition/transversion (Ti/Tv) ratio

of 1.8 for high-quality tranches (Supplementary Fig. S4a). We there-

fore ran exploratory runs of VQSR across a range of values for the

model parameters, using the dropoff point of the Ti/Tv ratio below

2.0 as an indicator of good fit (Supplementary Fig. S5). A small

number of configurations outperformed all others, which allowed us

to select an optimal set of parameters. For the chosen set of parame-

ters, false-positive rate is estimated at 10 6 5% (Supplementary Fig.

S4b). Indels were excluded from the dataset out of concerns for

genotype quality. We found that the version of VQSR, as well as the

annotations used to train the model, had a strong influence on the

quality of the recalibration (Supplementary Fig. S5 and

Supplementary Text).

4.4 Comparison with downsampled whole genomes
For quality control purposes, reads from 17 of the well-character-

ized Platinum Genomes sequenced by Illumina at 50� depth (Eberle

et al., 2017), and downsampled to 1� depth using samtools (Li

et al., 2009) were included in the merged BAM file. VQSR-filtered

calls were then compared to the high-confidence call sets made

available by Illumina for those samples. A total of 524 331 out of

the 4 348 092 non-monomorphic variant sites were not present in

the high-confidence calls, whereas 1 246 403 of the 5 070 164 non-

monomorphic high-confidence Platinum variants were not recapitu-

lated in the 1� data. This corresponds to an estimated false-positive

rate of 12% and false-negative rate of 24.6%. Both unique sets had

a much higher proportion of singletons (corresponding to

MAF < 2.9%) than the entire sets (57.9 versus 19.9% of singletons

among 1� calls and 51 versuss 18.1% among high-confidence calls),

which suggests that a large fraction of the erroneous sites lies in the

low-frequency and rare part of the allelic spectrum. However, geno-

type accuracy is poor, to the point where it obscures peculiarities in

the distribution of allele counts (Supplementary Fig. S6). Due to

these being present in the 1000 genomes reference panel, we remove

the 17 Platinum Genomes prior to imputation.

4.5 Genotype refinement and imputation
Evaluation of pipelines

The authors of SHAPEIT (Delaneau et al., 2013) advise to phase

whole chromosome when performing pre-phasing in order to pre-

serve downstream imputation quality. This approach is computa-

tionally intractable for the 1� datasets, where the smallest

chromosomes contain almost seven times more variants than the

largest chromosomes in a GWAS dataset.

For benchmarking purposes, we designed 13 genotype refine-

ment pipelines involving Beagle v4.0 (Browning and Browning,

2007) and IMPUTE2 (Howie et al., 2009, 2011) using a 1000

Genomes phase 1 reference panel, which we evaluated against minor

allele concordance. All pipelines were run using the vr-runner scripts

(https://github.com/VertebrateResequencing/vr-runner). Pipelines

involving Beagle with the use of a reference panel ranked consistent-

ly better (Supplementary Fig. S1), with a single run of reference-

based refinement using Beagle outperforming all other runs.

IMPUTE2 performed worst on its own, whether with or without ref-

erence panel; in fact the addition of a reference panel did not im-

prove genotype quality massively. Phasing with Beagle without an

imputation panel improved genotype quality, before or after

IMPUTE2.

Halving the number of SNVs per refinement chunk (including

500 flanking positions) from the 4000 recommended by the vr pipe-

lines resulted in only a modest loss of genotype quality in the rare

part of the allelic spectrum (Supplementary Fig. S7), while allowing

for a 2-fold increase in refinement speed. Genotype quality dropped

noticeably for rare variants when imputation was turned on

(Supplementary Fig. S7), but remained high for low-frequency and

common ones. A reference-free run of Beagle allowed to phase all

positions and remove genotype missingness with no major impact
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on quality and a low computational cost. We initially also tested

thunderVCF (https://genome.sph.umich.edu/wiki/ThunderVCF) for

phasing sites, however, the program took more than 2 days to run

on 5000 SNV chunks and was abandoned.

Production pipeline for the MANOLIS cohort

The pipeline with best minor allele concordance across the board

used Beagle v.4 (Browning and Browning, 2007) to perform a first

round of imputation-based genotype refinement on 1239 HELIC-

MANOLIS variant call sets, using the aforementioned reference

panel. This was followed by a second round of reference-free imput-

ation, using the same software. For production, we used a

previously-described (Southam et al., 2017) reference panel com-

posed of 10 244 haplotypes from the 1000 Genomes Project Phase 1

(n ¼ 1092), 249 MANOLIS samples sequenced at 4� depth, as well

as the two cohorts included in the UK10K study (UK10K

Consortium et al., 2015) [TwinsUK (Moayyeri et al., 2013) and

ALSPAC (Golding et al., 2001) (total n ¼ 3781, 7� WGS)]. Alleles

in the reference panel were matched to the reference allele in the

called dataset. Positions where the alleles differed between the called

and reference datasets were removed from both sources. Indels were

filtered out due to poor calling quality.

Variant-level QC

Beagle provides two position level imputation metrics, allelic R-

squared and dosage R-squared. Both measures are highly correlated

(Supplementary Fig. S8a). Values between 0.3 and 0.8 are typically

used for filtering (Brian Browning, personal communication). In the

1� dataset 59% and 91% of imputed variants lie below those two

thresholds, respectively. The distribution of scores does not provide

an obvious filtering threshold (Supplementary Fig. S8b) due to its

concavity. Since most imputed variants are rare and R-squared

measures are highly correlated with MAF, filtering by allelic

R-squared and dosage R-squared would be similar to imposing a

MAF threshold (Supplementary Fig. S8c and d). Moreover, due to a

technical limitation of the vr-runner pipelines, imputation quality

measures were not available for refined positions at the time of ana-

lysis, only imputed ones. Therefore, we did not apply any imput-

ation quality filter in downstream analyses.

4.6 Sample QC
Due to the sparseness of the 1� datasets, sample-level QC was per-

formed after imputation. A total of five samples were excluded from

the MANOLIS 1� cohort following PCA-based ethnicity checks.

4.7 Comparison with WES
A set of high-confidence genotypes was generated for the

five exomes in MANOLIS using filters for variant quality

(QUAL > 200), call rate (AN ¼ 10, 100%) and depth (250�).

These filters were derived from the respective distributions of quality

metrics (Supplementary Fig. S9).

When compared to five whole-exome sequences from the

MANOLIS cohort, imputed 1� calls recapitulated 77.2% of non-

monomorphic, high-quality exome sequencing calls. Concordance was

high, with only 3.5% of the overlapping positions exhibiting some

form of allelic mismatch. When restricting the analysis to singletons,

9105 (58%) of the 15 626 high-quality singletons in the exomes were

captured, with 21% of the captured positions exhibiting false-positive

genotypes (AC > 1). To assess false-positive call rate, we extracted 1�
variants falling within the 71 627 regions targeted by the Agilent design

file for WES in overlapping samples, and compared them to those

present in the unfiltered WES dataset. A total of 103 717 variants were

called in these regions from WES sequences, compared to 58 666 non-

monomorphic positions in the 1� calls and 1419 (2.4%) of these posi-

tions were unique to the 1� dataset, indicating a low false-positive rate

in exonic regions post-imputation.

4.8 Genetic relatedness matrix
Relatedness was present at high levels in our cohort, with 99.5% of

samples having at least one close relative (estimated p̂ > 0:1) and an

average number of close relatives of 7.8. In order to correct for this

close kinship typical of isolated cohorts, we calculated a genetic re-

latedness matrix using GEMMA (Zhou and Stephens, 2012). Given

the isolated nature of the population and the specificities of the

sequencing dataset, we used different variant sets to calculate kin-

ship coefficients. Using the unfiltered 1� variant dataset produced

the lowest coefficients (Supplementary Fig. S10a), whereas well-

behaved set of common SNVs (Arthur et al., 2017) produced the

highest, with an average difference of 3.67�10�3. Filtering for MAF

increased the inferred kinship coefficients. Generally, the more a

variant set was sparse and enriched in common variants, the higher

the coefficients were. However, these differences only had a margin-

al impact on association statistics, as evidenced by a lambda median

statistic difference of 0.02 between the two most extreme estimates

of relatedness when used for a genome-wide association of triglycer-

ides (Supplementary Fig. S10b). For our association study, we used

LD-pruned 1� variants filtered for MAF < 1% and Hardy

Weinberg equilibrium P < 1 �10�5 to calculate the relatedness ma-

trix, which translated into 2 848 245 variants for MANOLIS.

4.9 Single-point association
Pipeline

For association, 57 phenotypes were prepared, with full details of the

trait transformation, filters and exclusions described in

Supplementary Table S4. The ‘transformPhenotype’ (https://github.

com/wtsi-team144/transformPhenotype) R script was used to apply a

standardized preparation for all phenotypes. Association analysis was

performed using the linear mixed model implemented in GEMMA

(Zhou and Stephens, 2012) on all variants with minor allele count >2

(14 948 665 out of 30 483 158 variants in MANOLIS). Singletons

and doubletons are removed due to overall low minor allele concord-

ance. We used the aforementioned centered kinship matrix. GC-

corrected P-values from the score test (p_score) were used due to re-

sidual inflation being present in some traits. Signals were extracted

using the peakplotter software (https://github.com/wtsi-team144/peak

plotter) using a window size of 1 Mb.
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