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Abstract

Hematopoietic stem cells (HSCs) are located in the bone marrow in a specific microenvironment referred as the
hematopoietic stem cell niche, where HSCs interact with a variety of stromal cells. Though several components of the stem
cell niche have been identified, the regulatory mechanisms through which such components regulate the stem cell fate are
still unknown. In order to address this issue, we investigated how osteoblasts (OBs) can affect the molecular and functional
phenotype of Hematopoietic Stem/Progenitor Cells (HSPCs) and vice versa. For this purpose, human CD34+ cells were
cultured in direct contact with primary human OBs. Our data showed that CD34+ cells cultured with OBs give rise to higher
total cell numbers, produce more CFUs and maintain a higher percentage of CD34+CD38- cells compared to control culture.
Moreover, clonogenic assay and long-term culture results showed that co-culture with OBs induces a strong increase in
mono/macrophage precursors coupled to a decrease in the erythroid ones. Finally, gene expression profiling (GEP) allowed
us to study which signalling pathways were activated in the hematopoietic cell fraction and in the stromal cell compartment
after coculture. Such analysis allowed us to identify several cytokine-receptor networks, such as WNT pathway, and
transcription factors, as TWIST1 and FOXC1, that could be activated by co-culture with OBs and could be responsible for the
biological effects reported above. Altogether our results indicate that OBs are able to affect HPSCs on 2 different levels: on
one side, they increase the immature progenitor pool in vitro, on the other side, they favor the expansion of the mono/
macrophage precursors at the expense of the erythroid lineage.
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Introduction

All hematopoietic cells are derived from Hematopoietic Stem

Cells (HSCs) which are endowed of two key functions: the self-

renewal capacity for the maintenance of a stable HSC pool in the

bone marrow (BM) and the differentiation capacity to give rise to

mature myeloid and lymphoid cells [1].

HSCs are located in the BM in a specific microenvironment

referred as the hematopoietic stem cell niche, which plays a pivotal

role in regulating their survival, self-renewal and differentiation.

HSCs are retained in a quiescent state in the BM, where they are

anchored to specialized niches along the endosteum and in

perivascular sites adjacent to the endothelium. In these specific

microenvironments, HSCs interact with a variety of stromal cells

including fibroblasts, endothelial cells, reticular cells, mesenchymal

stem cells, osteoblasts and adipocytes.

Osteoblasts (OBs) are key partecipants providing signals for

HSC trafficking, proliferation and survival. In 1994 Taichman RS

et al. firstly demonstrated that primary human OBs were able to

stimulate the proliferation of primitive CD34+ hematopoietic

progenitors in vitro [2]. Subsequently, it has been reported that

administration of parathyroid hormone (PTH) increases the

number of osteoblastic cells in the mouse system, leading to the

expansion of HSCs through Notch activation [3].

Communication between HSCs and OBs is essential for HSC

self-renewal and proliferation. Human OBs secrete cytokines, such

as granulocyte colony-stimulating factor, granulocyte-macrophage

colony-stimulating factor, and leukemia inhibitory factor, thus

supporting hematopoietic progenitor cell (HPC) function in vitro

[2,4,5].

Furthermore, OBs secrete angiopoietin-1 (Ang-1), thrombopoi-

etin (THPO), and stromal cell-derived factor 1 (SDF-1), which

regulate HSC maintenance. In particular, the interaction of Tie2

with its ligand Ang-1 maintains in vivo long-term repopulating

activity of HSCs, induces HSC adhesion to bone and forces HSCs

to become quiescent, suggesting that the Tie2/Ang-1 signaling
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pathway plays a critical role in the maintenance of mouse HSCs in

a quiescent state in the BM [6]. Recently, Yoshihara H. et al.

reported that mouse HSCs are in close contact to THPO-

producing osteoblastic cells at the endosteal surface in the

trabecular bone, suggesting the THPO/MPL pathway as a critical

component of the HSC osteoblastic niche [7]. Although several

components of the BM niche have been identified, how different

cellular elements collaborate to promote HSC self-renewal and to

maintain the stem cell pool is still unknown. In addition, the

regulatory mechanisms that contribute to the formation of a

quiescent or permissive microenvironment for HSC differentiation

still need to be identified. More importantly, most of our

knowledge on the hematopoietic stem cell niche comes from

transgenic mouse models, so it is not clear whether or not these

information can be transferred to the human system.

In the present study, we investigated how human primary OBs

can affect the molecular and functional phenotype of HSPCs and

vice versa in adherent co-culture system. Our data demonstrate

that OBs are able to expand the hematopoietic progenitor pool in

vitro and to induce a strong increase in the clonogenic activity of

human HSPCs. Moreover, our results pointed out that OBs are

also able to affect the differentiation capacity of CD34+ cells

favouring the expansion of the mono/macrophage lineage at the

expense of the erythroid and granulocytic ones. Finally, GEP

analysis enabled us to identify several cytokine-receptor networks

and transcription factors that could be activated by co-culture with

OBs and could be responsible for the biological effects observed in

vitro.

Methods

Ethics Statement
Human CD34+ cells were purified upon donor’s informed

written consent from umbilical Cord Blood (CB) samples, collected

after normal deliveries, according to the institutional guidelines for

discarded material (Clearance of Ethical Commitee for Human

experimentation of Modena: Segretary office Saverio Santachiara,

santachiara.saverio@policlinico.mo.it, approval date: 18.01.2005;

approval file number # 793/CE).

Human osteoblasts (OBs) were directly isolated from the

trabecular bone harvested from the inner portion of the tibia

plateau. The study was approved by the local Ethical Committee

and informed written consent was obtained from each patient

(Ethical Committee of Istituto Ortopedico Rizzoli, Secretary office

massimiliano.luppi@ior.it, Approved December 21, 2004,

Prot.141/CE/US/ML)

CD34+ stem/progenitor cell purification
Human CD34+ cells were purified from umbilical cord blood

(UCB) samples, as previously described [8]. CD34+ cell purity

assessed by flow cytometry was always .95%.

After purification, CD34+ cells were seeded in 24-well plates at

56105 cells/mL in Iscove’s modified Dulbecco’s medium (IMDM)

(GIBCO, Grand Island, NY, USA) containing 20% Human

Serum (Bio-Whittaker, Walkersville, MD, USA), SCF (50 ng/ml),

FLT3LG (50 ng/ml), TPO (20 ng/ml), IL-6 (10 ng/ml) and IL-3

(10 ng/ml) (all from R&D Systems, Minneapolis, MN, USA).

Isolation of human osteoblasts
Human OBs were directly isolated from the trabecular bone

harvested from the inner portion of the tibia plateau of 16 patients

undergoing total knee replacement for osteoarthritis (mean 6 SD

age 7068.2 years) as previously reported [9]. The bone chips were

fed with medium twice a week. After 2 weeks, they were removed

and the OBs were allowed to grow until confluent and analyzed at

the first and second passages.

Osteoblast proliferation and immunocytochemical
analysis

OBs were seeded in 96-well plates (56103 cell/well) and

incubated in 4 different media: CTR: consisting of DMEM/F12

medium supplemented with 20% FBS, COND.1: consisting of a

1:1 mixture of IMDM and DMEM/F12 supplemented with 20%

FBS, SCF 25 ng/ml, FLT3LG 25 ng/ml, TPO 10 ng/ml, IL-6

5 ng/ml and IL-3 5 ng/ml, COND.2: consisting of a 1:1 mixture

of RPMI and DMEM/F12 supplemented with 20% FBS, SCF

25 ng/ml, FLT3LG 25 ng/ml, TPO 10 ng/ml, IL-6 5 ng/ml and

IL-3 5 ng/ml, COND.3: consisting of a 1:1 mixture of IMDM and

DMEM/F12 supplemented with 20% FBS, SCF 5 ng/ml,

FLT3LG 5 ng/ml, TPO 2 ng/ml, IL-6 1 ng/ml and IL-3 1 ng/

ml. After 72 h, 3H-Thymidine (Amersham Pharmacia Biotech

Italia, Milan, Italy) was added at a final concentration of 2 mCi/ml

for 18 h at 37uC. At the end of the incubation time, the 96-well

plates were aspirated onto fiberglass filters using a Filtermate 196

Harvester (Packard Instrument Company, Meriden, CT, USA).

The filters were then dried and bound radioactivity was assayed by

liquid scintillation counting using a Top Count Microplate

Scintillation Counter (Packard Instrument Company). Data were

expressed as counts per minute6 S.D.

For immunocytochemical analysis OBs (16104/well) were

seeded in 8-well chamber slides and after 72 h fixed in 4% PFA

for 20 minutes at room temperature (RT) and then hydrated with

TBS 1% BSA for 5 minutes at RT. Cells were then incubated with

the following anti-human monoclonal antibodies: anti-RUNX-2,

anti-osteocalcin (R&D system, Minneapolis, MN, USA), and anti-

alkaline phosphatase (AP) (DSHB Department of Biological

Sciences, iowa City, IA, USA), for 1 hour at RT. The slides were

washed three times with TBS 1% BSA and then sequentially

incubated with multilinker biotinylated secondary antibody and

alkaline phosphatase-conjugated streptavidin (Biocaremedical,

Concord, CA, USA) at RT for 20 minutes. The slides were

developed using fast red as a substrate, counterstained with

haematoxylin, mounted with glycerol jelly and evaluated in a

brightfield microscope. Negative and isotype matched controls

were performed.

Co-culture condition
24 h after isolation, CD34+ cells were seeded directly onto

semiconfluent OB monolayers at a final density of 76103 cell/cm2

in 6-well plates. Cultures were maintained for 2 weeks in medium

consisting of a 1:1 mix of IMDM and DMEM/F12 (Dulbecco’s

Modified Eagle Medium: Nutrient Mixture F-12, both Celbio,

Italy) supplemented with 20% FBS (Lonza, Italy), SCF 5 ng/mL,

FLT3LG 5 ng/mL, TPO 2 ng/mL, IL-3 1 ng/mL and IL-6

1 ng/mL (all R&D Systems, Minneapolis, MN, USA), streptomi-

cin 100 mg/mL, penicillin 100 mg/mL and L-glutamine 2 mM (all

purchased from Celbio, Italy). In order to better assess erythroid

and megakaryocytic differentiation, cells were cultured in serum

free medium consisting of a 1:1 mix of of IMDM and DMEM/

F12 supplemented with 20% BIT (StemCell Technologies,

Vancouver, Canada), SCF 5 ng/mL, FLT3LG 5 ng/mL, TPO

1 ng/mL, IL-6 1 ng/mL (all R&D Systems, Minneapolis, MN,

USA), streptomicin 100 mg/mL, penicillin 100 mg/mL and L-

glutamine 2 mM (all Celbio, Italy). Cells were harvested by

trypsinization and vigorous pipetting on days 3, 7, 10 and 14 of co-

culture.

Osteoblasts Affect HSC Differentiation Capacity
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Isolation of CD34+ cells and osteoblasts from co-cultured
samples

The separation of CD34+ cells from OBs was performed using a

magnetic cell sorting procedure (EasySep Human CD34+ positive

selection kit, StemCell Techonologies Inc.; Vancouver, Canada).

The fraction of CD34+ cells that was not cultivated on OB layers

(CD34+ CTR) was sorted using the same parameters to exclude

differences in clonogenic activity and gene expression due to a

different treatment. CD34+ cell purity assessed by flow cytometry

was .95% for both co-cultured and control samples. On the other

hand, OBs were purified from the hematopoietic cells based on the

expression of the pan-leukocyte marker CD45. CD45-negative

cells were isolated by means of negative-selection magnetic beads

sorting from the cells collected after co-culture. Purity of OBs

preparations was assessed firstly by flow cytometric analysis of

CD45 expression and subsequently by immunocytochemical

staining of OB-specific markers, such as RUNX-2, Osteocalcin,

Alkaline Phosphatase and Collagen type I as described above. The

percentage of positive cells was measured on 10 RGD images

acquired for each marker by image analysis with Software NIS

Element (Eclipse 90 I, Nikon) using an objective at 106
magnification.

Immunophenotypic analysis
Differentiation of CD34+ cells was monitored by flow cytomet-

ric analysis (BD FACSCanto II, Becton Dickinson, USA) of CD14,

CD34, CD38, CD41, CD66b, CD163, MPO, and GPA

expression, performed at days 3, 7,10 and 14 of culture, as

previously described [10]. The values relative to immunopheno-

typic analysis are reported as 6 2S.E.M from ten independent

experiments.

Immunofluorescent staining
Cytospins of CD34+ cells were fixed with 4% paraformaldehyde

(PFA) and permeabilized using 0.3% Triton X-100 in PBS for

10 minutes. After blocking with 3% BSA in PBS, slides were

incubated with rabbit monoclonal anti-human collagen type I

(COL1A1) antibody (Invitrogen, Carlsbad, CA) at 1:500 dilution

and with mouse monoclonal anti-human CD34 antibody (Becton

Dickinson, BD) at 1:50 dilution for 1 h at 37uC. This was followed

by incubation with goat anti-rabbit Alexa Fluor 568-conjugated

and goat anti-mouse Alexa Fluor 488-conjugated secondary

antibodies (Invitrogen, Carlsbad, CA) at 1:2000 dilution for 1 h

at 37uC. All incubations were followed by 3 washes with PBS

solution. Nuclear counterstaining was performed with 49,6-

diamino-2-phenylindole (DAPI). The slides were mounted with

Vectashield Mounting Medium (Vector Laboratory Inc). Finally,

fluorescence imaging was performed using the Zeiss LSM 510

Meta Confocal Microscope (Zeiss, Germany) and digital images of

representative areas were taken. To ensure random sampling, 50

images/slide were captured and cells positive for Col1a1 were

scored.

Methylcellulose clonogenic assay
Human Colony Forming Cells (CFUs) were cultured in

methylcellulose as previously described [11]. After 14 days of

culture at 37uC in a humidified atmosphere with 5% CO2,

erythroid burst-forming units (BFU-E), erythroid colony-forming

units (CFU-E), colony-forming units granulocyte (CFU-G), mac-

rophage (CFU-M), granulocyte-macrophage (CFU-GM), and

colony-forming units granulocyte/erythrocyte/macrophage/

megakaryocyte (CFU-GEMM) were scored. The values are

reported as 6 2S.E.M from five independent experiments.

RNA extraction and microarray analysis
Total cellular RNA was extracted after 3 days of treatment from

0.36106 cells of each sample using RNeasy Micro kit (Qiagen,

Valencia, CA) following the protocol supplied by the manufac-

turer. For both CD34+ cells and OBs, total RNA pools (100 ng) of

Control (CTR) and co-culture (COCULT) cells, obtained from 5

independent experiments, were converted in biotinilated aRNA

according to the GeneChip 39 IVT Express Kit protocol advised

by Affymetrix. Similarly, the Affymetrix Human HG-U133plus2

GeneChip arrays hybridization, staining, and scanning, were

performed using Affymetrix standard protocols (Affymetrix, Santa

Clara,CA) as previously described [10].

The GeneChip Operating Software (GCOS) absolute analysis

algorithm was used to determine the amount of a transcript

mRNA (Signal), while the GCOS comparison analysis algorithm

was used in order to compare gene expression levels between two

samples.

Differentially expressed genes were selected as the sequences

showing a Change call ‘‘I’’ or ‘‘D’’ and Signal Log Ratio $1 or

#21 in the pair-wise comparisons between COCULT and CTR

cells.

All the data have been deposited in the Gene Expression

Omnibus MIAME compliant public database, at http://www.

ncbi.nlm.nih.gov/geo/query/acc.cgi?acc = GSE38091.

DAVID 6.7 (National Institute of Allergy and Infectious

Diseases, http://david.abcc.ncifcrf.gov/) was used to examine

selected lists of genes in order to identify over-representation of

functional categories according with gene-ontology classification.

To validate microarray data, a set of modulated genes was

monitored by quantitative real-time (QRT) PCR as previously

described [8], for assay IDs see Table 1.

Statistical analysis
The statistics used for data analysis (CD34+ COCULT vs

CD34+ CTR) was based on the two-tail t-Student test for averages

comparison in paired samples. Data were analyzed by Microsoft

Excel Software (version 2007) and p,0.05 was considered

significant.

Table 1. Assay IDs for quantitative real-time (QRT) PCR.

Assay ID Context sequence Gene ID

Hs00174092_m1 TGCTGCTGAAGGAGATGCCTGAGAT IL1A

Hs01555410_m1 GATGAAGTGCTCCTTCCAGGACCTG IL1B

Hs99999148_m1 TCCAGCGCTCTCAGCACCAATGGGC CCL4

Hs01011368_m1 TATTGTGCGTCTCCTCAGTAAAAAA CCL20

Hs00171022_m1 CCTTCAGATTGTAGCCCGGCTGAAG CXCL12

Hs01090305_m1 CGGCCTGCCAGATGTGCCGGTGACT GAS6

Hs00559473_s1 CCTTCCCTTCCAGCCAGTCTCTGTA FOXC1

Hs00361186_m1 GCCGGAGACCTAGATGTCATTGTTT TWIST1

Hs00234140_m1 CTCGCTCAGCCAGATGCAATCAATG CCL2

Hs00236937_m1 CTGAACAGTGACAAATCCAACTGAC CXCL1

Hs00171455_m1 GTCTTGGCGGCAGGAGTTGTGCCCC LIF

Hs00601975_m1 GCTGAAAAATGGCAAATCCAACTGA CXCL2

Hs00164004_m1 CCTCGACTTGGCCTTCCTCTTGG COL1A1

doi:10.1371/journal.pone.0053496.t001
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Results

OBs support Hematopoietic Stem Progenitor Cell (HPSC)
expansion and function

CD34+ cells from UCB were cultured for 14 days in either

liquid culture or over a monolayer of human primary OBs isolated

from the trabecular bone. Co-cultures of OBs and HPCs were

initiated (day 0) 24 hours after CD34+ cells isolation from UCB by

seeding 76103 CD34+ cells/cm2 on a subconfluent monolayer of

OBs. Cultures were supplemented with exogenous cytokines as

detailed in Material and Methods.

In preliminary experiments, multiple mixes of media and

decreasing doses of hematopoietic cytokines were tested in order to

determine the mix of media capable of supporting both osteoblasts

and CD34+ cells without modifying cell growth and differentiation

properties (Figure S1, S2 and S3).

First of all, we investigated the ability of human primary OBs to

support hematopoietic stem/progenitor cells in culture. After 3

and 7 days, fold increase in total cell number generated from

CD34+ cells, isolated as described in Material and Methods from

co-culture and Control samples, was significantly (p#0.05) higher

in co-culture compared with control liquid culture (28,663,1 vs

18,5761,8-fold at day 3, 102,868,9 vs 58,6167,6-fold at day 7)

(Figure 1A). CD34+ cells were also assessed for their colony-

forming ability in methylcellulose-based assay. The number of

CFUs generated by CD34+ cells increased by 260,4 fold when

CD34+ cells were cultured with OBs as compared to being

cultured alone (Figure 1B). The progeny of CD34+ cells was also

assessed for CD34 and CD38 antigen expression at day 3 and 7 of

culture. The percentage of CD34+CD38- cells was significantly

(p#0.05) higher in the co-culture compared to the control sample

(0,660,1% vs 0,260,05% at day 3, 1,260,3% vs 0,160,05% at

day 7) (Figure 1C and 1D), suggesting that the maintenance of

CD34+CD38- cells may be responsible for the increase in CFU

output of co-cultured HPCs. This increase in the percentage of

CD34+CD38- cells translates into a 5-fold increase and a 23-fold

increase at day 3 and 7 respectively, if we take into account the

raise in total cell number generated by CD34+ cells co-cultured

with OBs (absolute numbers of CD34+CD38- cells at day 3 and

day 7 of co-culture are shown in table in Figure 1).

Taken together, the increase in total cell number, the higher

number of clonogenic cells and the increased percentage of

CD34+CD38- cells suggest that OBs are able to enhance HSPC

properties, by promoting their expansion while maintaining a

primitive phenotype.

Impact of OBs on HPSC differentiation capacity
To better characterize the effects of OBs on stem/progenitor

cell differentiation, CD34+ cells purified from control and co-

culture samples at day 3 were plated in methylcellulose-based

Figure 1. Co-culture with OBs supports hematopoietic stem and progenitor cell function. 76103 CD34+ cells were cultured alone or in
presence of freshly prepared OBs for 3 and 7 days and the following parameters were measured: (A) Fold increase in total cell number calculated from
the original CD34+ cells seeded at day 0. (B) Total CFU output for Control and Co-culture CD34+ cells, cells were plated at day 3 of culture and
colonies were scored 14 days after plating; (C) percentage of CD34+CD38- cells; and (D) percentage of CD34+CD38- cell population present in Control
and Co-cultured samples at day 7, representative flow cytometry is shown. Absolute numbers of CD34+CD38- cells at day 3 and day 7 of co-culture
are shown in table. Values are reported as mean 6 2SEM., * = p,0.05 versus Control. Abbreviation: CTR, control.
doi:10.1371/journal.pone.0053496.g001
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medium in a set of five independent experiments. As described

above, clonogenic assay results demonstrated that the clonogenic

capacity of CD34+ cells co-cultured with OBs was increased by 2

fold (Figure 1B–C). Interestingly, the methylcellulose-based

clonogenic assay showed a significant increase (p#0.001) of the

percentage of monocyte (CFU-M) colonies in OB-co-cultured

CD34+ cells coupled to a decrease of the erythroid ones (BFU-E),

while granulocytic progenitors (CFU-G) were not significantly

affected (Figure 2A).

The effects of OBs on CD34+ cells were also evaluated in long-

term co-culture. CD34+ cells were seeded at 76103 cell/cm2 on a

monolayer of primary human OBs. At day 10 and 14 of co-

culture, the cells were harvested by trypsinization and vigorous

pipetting in order to dissociate hematopoietic cells strictly adherent

to OBs and analyzed for the expression of lineage differentiation

markers. Flow cytometric analysis was performed at day 10 on

GPA and CD41, respectively erythroid and megakaryocytic

markers, and at day 14 on the mono/macrophage markers

CD14 and CD163, and on the granulocytic markers MPO and

CD66b (Figure 2B). Our data showed an increase in the

percentage of cells positive for the mono/macrophage markers

coupled to a decrease in the percentage of cells positive for the

granulocytic and erythroid markers, whereas the megakaryocytic

marker CD41 was not modulated (data not shown). Overall, these

results indicate that co-culture with OBs induces a strong

expansion of the mono/macrophage lineage coupled to a decrease

in the percentage of erythroid-committed cells.

Gene Expression Profile (GEP) of CD34+ cells co-cultured
with OBs

Next, we investigated the changes in gene expression induced in

HPCs by co-culture with primary human OBs, using Affymetrix

HGU133Plus2 GeneChip array. Microarray analysis was per-

formed on CD34+ cells isolated at day 3 of co-culture based on the

observation that such timing was sufficient to exert a significant

modulation of HSPC clonogenic and differentiation capacity in

methylcellulose-based assay.

Using the filtering procedure described in Material and

Methods, we identified a list of genes significantly modulated in

CD34+ cells by OB coculture (486 probesets increased, 110

probesets decreased in CD34+COCULT versus CD34+Control).

DAVID 6.7 analysis showed that the ‘‘Positive regulation of cell

proliferation’’, ‘‘Cell differentiation’’, ‘‘Regulation of Wnt receptor

signaling pathway’’ GO categories are mainly represented in the

gene list of probesets increased in CD34+COCULT vs

CD34+Control cells (Table S1A). Consistently with the adhesion

of the HSPCs to the osteoblastic layer observed in co-culture, the

GO categories ‘‘Cell Adhesion’’ and ‘‘Extracellular matrix

organization’’ are significantly represented in the list of increased

genes. Conversely, GO categories down-regulated by coculture

with OBs include ‘‘Oxygen transport’’ and ‘‘Erythrocyte differen-

tiation’’ (Table S1B), in agreement with the down-regulation of

the erythroid development reported above.

As shown in Figure 3A, detailed analysis of microarray data

showed the up-regulation of several genes involved in the OB-

mediated maintenance of hematopoietic stem/progenitor cells

such as components of the WNT pathway [12] (WNT5a, FZD7,

DACT1, DKK1, DKK3, and SFRP4) [13]. GEP analysis revealed

also the up-regulation of genes taking part in HSC adhesion to the

BM niche, such as N-cadherin (N-CAD) [14,15] and LAYN, a

newly identified hyaluronan receptor [16]. Moreover, co-culture

with OBs induces the up-regulation of Jagged1 (JAG1) [17], GAS6

and its receptor Axl [18], which are involved in the maintenance

of HSCs in a quiescent state. Among up-regulated genes were also

found several chemokines and pro-inflammatory cytokines, such as

CCL4, IL1A, IL1B and CCL20, that, as already reported by

Majka M. et al. [19], can be secreted by hematopoietic precursors

and regulate with an autocrine and/or paracrin mechanism the

various stages of hematopoiesis. Moreover, GEP analysis showed a

strong increase in the expression level of several extracellular

matrix components such as, collagen type I (COL1A1), fibronectin

1 (FN1) and laminin-b1 (LAMB1) in CD34+ co-cultured cells.

Finally, some transcription factors that could play a role in the

regulation of HSCs survival and maintenance, such as Egr1 [20],

Foxc1 [21] and Twist1 [22], were similarly increased in CD34+
co-cultured cells vs control.

On the other hand, among down-regulated genes, we found

several genes coding for proteins involved in erythroid differen-

tiation, such as Glycophorin B (GYPB) [23], globin genes (HBA1)

and Rh-associated glycoprotein (RHAG) [24] (Figure 3A).

In order to confirm microarray data, we carried out a TaqMan

QRTPCR analysis on a validation set selected among the

differentially expressed genes between CD34+COCULT versus

CTR sample. All the assessed genes showed in QRT-PCR the

same expression pattern obtained by microarray analysis

(Figure 3B).

Figure 2. Differentiation capacity of CTR and co-cultured
CD34+ cells. (A) Results of statistical analysis of methylcellulose-based
clonogenic assay performed on CD34+ cells plated after 3 days of co-
culture with human OBs and scored after 14 days. (A) Count of different
colony types; (B) Results of statistical analysis on the percentage of cells
positive for hematopoietic lineage differentiation markers (GPA, CD66b,
MPO, CD14, and CD163) performed by flow cytometry at day 10 and 14
of co-culture. Values are reported as mean 6 2S.E.M., * = p#0.05 vs CTR,
** = p#0.001 vs CTR. The results come from five independent
experiments. Abbreviations: BFU-E, Burst forming unit-erythroid; CFU,
Colony forming unit; E, erythrocyte; G, granulocyte; M, monocyte; GM,
granulocyte-monocyte; GEMM, granulocyte-erythrocyte-monocyte-
megakaryocyte.
doi:10.1371/journal.pone.0053496.g002
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In order to rule out the possibility of OBs contamination in the

CD34+ cell fraction that could affect GEP results, immunofluo-

rescence (IF) analysis for collagen type I was performed on CD34+
cells purified after co-culture (Figure S4). Collagen type I was

chosen as it represents a specific marker for OBs [25] and, at the

same time, it’s strongly up-regulated in CD34+ cells after co-

culture. IF confirmed the up-regulation of collagen type I in

CD34+ co-cultured cells compared to control (Figure 4) strongly

suggesting that collagen type I and CD34 antigen are expressed on

the same cell (Figure 5) and excluding the possibility that the up-

regulation observed by GEP analysis was due to OBs contamina-

tion of the CD34+ cell preparation.

Gene Expression Profile (GEP) of OBs co-cultured with
CD34+ cells

In order to investigate the changes induced in OBs by co-culture

with human HSPCs, we performed GEP analysis on control and

co-cultured OBs by means of Affymetrix HGU133Plus2 Gene-

Chip array. OBs were isolated at day 3 of co-culture as described

in Material and Methods. Purity of OBs cell preparation was

examined both by flow cytometric analysis and immunocyto-

chemical staining for OBs-specific markers. Results, shown in

Figure S5 A–D, demonstrate that OBs, purified by magnetic

bead sorting based on the lack of expression of the CD45 antigen,

are in fact 92% negative for CD45 while being positive for several

Figure 3. Changes in gene expression profile induced by co-culture in OBs and CD34+ cells. (A) Microarrays analysis was performed at
day 3 of co-culture on pooled RNAs from Control and co-cultured CD34+ cells from five independent experiments. Changes in gene expression are
reported on the x-axis as signal log ratio (SLR). (B) Expression levels of 13 genes selected as differentially expressed from microarrays data. Gene
expression levels were measured by Real-Time Quantitative Polymerase Chain Reaction PCR (RTQPCR) starting from total RNA and were expressed as
log10 of Relative Quantity. Results come from five independent experiments. (C) Results of microarrays analysis performed at day 3 of co-culture on
pooled RNAs from Control and co-cultured OBs from five independent experiments. Changes in gene expression are reported on the x-axis as signal
log ratio (SLR).
doi:10.1371/journal.pone.0053496.g003
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OB-specific markers, such as RUNX-2, Osteocalcin, Alkaline

Phosphatase (AP) and Collagen type I (COL1A1) (Figure S5E).

Using the filtering procedure described in Material and

Methods, we identified a list of genes significantly modulated in

OBs after co-culture with CD34+ cells (198 probesets increased,

125 probesets decreased in OB COCULT versus OB Control).

Detailed analysis of differentially expressed genes pointed out

the increased expression in OBs co-cultured cells of transcripts

coding for cytokines and chemokines involved in the maintenance

of HSCs in a quiescent state, such as CCL2 [26], CCL3 [27] and

CXCL2 [28] (Figure 3C). Interestingly, co-cultured OBs also

showed the up-regulation of CXCL12, which is responsible for

HSC migration and retention in the BM niche [29] and of

Osteopontin (OPN), which is a hematopoietic stem cell niche

component that negatively regulates stem cell pool size [30].

Finally, worth of notice is the up-regulation of several adhesion

molecules, such as ICAM1 [31] and PECAM1 [32], that could

mediate HSPC adhesion to osteoblast cells.

Discussion

Self-renewal and differentiation divisions of HSCs are tightly

regulated by the stem cell niche in the bone marrow. The balance

between differentiation and maintenance of the stem cell pool is

regulated by complex molecular mechanisms involving a large

number of soluble factors and cell-cell interactions. BM stromal

cells are key participants of the regulatory machinery governing

hematopoietic development. HSCs and osteoblasts are both

located near the endosteal surface suggesting a functional

relationship between these two cellular populations. Several

authors reported that depletion of OBs causes mobilization of

hematopoietic stem and progenitor cells to the spleen [33] and, on

the other hand, an increase in OB numbers induces a

simultaneous increase in HSCs in the BM [34]. In this paper,

we sought to examine which regulatory mechanisms are able to

regulate the balance between self-renewal and differentiation in

the endosteal niche. In order to address this issue we set up a co-

culture system composed of human CD34+ cells purified from the

CB and human trabecular OBs. Our results demonstrate that co-

culture with OBs induces a 23-fold expansion of the hematopoietic

progenitor pool and a strong increase in the clonogenic capacity of

CB CD34+ cells. Moreover, our data pointed out for the first time

the ability of osteoblast cells to affect HSPC differentiation by

favoring the expansion of the mono/macrophage lineage at the

expense of the erythroid one.

In the presence of OBs, CD34+ cells gave rise to higher total cell

numbers, produced more CFUs and maintain a higher percentage

of CD34+CD38- cells compared to control culture.

The percentage of CD34+CD38- cells was significantly

(p#0.05) higher in the co-culture compared to the control sample

(Figure 1C), translating into a 5-fold increase and a 23-fold

increase, at day 3 and 7 respectively, if we take into account the

raise in total cell number generated by CD34+ cells co-cultured

with OBs. At the same time, co-culture with OBs induces a strong

increase in the clonogenic capacity of CD34+ cells (Figure 1B),

suggesting that the maintenance of CD34+CD38- cells may be

responsible for the increase in CFU output of co-cultured HPSCs.

Taken together, our results suggest that OBs are able to

enhance HPC properties, by promoting their expansion while

maintaining a primitive phenotype.

Several authors already reported the ability of OBs to support

hematopoietic stem/progenitor cell functions, such as self-renewal

and long-term repopulating capacity [35,36], but to our knowl-

edge, no data is available regarding the capacity of OBs to affect

HPC differentiation capacity.

In order to dissect this issue, CD34+ cells purified after 3 days of

co-culture with OBs were plated in methylcellulose-based medium

and colony numbers and types were scored at day 14. Clonogenic

assay results showed a significant increase (p#0.001) of the

percentage of macrophage (CFU-M) colonies in OB-co-cultured

CD34+ cells coupled to a decrease of the erythroid ones (BFU-E)

(Figure 2A). The effects of OBs on HPSCs were also evaluated in

long-term co-culture. Flow cytometric analysis of lineage differen-

tiation markers showed an increase in the percentage of cells

Figure 4. Up-regulation of collagen type I in CD34+ co-cultured
cells. Immunofluorescence analysis of collagen type I on human CD34+
cells grown without (Control) or with human primary osteoblasts. Cells
were labelled with anti-collagen type I antibody (red fluorescence) and
nuclear counterstaining was performed with DAPI (blue fluorescence).
In the upper panels, absence of collagen type I expression in
CD34+Control cells is shown (A and C). In the lower panels, expression
of collagen type I in CD34+ Co-culture (D and F) is shown. Col1A1 is
absent on Control CD34+ cells, whereas it is present on the 9261,3% of
Co-culture CD34+ cells.
doi:10.1371/journal.pone.0053496.g004

Figure 5. Co-expression of collagen type I and CD34 antigen on
CD34+ co-cultured cells. Immunofluorescence analysis of collagen
type I on human CD34+ cells grown in co-culture with human primary
osteoblasts. Cells were labelled with anti-collagen type I antibody (red
fluorescence) and with anti-human CD34 antibody (green fluorescence);
nuclear counterstaining was performed with DAPI (blue fluorescence).
Co-expression of collagen type I and CD34 antigen was assessed,
evaluating the presence of green and red fluorescence in the same cell
(D).
doi:10.1371/journal.pone.0053496.g005
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positive for the mono/macrophage markers CD14 and CD163

coupled to a decrease in the percentage of cells positive for the

granulocytic (MPO, CD66b) and erythroid (GPA) markers

(Figure 2B). Overall, these results indicate that OBs support

the expansion of mono/macrophage committed cells while

inhibiting the erythroid precursors.

At the aim of characterizing the molecular mechanisms

responsible for the biological effects reported above, Gene

Expression Profiling (GEP) of CD34+ CTR and CD34+ co-

cultured cells was performed. It is important to notice that GEP

analysis was performed on highly purified cell populations, as

shown in Figures S4 and S5. Previous reports attempting to

study gene expression profile of hematopoietic cells after culture

on stromal layers were unable to separate the hematopoietic cell

fraction from the adherent osteoblast cells, consequently the results

obtained were strongly compromised by the contamination of the

stromal component in the total RNA preparation [36]. In this

paper, we were able to separate the CD34+ cells from the

remaining osteoblasts and hematopoietic cells, in order to study

the changes in gene expression profile induced in HPSCs by the

co-culture with human OBs. Our microarray data showed the up-

regulation in CD34+ co-cultured cells of several genes already

reported as key players in the maintenance of hematopoietic stem/

progenitor cell in the BM (Figure 3A), such as components of the

WNT pathway [12] (WNT5a, FZD7, DACT1, DKK1, DKK3,

and SFRP4) and the adhesion molecule N-Cad, that has been

shown to regulate HSCs adhesion to the bone lining osteoblasts

[37]. Microarray data highlighted not only previously reported

components of the osteoblastic stem cell niche, but also showed the

up-regulation of a number of genes, not previously described in the

context of the BM niche, that could be involved in the signaling

network between osteoblasts and HPSCs. For example, the

adhesion molecule LAYN, a newly identified hyaluronan receptor

[16], could mediate HSPC adhesion to the BM niche, or the

signaling network GAS6-Axl, up-regulated after co-culture, could

support hematopoietic activity by maintaining HSPCs in a

quiescent state [18]. Moreover, GEP analysis showed a strong

increase in the expression level of transcription factors that could

play a role in the regulation of HSPC survival and maintenance,

such as Egr1, Foxc1 and Twist1. Egr1 has been recently described

as transcriptional regulator that normally functions to promote

HSC quiescence and retention in the BM niche [20]. Foxc1 is a

member of the Forkhead/Fox transcription factor family, mainly

expressed in mesodermal and neural crest derivatives during

development [38], whose expression and function in the hema-

topoietic system has never been described. Recently, Bloushtain-

Qimron N. et al. reported that constitutive expression of Foxc1 in

differentiated mammary epithelial cells results in the conversion of

the differentiated epithelial phenotype into a progenitor-like

phenotype [21]. Thus, the up-regulation of Foxc1 in HSPCs after

co-culture with human OBs could be involved in the maintenance

of the primitive progenitor phenotype observed in vitro.

Twist1 is a highly conserved basic helix-loop-helix transcription

factor involved in several pathways that control tumor growth,

apoptosis, differentiation, and epithelial–mesenchymal transition

[39,40]. Twist1 directly interacts with and opposes p53 function

[41], up-regulation of Twist1 has been reported in several human

cancers [42,43,44] suggesting that Twist1 functions as an

oncogene. In our culture system, Twist1 up-regulation in

CD34+ co-cultured cells could favour HSPC survival and this

could account, at least in part, for the increase in total cell

numbers and CFU output described above.

Conversely, GEP analysis revealed the down-regulation of

several genes coding for protein involved in erythroid differenti-

ation, such as Glycophorin B (GYPB) [23], globin genes (HBA1)

and Rh-associated glycoprotein (RHAG) [24] (Figure 3A). This

down-modulation is in agreement with the reduction in erythroid

precursors observed both in liquid and semisolid culture.

On the other hand, GEP analysis performed on OBs purified

after co-culture revealed the up-regulation of several genes

involved in the regulation of the BM stem cell pool size, such as

CCL2 (26), CCL3 [27], CXCL2 [28] and OPN [30,45], and of

genes mediating HSC adhesion and retention in the BM stem

niche, such as CXCL12 [29], ICAM1 [31] and PECAM1 [32].

Altogether our results indicate that osteoblasts support and

influence both maintenance and later differentiation of HSPCs. In

the short-term culture, our data demonstrate that OBs are able to

enhance HSPC clonogenic capacity and to expand hematopoietic

progenitors pool. On the other hand, in the long-term, osteoblasts

are able to affect HSPC differentiation, by favoring the mono/

macrophage lineage and inhibiting the erythroid one. Moreover,

our microarray data allowed us to identify specific signaling

pathways and regulatory networks involved in HSPC-osteoblast

interaction that could account for the biological effects exerted by

OBs on CD34+ cells. In particular, GEP analysis pointed out the

up-regulation of several transcription factors, such as TWIST1

and FOXC1, that could play a critical role in HSPC self-renewal

and maintenance. Taken together, our data allows us to get new

insights on the molecular mechanisms underlying HSPC mainte-

nance and differentiation in the osteoblastic stem cell niche.

Supporting Information

Figure S1 Hematopoietic cell culture conditions testing.
Multiple mixes of media and decreasing doses of hematopoietic

cytokines were tested in order to determine the mix of media

capable of supporting CD34+ cells without modifying cell growth

and differentiation properties. 24 h after isolation, CD34+ cells

were seeded at a final density of 76103 cell/cm2 in 6-well plates.

Cultures were maintained for 2 weeks in 4 different culture

conditions: CTR: consisting of Iscove’s modified Dulbecco’s

medium (IMDM) supplemented with 20% FBS, SCF (50 ng/

ml), FLT3LG (50 ng/ml), TPO (20 ng/ml), IL-6 (10 ng/ml) and

IL-3 (10 ng/ml); COND.1: consisting of a 1:1 mixture of IMDM

and DMEM/F12 supplemented with 20% FBS, SCF (25 ng/ml),

FLT3LG (25 ng/ml), TPO (10 ng/ml), IL-6 (5 ng/ml) and IL-3

(5 ng/ml), COND.2: consisting of a 1:1 mixture of RPMI and

DMEM/F12 supplemented with 20% FBS, SCF (25 ng/ml),

FLT3LG (25 ng/ml), TPO (10 ng/ml), IL-6 (5 ng/ml) and IL-3

(5 ng/ml), COND.3: consisting of a 1:1 mixture of IMDM and

DMEM/F12 supplemented with 20% FBS, SCF (5 ng/ml),

FLT3LG (5 ng/ml), TPO (2 ng/ml), IL-6 (1 ng/ml) and IL-3

(1 ng/ml). Cell cycle analysis, performed at day 3 (A) and 7 (B) of

culture by propidium iodide staining, showed no difference

between the 3 culture conditions tested and the CTR sample.

Flow cytometric analysis of the percentage of CD34+CD38- cells

(C), performed at day 3 of culture, revealed no difference between

the CTR and the 3 conditions tested. In the same way, results (D)

of statistical analysis on the percentage of positive cells for lineage

differentiation markers (GPA, MPO and CD14) performed by

flow cytometry at day 10 of culture, showed no difference between

CTR and the 3 different culture conditions.

(TIF)

Figure S2 OBs culture conditions testing results. Multi-

ple mixes of media and decreasing doses of hematopoietic

cytokines were tested in order to determine the mix of media

capable of supporting OBs without modifying cell growth. OBs

were seeded in 96-well plates (56103 cell/well) and maintained for
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72 hours in 4 different culture conditions: CTR: consisting of

DMEM/F12 medium supplemented with 20% FBS, COND.1:

consisting of a 1:1 mixture of IMDM and DMEM/F12

supplemented with 20% FBS, SCF (25 ng/ml), FLT3LG

(25 ng/ml), TPO (10 ng/ml), IL-6 (5 ng/ml) and IL-3 (5 ng/

ml), COND.2: consisting of a 1:1 mixture of RPMI and DMEM/

F12 supplemented with 20% FBS, SCF (25 ng/ml), FLT3LG

(25 ng/ml), TPO (10 ng/ml), IL-6 (5 ng/ml) and IL-3 (5 ng/ml),

COND.3: consisting of a 1:1 mixture of IMDM and DMEM/F12

supplemented with 20% FBS, SCF (5 ng/ml), FLT3LG (5 ng/ml),

TPO (2 ng/ml), IL-6 (1 ng/ml) and IL-3 (1 ng/ml). Cell

proliferation analysis, performed by 3H-thymidine incorporation,

demonstrated that only COND.3 does not modify cell prolifera-

tion compared to the CTR sample. Data were expressed as counts

per minute6 S.D.

(TIF)

Figure S3 OBs culture conditions testing results. Multi-

ple mixes of media and decreasing doses of hematopoietic

cytokines were tested in order to determine the mix of media

capable of supporting OBs without modifying cell properties. OBs

(16104/well) were seeded in 8-well chamber slides and maintained

for 72 hours in 4 different culture conditions: CTR, COND.1,

COND.2, COND.3. Slides were then incubated with the following

anti-human monoclonal antibodies: anti-RUNX-2 (panel A), anti-

osteocalcin (panel B), and anti-alkaline phosphatase (AP) (panel C).

Data shown in panel B and C demonstrate that all the three

different culture conditions tested do not modify osteocalcin and

alkaline phosphatase expression compared to the CTR sample.

On the other hand, RUNX2 expression (panel A) appears to be

down-regulated in COND.1 and COND.2 compared to the CTR,

whereas it appears similar in COND.3 and in the CTR sample.

Our data demonstrate that COND.3 is the culture condition

capable of maintaining OBs similar to CTR culture condition,

therefore COND.3 has been applied in all the experiments

reported in this study.

(TIF)

Figure S4 CD34+ cell isolation from co-culture samples.
At day 3 of co-culture, CD34+ cells were separated from OBs by

magnetic beads sorting, after separation cells were stained with an

anti-human CD34 monoclonal antibody to assess cell purity. Data

shown are representative flow cytometry of CD34+ cells before (B)

and after (D) magnetic beads sorting.

(TIF)

Figure S5 OBs isolation from co-culture samples. At day

3 of co-culture, OBs were separated from the hematopoietic cells

by magnetic beads sorting, after separation cells were stained with

an anti-human CD45 monoclonal antibody to assess cell purity.

Data shown are representative flow cytometry of OBs before (A, B)

and after (C,D) magnetic beads sorting. Freshly isolated OBs (E)

and cytospin of CD45- cells (F) were fixed for immunocytochem-

ical analysis of Alkaline Phosphatase (AP), RUNX-2, Osteocalcin

and Collagen type I (Coll.I). The percentage of positive cells was

measured on 10 RGD images acquired for each marker by image

analyzer (NIS-Nikon) using an objective at 106magnification.

(TIF)

Table S1 A. GO categories Increased in CD34+COCULT

versus CD34+Control. B. GO categories Decreased in

CD34+COCULT versus CD34+Control.

(DOC)

Acknowledgments

The authors would like to thank Dr. Roberta Contin for excellent technical

assistance in confocal microscopy.

Author Contributions

Conceived and designed the experiments: RM SF AF. Performed the

experiments: SS GL CM RZ EB RN VP. Analyzed the data: SS GL.

Contributed reagents/materials/analysis tools: GL CM AF. Wrote the

paper: SS RM SF AF.

References

1. Osawa M, Hanada K, Hamada H, Nakauchi H (1996) Long-term lymphohe-
matopoietic reconstitution by a single CD34-low/negative hematopoietic stem

cell. Science 273: 242–245.

2. Taichman RS, Emerson SG (1994) Human osteoblasts support hematopoiesis

through the production of granulocyte colony-stimulating factor. J Exp Med

179: 1677–1682.

3. Calvi LM, Adams GB, Weibrecht KW, Weber JM, Olson DP, et al. (2003)

Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 425: 841–
846.

4. Marusic A, Kalinowski JF, Jastrzebski S, Lorenzo JA (1993) Production of

leukemia inhibitory factor mRNA and protein by malignant and immortalized
bone cells. J Bone Miner Res 8: 617–624.

5. Taichman RS, Reilly MJ, Emerson SG (1996) Human osteoblasts support
human hematopoietic progenitor cells in vitro bone marrow cultures. Blood 87:

518–524.

6. Arai F, Hirao A, Ohmura M, Sato H, Matsuoka S, et al (2004) Tie2/
angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the

bone marrow niche. Cell 118: 149–161.

7. Yoshihara H, Arai F, Hosokawa K, Hagiwara T, Takubo K, et al. (2007)

Thrombopoietin/MPL signaling regulates hematopoietic stem cell quiescence
and interaction with the osteoblastic niche. Cell Stem Cell 1: 685–697.

8. Salati S, Zini R, Bianchi E, Testa A, Mavilio F, et al. (2008) Role of CD34

antigen in myeloid differentiation of human hematopoietic progenitor cells.
Stem Cells 26: 950–959.

9. Lisignoli G, Toneguzzi S, Piacentini A, Cristino S, Grassi F, et al. (2006)
CXCL12 (SDF-1) and CXCL13 (BCA-1) chemokines significantly induce

proliferation and collagen type I expression in osteoblasts from osteoarthritis

patients. J Cell Physiol 206: 78–85.

10. Bianchi E, Zini R, Salati S, Tenedini E, Norfo R, et al. (2010) c-myb supports

erythropoiesis through the transactivation of KLF1 and LMO2 expression.
Blood 116: e99–110.

11. Manfredini R, Zini R, Salati S, Siena M, Tenedini E, et al. (2005) The kinetic

status of hematopoietic stem cell subpopulations underlies a differential

expression of genes involved in self-renewal, commitment, and engraftment.

Stem Cells 23: 496–506.

12. Fleming HE, Janzen V, Lo Celso C, Guo J, Leahy KM, et al. (2008) Wnt

Signaling in the Niche Enforces Hematopoietic Stem Cell Quiescence and Is

Necessary to Preserve Self-Renewal In Vivo. Cell Stem Cell 2(3): 274–283.

13. Staal FJ, Clevers HC (2005) WNT signalling and haematopoiesis: a WNT-WNT

situation. Nat Rev Immunol 5: 21–30.

14. Hosokawa K, Arai F, Yoshihara H, Iwasaki H, Hembree M, et al. (2010)

Cadherin-based adhesion is a potential target for niche manipulation to protect

hematopoietic stem cells in adult bone marrow. Cell Stem Cell 6(3): 194–198.

15. Hosokawa K, Arai F, Yoshihara H, Iwasaki H, Nakamura Y, et al. (2010)

Knockdown of N-Cadherin suppresses the long-term engraftment of hemato-

poietic stem cells. Blood 116: 554–563.

16. Bono P, Rubin K, Higgins JM, Hynes RO (2001) Layilin, a novel integral

membrane protein, is a hyaluronan receptor. Mol Cell Biol 12(4): 891–900.

17. Weber JM, Calvi LM (2010) Notch signaling and the bone marrow

hematopoietic stem cell niche. Bone 46(2): 281–285.

18. Dormady SP, Zhang X-M, Basch RS (2000) Hematopoietic progenitor cells

grow on 3T3 fibroblast monolayers that overexpress growth arrest-specific gene-

6 (GAS6). PNAS 97: 12260–12265.

19. Majka M, Janowska-Wieczorek A, Ratajczak J, Ehrenman K, Pietrzkowski Z, et

al. (2001) Numerous growth factors, cytokines, and chemokines are secreted by

human CD34+ cells, myeloblasts, erythroblasts, and megakaryoblasts and

regulate normal hematopoiesis in an autocrine/paracrine manner. Blood 97(10):

3075–3085.

20. Min IM, Pietramaggiori G, Kim FS, Passegué E, Stevenson KE, et al. (2008)

The Transcription Factor EGR1 Controls Both the Proliferation and

Localization of Hematopoietic Stem Cells. Cell Stem Cell 2(4): 380–391.

21. Bloushtain-Qimrona N, Yao J, Snydera EL, Shipitsina M, Campbella LL, et al.

(2008) Cell type-specific DNA methylation patterns in the human breast. PNAS

105(37): 14076–14081.

Osteoblasts Affect HSC Differentiation Capacity

PLOS ONE | www.plosone.org 9 January 2013 | Volume 8 | Issue 1 | e53496



22. Li X MA, Gooley TA, Deeg HJ (2010) The helix-loop-helix transcription factor

TWIST is dysregulated in myelodysplastic syndromes. Blood 116(13): 2304–
2314.

23. Ghislaine DC, Mayer JC, Jiang L, Hartl DL, Tracy E, et al. (2009) Glycophorin

B is the erythrocyte receptor of Plasmodium falciparum erythrocyte-binding
ligand, EBL-1. PNAS 106(13): 5348–5352.

24. Anstee DJ (2011) The functional importance of blood group-active molecules in
human red blood cells. Vox Sanguinis 100(1): 140–149.

25. Manferdini C, Gabusi E, Grassi F, Piacentini A, Cattini L, et al. Evidence of

specific characteristics and osteogenic potentiality in bone cells from tibia. J Cell
Physiol 226: 2675–2682.

26. Cashman JD, Eaves CJ (1999) Human growth factor-enhanced regeneration of
transplantable human hematopoietic stem cells in nonobese diabetic/severe

combined immunodeficient mice. Blood 93: 481–487.
27. Ottersbach K, McLean J, Isaacs NW, Graham GJ (2006) A310 helical turn is

essential for the proliferation-inhibiting properties of macrophage inflammatory

protein-1 alpha (CCL3). Blood 107: 1284–1291.
28. Pelus LM, Fukuda S (2006) Peripheral blood stem cell mobilization: the CXCR2

ligand GRObeta rapidly mobilizes hematopoietic stem cells with enhanced
engraftment properties. Exp Hematol 34: 1010–1020.

29. Moll NM, Ransohoff RM (2010) CXCL12 and CXCR4 in bone marrow

physiology. Expert Rev Hematol 3: 315–322.
30. Sebastian Stier YK, Forkert R, Lutz C, Neuhaus T, Grünewald E, et al. (2005)
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