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Dielectric spectroscopy of the human blood is a powerful and convenient non-invasive testing technique that 
can be used to diagnose diseases such as diabetes and leukemia. One needs to consider rigorous experimental 
procedures and mathematical models to make the results of this type of test comparable. The present paper will 
discuss previously published results to further investigate the statistical modeling of the dielectric properties 
of human blood. The analysis shows that previously published results were related to Modified Weibull 
(MW) distributions of relaxation times, not Gaussian distributions, as reported. This re-analysis prevents the 
ill definition of fitting parameters, making sure they present physically justifiable values. Besides, for fluids 
presenting a Modified Weibull distribution of relaxation times, novel exact and closed-form expressions for 
the real and imaginary parts of complex permittivities were obtained in terms of generalized hypergeometric 
functions. Also, a high accuracy approximation was built for the imaginary part of the complex permittivity, 
creating an easy-to-use alternative expression for practitioners. The new results are used to fit experimental 
results for human blood, showing that more robust estimators are built for the parameters involved, which can 
be used as thresholds to classify the dielectric behavior of blood as normal (healthy) or anomalous (sick).
1. Introduction

As indicated by [1], the ability to anticipate and eventually inter-

vene to avoid adverse future events is an extremely desirable goal to 
health professionals. Such predictions rely on the statistical modeling

of the outcomes of tests, enabling health professionals to infer possible 
health issues by comparing the results of a test from a single individual 
to the possible results of tests performed on bigger number of similar 
individuals. Therefore, a rigorous statistical analysis allows the devel-

opment of risk prediction techniques based on probabilities rather than 
intuition [1].

In this context, non-invasive testing techniques are quite advan-

tageous, since they can be applied to a large number of individuals 
without the need of a complete medical structure (i.e. a hospital) to as-

sist the tester and the subject being tested. Therefore, a large number of 
results can be recorded and used for future comparisons.

Besides being convenient and easy to perform, non-invasive meth-

ods are also commonly used these days for preventative healthcare as 
invasive methods are painful/inconvenient and can have a high re-
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occurring cost. Some of the drawbacks of invasive testing which are 
not observed in non-invasive methods are: invasive methods can lead 
to infection and invasive devices have stringent regulatory require-

ments.

When studying non-invasive tests to assess how the human body 
is affected by diseases, changes in blood’s properties can be used to 
understand such impact. This comes from the fact that blood is a key 
body fluid, since it delivers oxygen to vital parts as well as transports 
nutrients, vitamins, and metabolites. Also, blood is a fundamental part 
of the immune system [2].

Researchers have to choose one of blood’s properties to analyze and 
seek for aspects which characterize possible diseases. The study of the 
dielectric properties of biological systems and their components has 
shown to be important not only for fundamental scientific knowledge 
but also for applications in medicine, biology, biotechnology, and phys-

iology [3]. Therefore, the dielectric behavior of blood can be chosen as 
the basis to propose non-invasive diagnostic techniques based on such 
biological fluid.
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Regarding the dielectric properties of blood, pioneer studies at the 
beginning of last century allowed researchers to deduce from dielectric 
studies that erythrocytes are composed of a poorly conducting envelope 
enclosing a conducting electrolyte [4, 5].

From that time on, the dielectric properties of blood cells have been 
investigated. Recent studies report that non-invasive glucose monitor-

ing in patients with diabetes can be performed by a system based on 
impedance spectroscopy [6]. Such system was attached to the skin of 
test subjects and the glucose monitoring was indirectly performed. In 
this case, the overall dielectric behavior is influenced not only by the 
blood, but also by the skin and other factors.

In order to further isolate the phenomenon of interest, the authors 
in [7] compared the dielectric properties of normal and diabetic blood 
collected from test individuals. Their study indicated that a proper 
modeling of the dielectric behavior of blood may lead to a powerful 
non-invasive technique to diagnose and control diabetic patients.

In a similar fashion, the author in [8] studied the low frequency di-

electric properties of human blood, indicating that their results suggest 
new diagnostic and therapeutic methods for blood disorders.

This is also the case of a recently introduced non-invasive method 
of detecting leukemia [9], where red blood cells are subjected to the 
application of an alternating current and the electrical resistance is mea-

sured. Such methodology indicates the electrical resistance will show a 
peak at a characteristic resonant frequency, which is different for can-

cerous blood cells than for normal blood cells.

Literature also reveals that the dielectric parameters of blood are rel-

evant for various other medical applications like cell separation (e.g., 
cancer cells from normal blood cells), checking the deterioration of pre-

served blood and dielectric coagulometry [2].

In order to properly use dielectric measurements to diagnose dis-

eases, the physical and mathematical modeling of this phenomenon 
must be carried out with extreme care. Therefore, studies on this subject 
are of utmost importance.

This way, to better understand how blood behaves when subjected 
to an electrical field, the effects of the blood-microstructure on its elec-

trical conductivity have been reported in the literature [7]. The authors 
in [10] also studied the role of erythrocytes and leucocytes in charge 
transfer through human blood.

Literature indicates that experimental dielectric relaxation data for 
human blood show a deviation from the classical Debye model [11]. 
This deviation may be attributed to the fact that blood does not have a 
single relaxation time, but actually it presents a certain distribution of 
relaxation times. Authors in [11] carried out a study to understand if the 
dielectric modeling of relaxation through human blood could benefit 
from considering multiple relaxation times which were distributed as a 
Gaussian distribution.

It is clear that human blood is a complex fluid whose electrical in-

teraction with external fields is intricate. On the other hand, the studies 
cited have provided valuable insights about the modeling of such inter-

action.

Even though the reported papers covered some difficult modeling

issues, it was observed that some mathematical results needed further 
clarification. In special, some of the mathematical results presented in 
[11] can be re-derived to better accommodate some statistical concepts 
which were considered by such authors.

Therefore, in the present paper, the physiological understanding of 
how dielectric properties are affected by diseases is not of central inter-

est as we only focused on the mathematical modeling of such changes. 
Specially, we point out some issues in previously published results as 
well as discuss some of the statistical features of the models explored 
in the literature. By doing so, we hope to enhance the mathematical 
models used to fit experimental results, leading to more robust fea-

ture estimations and, ultimately, a better definition of the parameters’ 
thresholds to classify the dielectric behavior as normal (healthy) or 
anomalous (sick).
2

In Section 2 we shall revisit the basic formulation behind dielectric 
relaxation models. Section 3, on the other hand, presents the defini-

tion of some random variables of interest. Besides, Section 4 discusses 
previously published results and presents the re-derived equations. Sec-

tion 5 presents novel exact and approximate expressions for real and 
complex permittivities when the distribution of relaxation times follow 
a Modified-Weibull distribution. We then present a practical applica-

tion of the new equations, by using them to fit experimental data in 
Section 6. Also, in Section 7, we discuss how the identifiability of 
Modified-Weibull random variables may be an issue while using the 
equations reported in the literature and hereby developed. Conclusions 
are then presented in Section 8. In order to better familiarize the reader, 
the Appendix presents some of the special functions which will be used 
in the present paper, as well as their mathematical definitions. Besides, 
some other relevant mathematical definitions are also presented.

2. Revisiting relaxation models

As previously indicated, experimental dielectric relaxation data for 
human blood show a deviation from the classical Debye model due to 
the fact that blood does not have a single relaxation time, but actually 
it presents a certain distribution of relaxation times [11]. This can be 
thought of as the superposition of parallel combinations of linear series 
RC circuits with different time constants [12].

This way, to account for this distribution, the complex permittivity 
of a species modeled by a superposition of Debye functions with relax-

ation times following a statistical distribution with probability density 
function (pdf) 𝑓 (𝜏) is [12]:

𝜀∗ = 𝜀∞ + (𝜀𝐷𝐶 − 𝜀∞)

∞

∫
0

𝑓 (𝜏)
1 + 𝑗𝑤𝜏

𝑑𝜏 −
𝑗𝜎𝐷𝐶

𝑤𝜀0
(1)

where 𝑗 =
√
−1, 𝜀∗ is the complex permittivity at frequency 𝑤∕(2𝜋), 𝜀∞

is the dielectric constant at very high values of the frequency (the real 
part of the complex 𝜀∗), 𝜀𝐷𝐶 is the dielectric constant under DC con-

ditions (zero frequency), 𝜏 is the relaxation time of the dipoles (where 
each micro-particle represents an electric dipole), 𝜎𝐷𝐶 is the DC ionic 
conductivity and 𝜀0 is the permittivity of free space. It is easy to prove 
that the real (𝜀′) and imaginary (𝜀′′) parts of the complex permittivity 
are given as 𝜀∗ = 𝜀′ − 𝜀′′𝑗, where:

𝜀′ = 𝜀∞ + (𝜀𝐷𝐶 − 𝜀∞)

∞

∫
0

𝑓 (𝜏)
1 +𝑤2𝜏2

𝑑𝜏 (2)

𝜀′′ = (𝜀𝐷𝐶 − 𝜀∞)

∞

∫
0

𝑤𝜏𝑓 (𝜏)
1 +𝑤2𝜏2

𝑑𝜏 +
𝜎𝐷𝐶

𝑤𝜀0
(3)

where:

∞

∫
0

𝑓 (𝜏)𝑑𝜏 = 1 (4)

As previously indicated, let 𝑇 be the random variable (RV) which 
represents the statistical distribution of relaxation times. Then, 𝑓 (𝜏) can 
be interpreted as its pdf.

One shall notice that (4) indicates that RV 𝑇 is a positive RV, i.e., 
only takes positive values. This is obvious as 𝑇 represents the distribu-

tion of relaxation times, which are positive real numbers.

Also, if 𝑇 has a pdf given as 𝑓 (𝜏), then, by the Jacobian rule [13], the 
random variable 𝐿 = ln𝑇 has pdf 𝑔(𝑙) given as 𝑔(𝑙) = 𝑓 (𝑒𝑙)𝑒𝑙 or 𝑔(ln 𝜏) =
𝑓 (𝜏)𝜏 . This explains, in statistical terms, why it is possible to investigate 
the logarithm of the relaxation times, instead of the relaxation times 
themselves. This leads to the following relation [14]:

∞

∫ 𝑔(𝑙)𝑑𝑙 =

∞

∫ 𝑔(ln 𝜏)𝑑 ln 𝜏 = 1 (5)
−∞ −∞
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A common source of confusion between researchers is to directly 
link (4) and (5) without paying attention to the fact that in order to 
maintain consistency, 𝑔(ln 𝜏) = 𝜏𝑓 (𝜏) [14]. Therefore, if one wants to 
model the distribution of relaxation times, the support of the RV 𝑇 is 
the positive real axis, while the support of the RV 𝐿 = ln𝑇 becomes the 
whole real axis.

It is important to highlight that considering the distribution of relax-

ation times as a continuous RV is a simplification. The discrete nature 
of blood-microparticles may affect this assumption. On the other hand, 
for practical purposes, literature results such as the ones in [2] indi-

cate this assumption reasonably holds. Besides, to avoid some practical 
drawbacks related to considering relaxation times ranging from 0 to ∞, 
one must select distributions with virtually null cumulative probabili-

ties on their tails.

In order to present our main results, we should introduce some RVs 
of interest.

3. Random variables of interest

Let 𝑋 be a RV assuming real values, 𝑥 ∈ℝ, whose pdf is:

𝑓 (𝑥,𝜇, 𝜎) = 1
𝜎
𝜙

(
𝑥− 𝜇

𝜎

)
(6)

where 𝜇 ∈ ℝ and 𝜎2 > 0 are the distributions parameters representing 
its mean and variance, respectively, and:

𝜙(𝜉) = 1√
2𝜋

exp
(
−1
2
𝜉2
)

(7)

We say 𝑋 is distributed as a Normal Distribution, 𝑁(𝜇, 𝜎), and write 
𝑋 ∼ 𝑁(𝜇, 𝜎). Besides, let 𝑍 be a RV assuming positive values, 𝑧 ≥ 𝛾 , 
whose pdf is:

ℎ(𝑧, 𝛽, 𝜂, 𝛾) = 𝛽

𝜂

(
𝑧− 𝛾

𝜂

)𝛽−1
exp

(
−
(
𝑧− 𝛾

𝜂

)𝛽
)

(8)

where 𝛾 ∈ℝ, 𝛽 > 0 and 𝜂 > 0 are the distributions parameters. We say 𝑍
follows a 3-parameter Weibull distribution and write 𝑍 ∼𝑊 (𝛽, 𝜂, 𝛾). A 
particular case, when 𝛽 = 2 and 𝛾 = 0, of such RV can be further studied. 
Thus, the pdf of 𝑍(2,0) ∼𝑊 (2, 𝜂, 0), where 𝑧 ≥ 0, is:

ℎ(2,0)(𝑧, 𝜂) =
2
𝜂

(
𝑧

𝜂

)
exp

(
−
(
𝑧

𝜂

)2
)

(9)

It is not possible to account for a location parameter 𝛾 inside and 
outside of the exponential function in (9) and also get the support of 
𝑍(2,0) to be 𝑧 ≥ 0. One can, on the other hand, include the location 
parameter 𝛾 only inside the exponential function and then normalize 
(9) by a multiplicative constant 𝑐 which makes sure that the integral 
over the real half-line is equal to 1. Thus, we can define a new Modified-

Weibull RV 𝑈 , with support 𝑢 ≥ 0 and whose pdf is:

𝑞(𝑢, 𝜂, 𝛾) = 2
𝜂𝑐

(
𝑢

𝜂

)
exp

(
−
(
𝑢− 𝛾

𝜂

)2
)

(10)

where 𝛾 ∈ ℝ and 𝜂 > 0 are the distributions parameters. We say 𝑈 ∼
𝑀𝑊 (𝜂, 𝛾). The constant 𝑐 can be obtained by noticing that:

∞

∫
0

𝑞(𝑢, 𝜂, 𝛾)𝑑𝑢 = 1 ⟹

∞

∫
0

2
𝜂

(
𝑢

𝜂

)
exp

(
−
(
𝑢− 𝛾

𝜂

)2
)
𝑑𝑢 = 𝑐 (11)

This way, by using integration by parts, it is easy to prove that:

𝑐 = 𝑒
− 𝛾2

𝜂2 +
√
𝜋𝛾

𝜂

(
1 + erf

(
𝛾

𝜂

))
(12)

Now that we have presented the random variables which will be 
used in the present paper, we may proceed to the analysis of previously 
published results.
3

4. Mathematical results of [11]

In [11], the author studied the dielectrical relaxation of human 
blood. He indicated that blood is constituted by red blood cells (RBCs), 
white blood cells (WBCs), micro-light blood particles (MLPs, which are 
lighter than RBCs and WBCs) and other microparticles. Also, he indi-

cates that dielectric measurements of blood are influenced by all these 
cells/particles.

At first, the author presents the so-called Cole equation, where the 
parameter 𝛼 is an exponent of the imaginary quantity 𝑗𝑤𝜏 . The Cole 
equation is described as:

𝜀∗ = 𝜀∞ +
(𝜀𝐷𝐶 − 𝜀∞)
1 + (𝑗𝑤𝜏)𝛼

(13)

where 𝛼 is a parameter ranging between 0 and 1 with dimensionless 
units. The author in [11] indicates that 𝛼 is the so-called Cole parame-

ter, but that is not accurate. Actually, the Cole parameter, 𝛼𝑐 , satisfies 
𝛼𝑐 = 1 − 𝛼 in (13).

Besides, following the nomenclature on [11], let 𝑛 be the number of 
dipoles of one type per unit volume; then one can write for the three 
types of cells/particles in blood:

𝑛 = (𝑛0)𝑊𝐵𝐶𝑓 (𝜏)𝑊𝐵𝐶 + (𝑛0)𝑅𝐵𝐶𝑓 (𝜏)𝑅𝐵𝐶 + (𝑛0)𝑀𝐿𝑃 𝑓 (𝜏)𝑀𝐿𝑃 (14)

where 𝑓 (𝜏)𝑘 is the distribution function of the relaxation times for each 
particle 𝑘. One should notice that (14) is not correct, as it should be in 
a differential form since we are dealing with probability density func-

tions. Thus, the correct writing would be:

𝑑𝑛=
(
(𝑛0)𝑊𝐵𝐶𝑓 (𝜏)𝑊𝐵𝐶 + (𝑛0)𝑅𝐵𝐶𝑓 (𝜏)𝑅𝐵𝐶 + (𝑛0)𝑀𝐿𝑃 𝑓 (𝜏)𝑀𝐿𝑃

)
𝑑𝜏 (15)

We shall highlight that in (15) we are just weighting the distri-

bution of relaxation times by the number of each respective blood-

microparticle. Factors like mass, volume, elasticity and shape are ac-

counted for by the distribution of relaxation times. Therefore, it is 
understood that, macroscopically, the distribution of relaxation times 
for each blood micro-particle is a random variable and that is what is 
modeled.

After that, in [11], the author indicates that:

∞

∫
0

(
(𝑛0)𝑊𝐵𝐶𝑓 (𝜏)𝑊𝐵𝐶 + (𝑛0)𝑅𝐵𝐶𝑓 (𝜏)𝑅𝐵𝐶 + (𝑛0)𝑀𝐿𝑃 𝑓 (𝜏)𝑀𝐿𝑃

)
𝑑𝜏 = 1

(16)

Again, the results in [11] are not correct, as the integral would 
be equal to the total number of dipoles 𝑛, instead. The expressions in 
[11] would only be correct if (𝑛0)𝑘 represented the relative number of 
each cell/particle 𝑘 with respect to the total number of dipoles. In that 
case, (𝑛0)𝑘 ≤ 1. To represent this normalized version of the number of 
cells/particles, we can use the values 𝑟𝑊𝐵𝐶 , 𝑟𝑅𝐵𝐶 and 𝑟𝑀𝐿𝑃 for WBCs, 
RBC, and MLPs, respectively. Thus, a correct version of (16) would be:

∞

∫
0

(
𝑟𝑊 𝐵𝐶𝑓 (𝜏)𝑊𝐵𝐶 + 𝑟𝑅𝐵𝐶𝑓 (𝜏)𝑅𝐵𝐶 + 𝑟𝑀𝐿𝑃 𝑓 (𝜏)𝑀𝐿𝑃

)
𝑑𝜏 = 1 (17)

Equation (17) reveals that when multiple cells/particles are consid-

ered, the distribution of relaxation times of blood is a statistical mixture 
of the distributions of each cell/particle. This is important to high-

light, as the statistical treatment of mixtures have particular issues to 
be considered. The identifiability of the mixtures of Modified Weibull 
Distributions will be later discussed in the present paper.

Thus, we can define the pdf of the distribution of relaxation times in 
blood as 𝑓 (𝜏)𝑏𝑙𝑜𝑜𝑑 and write:

𝑓 (𝜏)𝑏𝑙𝑜𝑜𝑑 = 𝑟𝑊 𝐵𝐶𝑓 (𝜏)𝑊𝐵𝐶 + 𝑟𝑅𝐵𝐶𝑓 (𝜏)𝑅𝐵𝐶 + 𝑟𝑀𝐿𝑃 𝑓 (𝜏)𝑀𝐿𝑃 (18)

The author of [11] indicates that, since RBCs constitute 99% of 
blood, only those cells were considered. This way, he states that:
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∞

∫
0

(𝑛0)𝑅𝐵𝐶𝑓 (𝜏)𝑅𝐵𝐶𝑑𝜏 = 1 (19)

Once more, (19) is not correct. The consistent equations would be:

∞

∫
0

(𝑛0)𝑅𝐵𝐶𝑓 (𝜏)𝑅𝐵𝐶𝑑𝜏 ≈ 𝑛 (20)

and

∞

∫
0

𝑓 (𝜏)𝑅𝐵𝐶𝑑𝜏 = 1 (21)

as, regardless of each blood cell/particle, (21) is always valid.

Also in [11], the author introduced 𝑓 (𝜏) and stated that it followed 
a Gaussian Distribution (GD) with pdf:

𝑓 (𝜏) = 𝜏

𝑇𝑠

√
2𝜋

exp

(
−
(𝜏 − 𝜏𝑐)2

2𝑇 2
𝑠

)
, 𝜏 ≥ 0 (22)

A first important remark we must make is that RVs representing the 
distribution of relaxation times cannot follow a Normal distribution, as 
the latter can also take negative values. This issue indicates the nomen-

clature used by [11] is misleading.

Besides, as (4) and (21) indicate, 𝑓 (𝜏) is a probability density func-

tion, thus it must integrate to 1 over its support. By integrating (22) 
from 0 to ∞, by using (11) and (12) with 𝛾 = 𝜏𝑐 and 𝜂 =

√
2𝑇𝑠, one may 

see that:

∞

∫
0

𝜏

𝑇𝑠

√
2𝜋

exp

(
−
(𝜏 − 𝜏𝑐)2

2𝑇 2
𝑠

)
𝑑𝜏 =

𝑇𝑠√
2𝜋

⎛⎜⎜⎝𝑒
− 𝜏2𝑐

2𝑇 2𝑠 +
√
𝜋𝜏𝑐√
2𝑇𝑠

(
1 + erf

(
𝜏𝑐√
2𝑇𝑠

))⎞⎟⎟⎠ (23)

Equation (23) indicates that the results presented in [11] are not 
consistent with the theoretical constraints on 𝑓 (𝜏).

Also, by looking at the definition of the pdf of a Gaussian RV in (6) 
and (7), a careful analysis reveals that there is no linear term 𝑥 multi-

plying the exponential function in such definition. On the other hand, 
(22) and (23) show there is a 𝜏 term pre-multiplying the exponential 
function. Therefore, (22) does not represent the pdf of a Gaussian RV. 
This is the core of the issues we are addressing in the present paper.

Besides, visual inspection reveals that (22) resembles (9), except for 
the location parameter inside the exponential function. Actually, the 
RV described in [11], if properly normalized by the constant on the 
right-hand side of (23), follows a Modified-Weibull distribution with 
parameters 𝛾 = 𝜏𝑐 and 𝜂 =

√
2𝑇𝑠, whose pdf is given in (10).

Even though the author in [11] indicates the paper is about RBCs, he 
presents the results for all blood cells without considering the weights 
𝑟𝑘, for each cell/particle 𝑘. In order to account for all the cells/particles, 
the mixture of distributions in (18) must be considered.

Mathematically, by using (2), (3) and (18), let the sub-index 𝑘 refer 
to each of the blood cells/particles, such that 1, 2 and 3 refer to WBCs, 
RBCs and MLPs, respectively. Then:

𝜀′ = 𝜀∞ + (𝜀𝐷𝐶 − 𝜀∞)
3∑

𝑘=1
𝑟𝑘

∞

∫
0

𝑓 (𝜏)𝑘
1 +𝑤2𝜏2

𝑑𝜏 (24)

𝜀′′ = (𝜀𝐷𝐶 − 𝜀∞)
3∑

𝑘=1
𝑟𝑘

∞

∫
0

𝑤𝜏𝑓 (𝜏)𝑘
1 +𝑤2𝜏2

𝑑𝜏 +
𝜎𝐷𝐶

𝑤𝜀0
(25)

where 𝑟𝑘 = (𝑛0)𝑘∕𝑛, 𝑘 = 1, 2, 3 and ∑ 𝑟𝑘 = 1, according to the nomencla-

ture of [11].

By considering the correct version of the pdfs involved as given in 
(10) with parameters 𝛾𝑘 = 𝜏𝑐,𝑘 and 𝜂𝑘 =

√
2𝑇𝑠,𝑘, (24) and (25) become:
4

𝜀′ = 𝜀∞ + (𝜀𝐷𝐶 − 𝜀∞)
3∑

𝑘=1
𝑟𝑘

∞

∫
0

𝜏

𝑇 2
𝑠,𝑘
(1 +𝑤2𝜏2)𝑐𝑘

exp

(
−
(𝜏 − 𝜏𝑐,𝑘)2

2𝑇 2
𝑠,𝑘

)
𝑑𝜏

(26)

𝜀′′ = (𝜀𝐷𝐶 − 𝜀∞)
3∑

𝑘=1
𝑟𝑘

∞

∫
0

𝑤𝜏2

𝑇 2
𝑠,𝑘
(1 +𝑤2𝜏2)𝑐𝑘

exp

(
−
(𝜏 − 𝜏𝑐,𝑘)2

2𝑇 2
𝑠,𝑘

)
𝑑𝜏 +

𝜎𝐷𝐶

𝑤𝜀0

(27)

where:

𝑐𝑘 = 𝑒

−
𝜏2
𝑐,𝑘

2𝑇 2
𝑠,𝑘 +

√
𝜋𝜏𝑐,𝑘√
2𝑇𝑠,𝑘

(
1 + erf

(
𝜏𝑐,𝑘√
2𝑇𝑠,𝑘

))
(28)

Equations (26) and (27) are the correct versions of equations (9) and 
(8) of [11], respectively. Similarly, equations (11) to (13) of [11] need 
to be corrected to account for the relative number of each cell/particle 
𝑟𝑘.

One of the main issues related to the results presented by [11] is 
that his results did not incorporate the effect of the normalizing con-

stant 𝑐𝑘. Thus, when performing the fitting procedures, the values of 
𝑟𝑘 and (𝜀𝐷𝐶 − 𝜀∞) may become unreasonable as 𝑐𝑘 gets out of the inte-

gral and impacts those parameters. This shall be illustrated in Section 6, 
where experimental data are fitted using the equations previously dis-

cussed.

Now that we have presented the re-analyzed versions of the equa-

tions deduced in [11], we shall introduce new exact and approximate 
expressions for the integrals in (26) and (27).

5. Exact and approximate expressions for permittivities

Even in [11], the integrals in (26) and (27) were not obtained in a 
closed form. In the present section, both exact and approximate expres-

sions are obtained for such equations.

5.1. Exact expressions

In order to obtain the exact expressions, let us consider the variable 
change 𝑤𝜏 = 𝑦 on both (26) and (27). This leads to:

𝜀′ = 𝜀∞ + (𝜀𝐷𝐶 − 𝜀∞)
3∑

𝑘=1

𝑟𝑘

𝑤2𝑇 2
𝑠,𝑘

𝑐𝑘

∞

∫
0

𝑦

1 + 𝑦2
exp

(
−
(𝑦−𝑤𝜏𝑐,𝑘)2

2𝑤2𝑇 2
𝑠,𝑘

)
𝑑𝑦

(29)

𝜀′′ = (𝜀𝐷𝐶 − 𝜀∞)
3∑

𝑘=1

𝑟𝑘

𝑤2𝑇 2
𝑠,𝑘

𝑐𝑘

∞

∫
0

𝑦2

1 + 𝑦2
exp

(
−
(𝑦−𝑤𝜏𝑐,𝑘)2

2𝑤2𝑇 2
𝑠,𝑘

)
𝑑𝑦+

𝜎𝐷𝐶

𝑤𝜀0

(30)

Therefore, it is easy to see that both permittivity values depend on 
an integral 𝐼𝑝(𝑎, 𝑏) of the type:

𝐼𝑝(𝑎, 𝑏) =

∞

∫
0

𝑦𝑝

1 + 𝑦2
exp

(
−
(
𝑦− 𝑎

𝑏

)2
)
𝑑𝑦 (31)

The exact expressions can be obtained both in a closed-form, in 
terms of generalized hypergeometric functions, as well as an infinite 
series.

5.1.1. Closed-form expressions

Literature [13] reveals that:

(1 + 𝑥)−𝑎 = 1
Γ(𝑎)

𝐻
1,1
1,1

[
𝑥
||||| (1 − 𝑎,1)

(0,1)

]
= 1

2𝜋𝑗Γ(𝑎) ∫
𝐿∗

Γ(𝑠)Γ(𝑎− 𝑠)𝑥−𝑠𝑑𝑠

(32)
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where 𝑗 =
√
−1 and 𝐿∗ is a suitable contour separating the poles of Γ(𝑠)

from Γ(𝑎 − 𝑠).
This way, from (32) and (31):

𝐼𝑝(𝑎, 𝑏) =
1

2𝜋𝑗 ∫
𝐿∗

Γ(𝑠)Γ(1 − 𝑠)

∞

∫
0

𝑦𝑝−𝑠 exp
(
−
(
𝑦− 𝑎

𝑏

)2
)
𝑑𝑦𝑑𝑠 (33)

Now we may introduce a main result which shall be used throughout 
the paper.

Theorem 1. Whenever ℜ(𝛼1) > −1, the following integral can be expressed 
in a closed form in terms of Generalized Hypergeometric functions:

∞

∫
0

𝑦𝛼1 exp

(
−
(
𝑦− 𝛼2
𝛼3

)2
)
𝑑𝑦 =

(
−𝛼2

)𝛼1+1 Γ(𝛼1 + 1)𝐻2,0
1,2

[
𝛼22

𝛼23

||||| (0,2)
(0,1), (−𝛼1 − 1,2)

]
=

(
−
𝛼2
2

)𝛼1+1
Γ(𝛼1 + 1)𝐺2,0

1,2

[
𝛼22

𝛼23

||||| 1∕2
− 𝛼1+1

2 ,− 𝛼1
2

]
(34)

Proof. At first, one shall consider the left hand side of (34) and con-

sider the contour integral representation of the exponential function, 
given as [13]:

exp(−𝑧) = 1
2𝜋𝑗 ∫

𝐿∗

Γ(𝑠)𝑧−𝑠𝑑𝑠 (35)

Thus, by combining (34) and (35), one gets:

∞

∫
0

𝑦𝛼1 exp

(
−
(
𝑦− 𝛼2
𝛼3

)2
)
𝑑𝑦 = 1

2𝜋𝑗 ∫
𝐿∗

Γ(𝑠)

∞

∫
0

𝑦𝛼1

(
𝑦− 𝛼2
𝛼3

)−2𝑠
𝑑𝑦𝑑𝑠

(36)

By performing the variable change 𝑦 = 𝛼2𝑥∕(𝑥 − 1), the right hand 
side of (36) becomes:

1
2𝜋𝑗 ∫

𝐿∗

Γ(𝑠)

∞

∫
0

𝑦𝛼1

(
𝑦− 𝛼2
𝛼3

)−2𝑠
𝑑𝑦𝑑𝑠=

(−𝛼2)𝛼1+1

2𝜋𝑗 ∫
𝐿∗

Γ(𝑠)
(
−
𝛼2
𝛼3

)−2𝑠 1

∫
0

𝑥𝛼1 (1 − 𝑥)2𝑠−𝛼1−2 𝑑𝑥𝑑𝑠 (37)

The Beta function 𝐵(𝑥, 𝑦) can be defined as [13]:

𝐵(𝑧1, 𝑧2) =

1

∫
0

𝑞𝑧1−1 (1 − 𝑞)𝑧2−1 𝑑𝑞 =
Γ(𝑧1)Γ(𝑧2)
Γ(𝑧1 + 𝑧2)

(38)

for ℜ(𝑧1) > 0 and ℜ(𝑧2) > 0.

This way, (37) can be represented in terms of the Beta function by 
using (38), leading to:

1
2𝜋𝑗 ∫

𝐿∗

Γ(𝑠)

∞

∫
0

𝑦𝛼1

(
𝑦− 𝛼2
𝛼3

)−2𝑠
𝑑𝑦𝑑𝑠=

(−𝛼2)𝛼1+1

2𝜋𝑗 ∫
𝐿∗

Γ(𝑠)
(
−
𝛼2
𝛼3

)−2𝑠 Γ(𝛼1 + 1)Γ(2𝑠− 𝛼1 − 1)
Γ(2𝑠)

𝑑𝑠 (39)

whenever ℜ(𝛼1) > −1 and ℜ(𝑠) > (𝛼1 + 1)∕2.

One may see that, by using the contour integral representation of 
the H-function given in (72), the first representation of the integral in 
(34) has been proven. On the other hand, to get the Meijer-G function 
representation, one may notice that the Gamma function multiplication 
theorem indicates that [13]:
5

𝑘−1∏
𝑗=0

Γ
(
𝑧+ 𝑗

𝑘

)
= Γ(𝑘𝑧)(2𝜋)

𝑘−1
2 𝑘

1
2 −𝑘𝑧 (40)

Therefore, by directly using (40) with 𝑘 = 2, (39) becomes:

1
2𝜋𝑗 ∫

𝐿∗

Γ(𝑠)

∞

∫
0

𝑦𝛼1

(
𝑦− 𝛼2
𝛼3

)−2𝑠
𝑑𝑦𝑑𝑠=

(
−
𝛼2
2

)𝛼1+1 Γ(𝛼1 + 1)
2𝜋𝑗 ∫

𝐿∗

Γ
(
𝑠− 𝛼1+1

2

)
Γ
(
𝑠− 𝛼1

2

)
Γ
(
𝑠+ 1

2

) (
−
𝛼2
𝛼3

)−2𝑠
𝑑𝑠 (41)

Now, by using the contour integral representation of the H-function 
given in (72) and noticing that, by definition, the Meijer-G function 
is the H-function with 𝐴𝑗, 𝐵𝑗 = 1, ∀𝑗, the second representation of the 
integral in (34) has been proven, which ends the proof. □

This way, by means of Theorem 1, (33) can be rewritten as:

𝐼𝑝(𝑎, 𝑏) =

1
2𝜋𝑗 ∫

𝐿∗

Γ(𝑠)Γ(1−𝑠) (−𝑎)𝑝−𝑠+1 Γ(𝑝−𝑠+1)𝐻2,0
1,2

[
𝑎2

𝑏2

||||| (0,2)
(0,1), (𝑠− 𝑝− 1,2)

]
𝑑𝑠 =

1
2𝜋𝑗 ∫

𝐿∗

Γ(𝑠)Γ(1 − 𝑠)
(
−𝑎

2

)𝑝−𝑠+1
Γ(𝑝− 𝑠+ 1)𝐺2,0

1,2

[
𝑎2

𝑏2

||||| 1∕2
− 𝑝−𝑠+1

2 ,− 𝑝−𝑠
2

]
𝑑𝑠

(42)

which is valid when ℜ(𝑠) < 𝑝 + 1.

The results in (42), indicate that 𝐼𝑝(𝑎, 𝑏) may be represented as a 
H-function of two variables or, even simpler, as a Meijer-G function of 
two variables.

On the other hand, we can use another trick to obtain a series rep-

resentation for 𝐼𝑝(𝑎, 𝑏) which converges nicely and fast.

5.1.2. Infinite series
We will use an approach similar to [15] to build exponential ap-

proximations to power functions. Thus, let one consider the following 
integral:

𝑥−1 =

∞

∫
0

exp(−𝑡𝑥)𝑑𝑡 (43)

Thus, we can use (43) and write:

(1 + 𝑦2)−1 =

∞

∫
0

exp(−𝑡) exp(−𝑡𝑦2)𝑑𝑡 (44)

It is widely known that integrals as the one presented on the right 
hand side of (44) can be easily calculated by means of a Gauss-Laguerre 
quadrature, which states that [16]:

∞

∫
0

exp(−𝑡)ℎ(𝑡)𝑑𝑡 ≈
𝑛∑

𝑖=1
𝑞𝑖ℎ(𝑥𝑖), (45)

where the values 𝑥𝑖 are the 𝑖-th root of Laguerre polynomial 𝐿𝑛(𝑥) and 
the weights 𝑞𝑖 are given as:

𝑞𝑖 =
𝑥𝑖

(𝑛+ 1)2
[
𝐿𝑛+1

(
𝑥𝑖
)]2 . (46)

In order to make the approximation in (45) an equality, it suffices 
to take 𝑛 as big to ensure the accuracy required. Thus, from (31) and 
(45), 𝐼𝑝(𝑎, 𝑏) can be given as:

𝐼𝑝(𝑎, 𝑏) = lim
𝑛→∞

𝑛∑
𝑖=1

𝑞𝑖

∞

∫ 𝑦𝑝 exp
(
−
(
𝑦− 𝑎

𝑏

)2
− 𝑥𝑖𝑦

2
)
𝑑𝑦 (47)
0
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By rearranging the terms inside the integral in (47) and using Theo-

rem 1, the following result holds:

∞

∫
0

𝑦𝑝 exp
(
−
(
𝑦− 𝑎

𝑏

)2
− 𝑥𝑖𝑦

2
)
𝑑𝑦 =

𝑒
− 𝑎2𝑥𝑖

1+𝑥𝑖𝑏2

∞

∫
0

𝑦𝑝 exp
⎛⎜⎜⎜⎝−

⎛⎜⎜⎜⎝
𝑦− 𝑎

1+𝑥𝑖𝑏2

𝑏√
1+𝑥𝑖𝑏2

⎞⎟⎟⎟⎠
2⎞⎟⎟⎟⎠𝑑𝑦 =

𝑒
− 𝑎2𝑥𝑖

1+𝑥𝑖𝑏2
(
− 𝑎

2(1 + 𝑥𝑖𝑏
2)

)𝑝+1
Γ(𝑝+ 1)𝐺2,0

1,2

[
𝑎2

𝑏2(1 + 𝑥𝑖𝑏
2)

||||| 1∕2
− 𝑝+1

2 ,− 𝑝

2

]
(48)

Now, in order to obtain simpler expressions for (48), a Corollary of 
Theorem 1 can be stated:

Corollary 1. Besides the representation in terms of the H-function and of 
the Meijer-G function, the integral in (34) can also be represented in terms 
of the Kummer’s Confluent Hypergeometric function, 1𝐹1, as:

∞

∫
0

𝑦𝛼1 exp

(
−
(
𝑦− 𝛼2
𝛼3

)2
)
𝑑𝑦 =

𝛼2𝛼
𝛼1
3 Γ(𝛼1 + 1)

√
𝜋

2𝛼1+1

⎛⎜⎜⎜⎝
𝛼3

𝛼2Γ
(
1 + 𝛼1

2

) 1𝐹1

[
−
𝛼1
2
; 1
2
;−

𝛼22

𝛼23

]
+

2

Γ
(
1+𝛼1
2

) 1𝐹1

[
1 − 𝛼1

2
; 3
2
;−

𝛼22

𝛼23

]⎞⎟⎟⎟⎠ (49)

Proof. The proof of Corollary 1 is a direct consequence of the appli-

cation of the residue theorem [13] to (41). The residues of the Gamma 
functions inside the contour integral are simple, therefore such integral 
can be evaluated by the sum of two infinite series, which are found 
to be 1𝐹1 functions. Analytical continuation allows one to write the 
complementary series when the argument of the Meijer-G function in 
(41) is greater than 1. The only tricky part of the proof is to consider 
that the argument of the Meijer-G function is (−𝑎∕𝑏)2 and not directly 
𝑎2∕𝑏2. This is crucial in the function compositions ((−𝑎∕𝑏)2)(−𝑝−1)∕2 and 
((−𝑎∕𝑏)2)(−𝑝)∕2, which show up. For simplicity, such proof is not fully 
presented in the present paper. An alternative proof may be obtained 
by using equation (1) of [17, p.230] □

This way, instead of using the Meijer-G function representation in 
(48), such integral can be rewritten in terms of the Confluent Hyperge-

ometric function by means of Corollary 1, leading to:

𝑒
− 𝑎2𝑥𝑖

1+𝑥𝑖𝑏2

∞

∫
0

𝑦𝑝 exp
⎛⎜⎜⎜⎝−

⎛⎜⎜⎜⎝
𝑦− 𝑎

1+𝑥𝑖𝑏2

𝑏√
1+𝑥𝑖𝑏2

⎞⎟⎟⎟⎠
2⎞⎟⎟⎟⎠𝑑𝑦 =

𝑒
− 𝑎2𝑥𝑖

1+𝑥𝑖𝑏2
𝑎𝑏𝑝Γ(𝑝+ 1)

√
𝜋

2𝑝+1(1 + 𝑥𝑖𝑏
2)1+𝑝∕2

⎛⎜⎜⎜⎝
𝑏
√
1 + 𝑥𝑖𝑏

2

𝑎Γ
(
1 + 𝑝

2

) 1𝐹1

[
− 𝑝

2
; 1
2
;− 𝑎2

𝑏2(1 + 𝑥𝑖𝑏
2)

]
+

2

Γ
(
1+𝑝
2

) 1𝐹1

[
1 − 𝑝

2
; 3
2
;− 𝑎2

𝑏2(1 + 𝑥𝑖𝑏
2)

]⎞⎟⎟⎟⎠ (50)

We can now focus on some particular cases of (50). At first, one 
should consider the following well-known formulas for the Kummer’s 
Confluent hypergeometric function [18]:
6

1𝐹1[𝑎− 1;𝑏;𝑧] = 1𝐹1[𝑎;𝑏;𝑧] −
𝑧

𝑏
1𝐹1[𝑎;𝑏+ 1;𝑧] (51)

1𝐹1[𝑎− 1;𝑏;𝑧] = 𝑏− 2𝑎− 𝑧

𝑏− 𝑎
1𝐹1[𝑎;𝑏;𝑧] +

𝑎

𝑏− 𝑎
1𝐹1[𝑎+ 1;𝑏;𝑧] (52)

1𝐹1[𝑏;𝑏;𝑧] = exp[𝑧] (53)

1𝐹1[0;𝑏;𝑧] = 1 (54)

erf(𝑥) = 2𝑥√
𝜋

1𝐹1

[1
2
,
3
2
,−𝑥2

]
(55)

in which erf(𝑥), 𝑥 ∈ℝ, is the error function.

Thus, by considering the first Kummer’s Confluent hypergeometric 
function in (50) and using (51), one may get:

1𝐹1

[
− 𝑝

2
; 1
2
;−𝑧2

]
= 1𝐹1

[
1 − 𝑝

2
; 1
2
;−𝑧2

]
+ 2𝑧21𝐹1

[
1 − 𝑝

2
; 3
2
;−𝑧2

]
(56)

As a particular case, when 𝑝 = 1, by using (53) and (55), the right 
hand side of (56) simplifies to:

1𝐹1

[
−1
2
; 1
2
;−𝑧2

]
= 𝑒−𝑧

2 + 𝑧
√
𝜋erf(𝑧) (57)

On the other hand, for 𝑝 = 2, by using (54), the right hand side of 
(56) simplifies to:

1𝐹1

[
−1; 1

2
;−𝑧2

]
= 1 + 2𝑧2 (58)

Now, let one consider the second Kummer’s Confluent hypergeomet-

ric function in (50) and using (52), one may get:

1𝐹1

[
1 − 𝑝

2
; 3
2
;−𝑧2

]
=

2𝑝− 3 + 2𝑧2

𝑝
1𝐹1

[
3 − 𝑝

2
; 3
2
;−𝑧2

]
+ 3 − 𝑝

𝑝
1𝐹1

[
5 − 𝑝

2
; 3
2
;−𝑧2

]
(59)

Again, when 𝑝 = 1, by using (54), the right hand side of (59) simpli-

fies to:

1𝐹1

[
0; 3

2
;−𝑧2

]
= 1 (60)

Also, for 𝑝 = 2, by using (53) and (55), the right hand side of (59) 
simplifies to:

1𝐹1

[
−1
2
; 3
2
;−𝑧2

]
=

(1 + 2𝑧2)
√
𝜋

4𝑧
erf(𝑧) + 𝑒−𝑧

2

2
(61)

Now, by combining (47), (50), (57) and (60), 𝐼1(𝑎, 𝑏) can be given 
explicitly as:

𝐼1(𝑎, 𝑏) =

∞∑
𝑖=1

𝑎𝑏
√
𝜋𝑞𝑖𝑒

− 𝑎2𝑥𝑖
1+𝑥𝑖𝑏2

2(1 + 𝑥𝑖𝑏
2)3∕2

⎛⎜⎜⎜⎝
𝑏
√
1 + 𝑥𝑖𝑏

2𝑒
− 𝑎2

𝑏2(1+𝑥𝑖𝑏2)

𝑎
√
𝜋

+ erf

(
𝑎

𝑏
√
1 + 𝑥𝑖𝑏

2

)
+ 1

⎞⎟⎟⎟⎠
(62)

By following a similar procedure, the combination of (47), (50), (58) 
and (61), allows one to obtain 𝐼2(𝑎, 𝑏) explicitly as:

𝐼2(𝑎, 𝑏) =
∞∑
𝑖=1

𝑏3
√
𝜋𝑞𝑖𝑒

− 𝑎2𝑥𝑖
1+𝑥𝑖𝑏2

4(1 + 𝑥𝑖𝑏
2)3∕2

⎛⎜⎜⎜⎝
2𝑎𝑒

− 𝑎2

𝑏2(1+𝑥𝑖𝑏2)√
𝜋𝑏

√
1 + 𝑥𝑖𝑏

2
+

(
1 + 2𝑎2

𝑏2(1 + 𝑥𝑖𝑏
2)

)(
1 + erf

(
𝑎

𝑏
√
1 + 𝑥𝑖𝑏

2

)))
(63)
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This way, by combining (29), (31), (47) and (62), one shall get that:

𝜀′ = 𝜀∞ + (𝜀𝐷𝐶 − 𝜀∞)
3∑

𝑘=1

𝑟𝑘𝜏𝑐,𝑘

√
𝜋𝑞𝑖√

2𝑇𝑠,𝑘𝑐𝑘

∞∑
𝑖=1

𝑒

−
𝑤2𝜏2

𝑐,𝑘
𝑥𝑖

1+2𝑥𝑖𝑤2𝑇 2
𝑠,𝑘

(1 + 2𝑥𝑖𝑤2𝑇 2
𝑠,𝑘
)3∕2

(1+

√
2𝑇𝑠,𝑘

√
1 + 2𝑥𝑖𝑤2𝑇 2

𝑠,𝑘
𝑒

−
𝜏2
𝑐,𝑘

2𝑇 2
𝑠,𝑘

(1+2𝑥𝑖𝑤2𝑇 2
𝑠,𝑘

)

𝜏𝑐,𝑘

√
𝜋

+ erf
⎛⎜⎜⎜⎝

𝜏𝑐,𝑘√
2𝑇𝑠,𝑘

√
1 + 2𝑥𝑖𝑤2𝑇 2

𝑠,𝑘

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎠

(64)

One may also combine (30), (31), (47) and (63) to get:

𝜀′′ = (𝜀𝐷𝐶−𝜀∞)
3∑

𝑘=1

𝑟𝑘𝑤𝑇𝑠,𝑘

√
𝜋

𝑐𝑘

√
2

∞∑
𝑖=1

𝑞𝑖𝑒

−
𝑤2𝜏2

𝑐,𝑘
𝑥𝑖

1+2𝑥𝑖𝑤2𝑇 2
𝑠,𝑘

(1 + 2𝑥𝑖𝑤2𝑇 2
𝑠,𝑘
)3∕2

×

⎛⎜⎜⎜⎜⎝
√
2𝜏𝑐,𝑘𝑒

−
𝜏2
𝑐,𝑘

2𝑇 2
𝑠,𝑘

(1+2𝑥𝑖𝑤2𝑇 2
𝑠,𝑘

)√
𝜋𝑇𝑠,𝑘

√
1 + 2𝑥𝑖𝑤2𝑇 2

𝑠,𝑘

+

(
1 +

𝜏2
𝑐,𝑘

𝑇 2
𝑠,𝑘
(1 + 2𝑥𝑖𝑤2𝑇 2

𝑠,𝑘
)

)⎛⎜⎜⎜⎝1 + erf
⎛⎜⎜⎜⎝

𝜏𝑐,𝑘√
2𝑇𝑠,𝑘

√
1 + 2𝑥𝑖𝑤2𝑇 2

𝑠,𝑘

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠+

𝜎𝐷𝐶

𝑤𝜀0

(65)

Even though (64) and (65) are exact up to any given accuracy, it 
may be necessary more than 50 terms of the summation to get 4-digit 
accuracy. We can, on the other hand, take advantage of (43) and (45) to 
notice that (1 +𝑦2)−1 can be expanded in terms of exponential functions. 
Thus, instead of directly using the series expansion, we can propose a 
nonlinear approximation based on curve fitting techniques.

5.2. Approximate expressions

The integral 𝐼𝑝(𝑎, 𝑏) is difficult to analytically evaluate due to the 
function 𝑦𝑝(1 + 𝑦2)−1. In special, for our permittivity studies, we are 
worried about 𝑦(1 + 𝑦2)−1 and 𝑦2(1 + 𝑦2)−1.

Consider the function 𝑦2(1 + 𝑦2)−1. Based on the fact that (1 + 𝑦2)−1
can be expanded in terms of exponential functions and noticing that 
𝑦2(1 + 𝑦2)−1 = 1 − (1 + 𝑦2)−1 we propose the following approximation for 
𝑦2(1 + 𝑦2)−1:

𝑦2

1 + 𝑦2
≈

𝑀∑
𝑙=1

𝜆𝑙
(
1 − exp

(
−𝛽𝑙𝑦2

))
(66)

By performing a nonlinear fitting procedure using the software 
Mathematica, it was found that 𝑀 = 3 is enough to obtain a maximum 
absolute error of about 0.0185 (around 𝑦 = 0.546) for the entire domain. 
For 𝑀 = 3, 𝜆1 = 0.58974, 𝛽1 = 1.28188, 𝜆2 = 0.313759, 𝛽2 = 0.253207, 
𝜆3 = 0.0870197, 𝛽3 = 0.0438525. Thus, by combining (30) and (66), one 
can get:

𝜀′′ = (𝜀𝐷𝐶 − 𝜀∞)
3∑

𝑘=1

𝑟𝑘

𝑤2𝑇 2
𝑠,𝑘

𝑐𝑘

×

3∑
𝑙=1

𝜆𝑙

∞

∫
0

(
1 − exp

(
−𝛽𝑙𝑦2

))
exp

(
−
(𝑦−𝑤𝜏𝑐,𝑘)2

2𝑤2𝑇 2
𝑠,𝑘

)
𝑑𝑦+

𝜎𝐷𝐶

𝑤𝜀0
(67)

When 𝑝 = 0 in (50), one easily obtains:

𝑒
− 𝑎2𝑥𝑖

1+𝑥𝑖𝑏2

∞

∫
0

exp
⎛⎜⎜⎜⎝−

⎛⎜⎜⎜⎝
𝑦− 𝑎

1+𝑥𝑖𝑏2

𝑏√
1+𝑥 𝑏2

⎞⎟⎟⎟⎠
2⎞⎟⎟⎟⎠𝑑𝑦 =
𝑖
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Fig. 1. Experimental data collected by [2] for whole human blood (hematocrit 
value of 0.39) at 310 K.

𝑒
− 𝑎2𝑥𝑖

1+𝑥𝑖𝑏2 𝑏
√
𝜋

2
√
1 + 𝑥𝑖𝑏

2

(
1 + erf

(
𝑎

𝑏
√
1 + 𝑥𝑖𝑏

2

))
(68)

This way, by using (68) with 𝑥𝑖 = 0 as well as with 𝑥𝑖 = 𝛽𝑙 , (67) 
reduces to:

𝜀′′ = (𝜀𝐷𝐶 − 𝜀∞)
3∑

𝑘=1

𝑟𝑘

𝑤𝑇𝑠,𝑘𝑐𝑘

3∑
𝑙=1

𝜆𝑙

√
𝜋√
2

(
1 + erf

(
𝜏𝑐,𝑘√
2𝑇𝑠,𝑘

)
−

𝑒

−
𝑤2𝜏2

𝑐,𝑘
𝛽𝑙

1+2𝛽𝑙𝑤2𝑇 2
𝑠,𝑘√

1 + 2𝛽𝑙𝑤2𝑇 2
𝑠,𝑘

⎛⎜⎜⎜⎝1 + erf
⎛⎜⎜⎜⎝

𝜏𝑐,𝑘√
2𝑇𝑠,𝑘

√
1 + 2𝛽𝑙𝑤2𝑇 2

𝑠,𝑘

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎠
+

𝜎𝐷𝐶

𝑤𝜀0
(69)

A similar procedure could be carried out to obtain an approximation 
to the real part of complex permittivity, but numerical experiments re-

vealed the errors were not within a reasonable range. Therefore, only 
the approximation for the imaginary part of the complex permittivity is 
presented.

In order to illustrate the usage of the new formulas derived, we shall 
fit experimental blood dielectric data from the literature.

6. Fitting experimental data with the new formulas

In [2], the dielectric properties of human blood were studied using 
broadband dielectric spectroscopy. Those authors covered a frequency 
range from 1 Hz to 40 GHz, providing information on all the typical 
dispersion regions of biological matter. Among the published values, 
we chose the ones with hematocrit values of 0.39, corresponding to 
the whole blood samples used in [2]. Besides, we chose the samples 
with temperature of 310 K, which are around human body’s regular 
temperature. Fig. 1 presents these results.

After analyzing the dataset on Fig. 1, it was indicated in [2] that 
there was no evidence for a low-frequency relaxation (𝛼-relaxation) as 
well as for relaxation between 𝛽- and 𝛾-relaxations (𝛿-relaxation).

Their analysis, on the other hand, indicated a strong Maxwell–

Wagner relaxation arising from the polarization of the cell membranes 
in the 1–100 MHz region (𝛽-relaxation) as well as an important relax-

ation in the microwave region beyond 1 GHz (𝛾-relaxation).

Therefore, in a similar manner as [11], we shall consider the relax-

ation modeling on the 𝛽-relaxation region. The 𝛽-relaxation is directly 
linked to RBCs [2]. Also, as also pointed out by [11], RBCs constitute 
almost 99 % of the blood. This allows us to consider 𝑟𝑅𝐵𝐶 ≈ 1 and 
𝑟𝑊 𝐵𝐶 = 𝑟𝑀𝐿𝑃 ≈ 0

We shall use (27) and its exact and approximate version to perform 
the fittings. For comparison, we will use (8) of [11], which is:

𝜀′′ = (𝜀𝐷𝐶 − 𝜀∞)
3∑

𝑘=1

∞

∫
0

𝑤𝜏2√
2𝜋𝑇 2

𝑠,𝑘
(1 +𝑤2𝜏2)

exp

(
−
(𝜏 − 𝜏𝑐,𝑘)2

2𝑇 2
𝑠,𝑘

)
𝑑𝜏 +

𝜎𝐷𝐶

𝑤𝜀0

(70)
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Fig. 2. Fitted values for complex permittivity.

Fig. 3. Fitted values for AC complex permittivity.

By noticing that 𝜀0 = 8.854 × 10−12𝐹∕𝑚 and using (27), the follow-

ing fitting parameters were obtained: (𝜀𝐷𝐶 − 𝜀∞) = 8.993 × 103, 𝑇𝑅𝐵𝐶 =
1.139 × 10−7𝑠, 𝜏𝑅𝐵𝐶 = 2.434 × 10−08𝑠 and 𝜎𝐷𝐶 = 3.204 × 10−1Ω−1𝑚−1. On 
the other hand, by using (70), the fitting parameters were (𝜀𝐷𝐶 − 𝜀∞) =
1.533 × 1011, 𝑇𝑅𝐵𝐶 = 1.139 × 10−7𝑠, 𝜏𝑅𝐵𝐶 = 2.434 × 10−08𝑠 and 𝜎𝐷𝐶 =
3.204 × 10−1Ω−1𝑚−1. The fittings are presented in Figs. 2 and 3. It is 
considered that 𝜀′′

𝐴𝐶
= 𝜀′′ − 𝜎𝐷𝐶∕(𝑤𝜀0).

In [2], the fitted values for a Cole-Cole model were (𝜀𝐷𝐶 − 𝜀∞) =
9.23 × 103 and 𝜎𝐷𝐶 = 3.2 × 10−1Ω−1𝑚−1, really close to the values pre-

dicted by using (27).

As expected, while comparing the results from (27) and (70), apart 
from the fitted value of (𝜀𝐷𝐶 − 𝜀∞), all the other parameters are equal. 
To explain such difference, a direct comparison between (27) and (70) 
indicates that, in order to maintain consistency:

(𝜀𝐷𝐶 − 𝜀∞)[11] =
√
2𝜋

𝑇𝑠,𝑘𝑐𝑘
𝑟𝑘(𝜀𝐷𝐶 − 𝜀∞)𝑛𝑒𝑤 (71)

where the subindex [11] indicates the value of (𝜀𝐷𝐶 − 𝜀∞) obtained by 
using the formula presented in [11] and presented in (70), while the 
subindex 𝑛𝑒𝑤 is the value obtained by using (27).

It can be seen that if the results presented by [11] were used, we 
would obtain values of (𝜀𝐷𝐶 −𝜀∞) which depended on the relative num-

ber of each cell/particle with respect to the total number of dipoles, 𝑟𝑘. 
This is not correct, as the value of (𝜀𝐷𝐶 − 𝜀∞) is unique for each relax-

ation region for the blood sample. This issue, on the other hand, was 
not observed in the experimental dataset we used, since only RBCs were 
considered and 𝑟𝑅𝐵𝐶 ≈ 1; 𝑟𝑊 𝐵𝐶 = 𝑟𝑀𝐿𝑃 ≈ 0.

Besides, it can be seen that the misuse of the Gaussian distribution 
also impacts the value of (𝜀𝐷𝐶 − 𝜀∞). A correction factor equal to 

√
2𝜋

𝑇𝑠,𝑘𝑐𝑘

must be applied to the results in [11] to express the correct values of 
the parameters.

Another interesting characteristic is that the value of 𝜏 does not 
meet the peak 𝑒′′

𝐴𝐶
value anymore. This comes from the fact that 

the Modified-Weibull distribution is asymmetric with respect to the 
mean.

It has been shown that previous results published in [11] may over-

estimate the value of (𝜀𝐷𝐶 −𝜀∞). In the next section, the identifiability of 
mixtures of Modified Weibull Distributions is briefly discussed. This can 
be an issue while performing the fitting procedures hereby proposed.
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7. Identifiability of mixtures of modified Weibull distributions

Prior to studying identifiability, we may first define what mixture 
of distributions are. In general, one may understand the mixture of 
distributions as a way to build multimodal distributions by linearly 
combining probability density functions.

Identifiability, on the other hand, can be understood as a property 
of a given random variable which indicates its estimated parameters 
are unique. This is a fundamental property to properly model dielec-

tric relaxation, as the physical parameters estimated from experimental 
results will be unique and comparable.

The identifiability of some mixture models has been investigated by 
several authors [19, 20, 21]. In [20] it was shown that the finite mix-

ture models with distributions: Poisson, the product of 𝑛 exponential, 
Gaussian 𝑛-dimensional distributions and combinations of these last two 
distributions, Cauchy distributions, negative nondegenerate binomial 
distribution and families of distributions with a single location param-

eter are identifiable. Also, the authors in [22] proved the identifiability 
of finite mixture model of Weibull distributions with 𝑚 components. 
Therefore, using variations of these distributions to model the relax-

ation times of each of the constituent particles of blood may be the first 
safe alternative. The identifiability of Modified Weibull distributions, as 
described in the present paper, is still an open question. Therefore, the 
results in [11] and the equations presented in the present paper must 
be used with caution.

The estimation of parameters from a non-identifiable distribution 
need extra constraints to make sure the results are comparable. For ex-

ample, physically defined ranges for the parameters as well as similarity 
between previously published results shall be taken into account to nar-

row down the possible values of the fitted parameters. This issue, on 
the other hand, shall be the object of another paper.

8. Conclusions

Noninvasive tests using human blood have proven to be useful to 
diagnose diseases like diabetes and leukemia. In special, literature re-

veals that the dielectric parameters of blood are relevant for various 
other medical applications like cell separation, checking the deteriora-

tion of preserved blood and dielectric coagulometry.

In the present paper, we studied the statistical modeling of dielectric 
relaxation data for human blood, which is reported to show a deviation 
from the classical Debye model. We discussed and corrected some previ-

ously published results. Most of the issues were related to the statistical 
modeling of the dielectric characterization of human blood.

It was shown that previous results in [11] were related to Modified 
Weibull distributions of relaxation times, not Gaussian ones. By correct-

ing this misconception, we could incorporate the effect of a normalizing 
constant which affects some fitting parameters of the model. This way, 
we hope to enhance the mathematical models used to fit experimen-

tal results, leading to more robust feature estimations and, ultimately, a 
better definition of the parameters’ thresholds to classify the dielectric 
behavior as normal (healthy) or anomalous (sick).

Besides, novel exact and closed-form expressions for the real and 
imaginary parts of complex permittivities were obtained in terms of 
generalized hypergeometric functions. These results expand previously 
published relations. Also, a high accuracy approximation was created 
for the imaginary part of the complex permittivity when the distribution 
of relaxation times follow a Modified Weibull distribution.

We use the new equations to fit previously published experimental 
data for human blood. They showed good agreement with literature fit-

ting results, which reinforces their validity. Finally, the identifiability 
of the Modified Weibull distribution has been briefly discussed, indicat-

ing this is still an open problem which shall be addressed in subsequent 
papers. By addressing the indicated issues, the present paper enhanced 
previously published models, and contributed to building more robust 
and reproducible test analysis methodologies.
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Appendix A

In order to better familiarize the reader, we shall present some of the 
special functions and mathematical relations which are used throughout 
the paper. We shall start with more general functions and then present 
some special cases.

The H-function (see [13]) is defined as a contour complex integral 
which contains gamma functions in their integrands, by

𝐻𝑚,𝑛
𝑝,𝑞

[
𝑧
||||| (𝑎1,𝐴), … , (𝑎𝑛,𝐴𝑛), (𝑎𝑛+1,𝐴𝑛+1), … , (𝑎𝑝,𝐴𝑝)
(𝑏1,𝐵1), … , (𝑏𝑚,𝐵𝑚), (𝑏𝑚+1,𝐵𝑚+1), … , (𝑏𝑞,𝐵𝑞)

]

= 1
2𝜋𝑖 ∫

𝐿

𝑚∏
𝑗=1

Γ(𝑏𝑗 +𝐵𝑗𝑠)
𝑛∏

𝑗=1
Γ(1 − 𝑎𝑗 −𝐴𝑗𝑠)

𝑞∏
𝑗=𝑚+1

Γ(1 − 𝑏𝑗 −𝐵𝑗𝑠)
𝑝∏

𝑗=𝑛+1
Γ(𝑎𝑗 +𝐴𝑗𝑠)

𝑧−𝑠𝑑𝑠, (72)

where 𝑖 =
√
−1, 𝐴𝑗 and 𝐵𝑗 are assumed to be positive quantities and all 

the 𝑎𝑗 and 𝑏𝑗 may be complex. The contour 𝐿 runs from 𝑐− 𝑖∞ to 𝑐+ 𝑖∞
such that the poles of Γ(𝑏𝑗 +𝐵𝑗𝑠), 𝑗 = 1, … , 𝑚 lie to the left of 𝐿 and the 
poles of Γ(1 − 𝑎𝑗 −𝐴𝑗𝑠), 𝑗 = 1, … , 𝑛 lie to the right of 𝐿.

The previous representation is related to the Mellin transform of the 
H-function as, for any given function 𝑓 (𝑥), its direct and inverse Mellin 
transforms can be given as (see [23], pg. 96):

𝑀𝑠(𝑓 (𝑥)) =

∞

∫
0

𝑥𝑠−1𝑓 (𝑥)𝑑𝑥, where 𝑓 (𝑥) = 1
2𝜋𝑖 ∫

𝐿

𝑥−𝑠𝑀𝑠(𝑓 (𝑥))𝑑𝑠. (73)

By considering the definition in (72), the H-function can be ex-

pressed in computable form as infinite series [13]. The simpler series 
arise when the poles of the gamma functions in the numerator of the 
quotients are simple. When this simplification does not hold, residue 
theorem has to be applied. For details about this theorem, one may re-

fer to [23].

Another hypergeometric function which is of interest in the present 
paper is the Meijer-G function, which can be obtained as a particular 
case of the H-function when 𝐴𝑗, 𝐵𝑗 = 1, ∀𝑗 [13].

Also, a particular case of both the H-function and of the Meijer-

G function is the Kummer’s Confluente hypergeometric function, 1𝐹1, 
defined as [13]:

1𝐹1 [𝑎;𝑏;𝑧] =
∞∑
𝑛=0

(𝑎)𝑛
(𝑏)𝑛

𝑧𝑛

𝑛!
(74)

where the symbols follow the same constraints as in the case of the 
H-function. Also, (𝑎)𝑛 denotes the Pochhammer symbol, which can be 
defined in terms of the Gamma function as:

(𝑎)𝑛 =
Γ(𝑎+ 𝑛)
Γ(𝑎)

(75)

Both the H-function and the Meijer-G function can be related to the 
1𝐹1 function by the following formula:

1𝐹1 [𝑎;𝑏;𝑧] =
Γ(𝑏)
Γ(𝑎)

𝐻
1,1
1,2

[
−𝑧

||||| (1 − 𝑎,1)
(0,1), (1 − 𝑏,1)

]
= Γ(𝑏)

Γ(𝑎)
𝐺

1,1
1,2

[
−𝑧

||||| 1 − 𝑎

0,1 − 𝑏

]
(76)
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