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Abstract

This paper introduces a mixed method approach for analyzing the determinants of natural latex 

yields and the associated spatial variations and identifying the most suitable regions for producing 

latex. Geographically Weighted Regressions (GWR) and Iterative Self-Organizing Data Analysis 

Technique (ISODATA) are jointly applied to the georeferenced data points collected from the 

rubber plantations in Xishuangbanna (in Yunnan province, south China) and other remotely-sensed 

spatial data. According to the GWR models, Age of rubber tree, Percent of clay in soil, Elevation, 

Solar radiation, Population, Distance from road, Distance from stream, Precipitation, and Mean 

temperature turn out statistically significant, indicating that these are the major determinants 

shaping latex yields at the prefecture level. However, the signs and magnitudes of the parameter 

estimates at the aggregate level are different from those at the lower spatial level, and the 

differences are due to diverse reasons. The ISODATA classifies the landscape into three categories: 

high, medium, and low potential yields. The map reveals that Mengla County has the majority of 

land with high potential yield, while Jinghong City and Menghai County show lower potential 

yield. In short, the mixed method can offer a means of providing greater insights in the prediction 

of agricultural production.
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1. Introduction

1.1. Background

Many of the primary forests in Asia have been replaced by monocultural rubber plantations, 

causing their status to become a matter of global concern because of the vital role that 

primary forest ecosystems play in preserving biodiversity. Having originated from Brazilian 

rainforest rubber trees (Hevea brasiliensis), these plantations produce natural latex that is 

widely used in products, such as tires, medical gloves, prophylactics, and rubber bands [1]. 

Globally, the area under rubber cultivation has been growing at an annual rate of 3.8 percent 

per annum, reaching 9.6 million hectares in 2012 [2]. As of 2009, more than 5 million of 

these hectares were located in the upland Mekong region of tropical China, Thailand, 

Vietnam, Laos, Cambodia, and Myanmar [3]. Indeed, nearly 93% of global rubber 

production takes place in Asia [2], though access to suitable lands is now becoming limited 

[4].

The associated land conversion, accompanied by intensive fertilizer and pesticide use needed 

for producing natural latex, has greatly threatened regional ecosystems and biodiversity 

[5,6]. Rubber trees also draw more heavily on groundwater than does indigenous vegetation 

during dry seasons, leading to water supply concerns [7]. As such, a comprehensive 

conservation plan in rubber cultivating areas is badly needed. Also, crucially important is an 

understanding of the biophysical and socioeconomic factors that affect latex yield. These 

factors can actually explain or even predict land-use and land-cover changes in the region, so 

that such findings could be utilized for efficient regional land-use planning [8]. This paper 

applies and modifies a spatial regression technique to provide greater empirical insights into 

the many determinants of latex yields, how these vary geographically, and to help identify 

the most suitable regions for producing natural latex in Xishuagnbanna.

1.2. Literature Review

Applying spatial regression models has become common in general for explaining how 

environmental factors affect vegetation and specifically for predicting agricultural yields and 

identifying their determinants [9–24]. In particular, Geographically Weighted Regression 

(GWR) is a technique especially designed to incorporate the spatial complexities resulting 

from variations in scale and location [25], whereas linear regression models and Ordinary 

Least Square (OLS) estimations are limited in their ability to deal with such spatial 

complexities. GWR offers three advantages over OLS.

First, GWR is capable of portraying the spatial structures embedded in the data, so it is 

helpful for researchers to analyze statistical relationships among variables that may vary 

over space. Several applications of GWR stress the importance of those advantages, such as 

in explaining agricultural yield across space [9,16]. Second, GWR shows better goodness-
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of-fit than OLS, quantified in R2, adjusted R2, F statistic, Cross Validation (CV), Akaike 

Information Criterion (AIC), corrected AIC (AICc), or Bayesian Information Criterion (BIC) 

[10,11,13–15,17–19,21–24,26–28]. Third, the error terms from GWR reflect less spatial 

autocorrelation than those of OLS, measured by Moran’s i [9,13,14,16,23,28], thereby 

reducing bias in the parameter estimates. Autocorrelation among the error terms of 

regression models, of course, introduce bias into the parameter estimates.

GWR is not only useful in and of itself, but also enhances the performance of other 

statistical methods, such as kriging, when used in tandem. A study by Imran et al. [9], for 

example, demonstrates how GWR enhances predictive accuracy of sorghum yield mapping 

and ascertains that GWR kriging yields higher accuracy than ordinary regression kriging. In 

this study, georeferenced yield data are used as the dependent variable while remotely-

sensed environmental spatial layers are applied as the independent variables. A GWR is then 

fitted to those variables and ordinary kriging is applied to the residuals of the GWR; the 

kriged residual surface is added to the spatial drifts of parameter estimates of GWR, 

resulting in more accurate spatial drifts compared to the original spatial drifts. In this way, 

the mixed application of GWR and kriging enables capturing not only the spatial structure 

through the independent variables but also the spatial structure embedded in the residuals.

Although the main strength of GWR is the ability to analyze and visualize spatial 

complexity, the number of output maps can be overwhelming, hindering the dissemination 

of findings, and implying that GWR may not be able to provide a mechanism for 

summarizing the entire map series. For this reason, it can be useful to apply a multivariate 

statistical method so as to compress the numerous output maps into more concise ones, 

which is a common approach in remote sensing. For instance, Iterative Self-Organizing Data 

Analysis Technique (ISODATA) is a popular classification method frequently used in the 

field of remote sensing to classify land-cover, landscape, ecosystem, or climatic region by 

clustering observations in multi-dimensional space [29–32]. In other words, many spectral 

bands can be streamlined into, for example, one land-cover map. Such an approach, 

however, has not been tried in the GWR literature. When a multivariate statistical method, 

such as principal component analysis, is to be used with GWR, the method is usually applied 

to the inputs of GWR, not the output, so that it can reduce multicollinearity and improve 

explanatory power [9,11]. The commonality is to streamline a large amount of information 

into a smaller amount so that a human brain can better perceive and manage it.

1.3. Research Questions

In this paper we apply GWR and ISODATA, an unsupervised classification method, to the 

case study of Xishuangbanna, Yunnan, China, in order to answer the following research 

questions:

1. What are the determinants of latex yields at the level of Xishuangbanna 

prefecture as a whole?

2. How do their impacts vary over space at lower spatial levels within that 

prefecture?

3. In which parts of Xishuangbanna are potential yields the highest?
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If a question can be answered properly, it can provide benefits not only in terms of 

efficiently managing the regional latex production but also in terms of designing an effective 

land-use plan for conservation, given that there are many smallholders in Xishuangbanna 

who frequently plant rubber trees haphazardly. Such a lack of land management results in 

consuming much land and producing little latex. Specifically, GWR’s global model is 

employed to answer question (1), and the local model application is used to give answers to 

question (2), and question (3) is answered by applying ISODATA to the local model’s 

outcome.

2. Data and Methods

2.1. Study Area

The Xishuangbanna Dai Autonomous Prefecture (hereafter, Banna) in the province of 

Yunnan is about 2 million hectares in size, with elevation ranging from 0 m to 1919 m. The 

latitude and longitude of the southwestern and northeastern corner of the study area is 

99.9432° E, 21.1410° N and 101.8382° E, 22.5915° N, respectively. Banna is one of the few 

tropical areas in China with climatic and geographical conditions quite similar to those of 

other Southeast Asian countries (Figure 1). At the continental level, it is part of both the 

Indo-Burma biodiversity hotspot [33] and the Greater Mekong Subregion [34]. Despite 

existing national land-use policies, Banna remains vulnerable to rapid deforestation and/or 

forest degradation due to the continuing rapid expansion of the rubber plantations [35–43]. 

Although the study area was composed almost entirely of tropical rainforest in the past, by 

2003 less than half of these forests were left, and only 3.6 percent of that area consisted of 

old growth tropical rainforests [38,39,44]. This implies a loss of about 6 million tonnes of 

biomass, or about 14,000 hectares of tropical rainforests, every year since 1976 [45].

2.2. Data

Data on yearly latex yields and rubber tree age are constructed from 2008 to 2010 during the 

wet seasons. The data are physically collected at a plot level, where each plot includes four 

rubber trees. First, each tree’s daily latex yields and age are measured, so that those 

measurements can be averaged to represent the corresponding plot. The daily yield data are 

processed to provide the annual yield. The ages of rubber trees are estimated by measuring 

length of tapping scars on the barks; approximately 20 cm is equivalent to one year. In all, 

1173 plots are selected through stratified sampling of the entire study area, and the data 

points are georeferenced as points. The shaded areas in Figure 2 identify the spatial coverage 

of rubber plantations in Banna. (See Yi et al. [7] for more information about the latex yield 

and age data collection and processing, and Chen et al. [47] for mapping the regional rubber 

plantations.) The spatial variables included in the modeling are as follows: Percent of clay in 

soil, the Soil pH from the Chinese Academy of Sciences [7], Annual precipitation from the 

Tropical Rainfall Measuring Mission (TRMM) [48], Mean, Maximum, and Minimum 

temperatures from the University of East Anglia’s Climate Research Unit [49], Elevation, 

Aspect, Slope, and Solar radiation derived from the Global Digital Elevation Map (GDEM) 

[50], Population from the LandScan [51], Distances from road and stream networks, and 

Nature reserves from the Chinese Academy of Sciences [7].
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2.3. Methods

2.3.1. Geographically Weighted Regression—In terms of model structure, GWR is 

constructed by (1) one global model and (2) potentially many local models. A global model 

is fitted at the aggregate level whereas the local models consist of a set of similar regressions 

that are fitted at different but lower spatial scales. The spatial scale indicates the spatial 

window that is used for running the local models; in other words, the spatial window’s size 

determines the number of observations used for fitting each regression at the lower spatial 

scale. Once a spatial window is specified, it will glide over the study area observation by 

observation. For each move, one regression model is fitted, based only on the observations 

that fall within the spatial window; numerous regressions are generated because the spatial 

window will hover around until all of the observations are fully exploited, and these 

numerous regressions constitute the local model of GWR.

Before fitting a GWR, a Box-Cox transformation is applied to see if any transformation of 

the dependent variable (i.e., Latex yield) is necessary. The independent variables include the 

rest of variables, as well as their squares and interaction terms. The squared terms are used 

for identifying non-linear relationships of where these are deemed relevant. The interaction 

terms are employed to see whether there are any additional impacts when variables are 

modeled in tandem. Only those that are statistically significant are retained for the final 

global model through stepwise selection. These same variables are also used in the local 

model.

The dependent variable and the residuals in both the global and local models are tested for 

the existence and variation of any significant first-order spatial autocorrelations using the 

Moran’s i statistics. Similarly, Durbin-Watson statistics are applied to detect first-order serial 

autocorrelations. Measuring autocorrelation is essential because the data used in this 

research have both spatial and temporal aspects that might affect the regression outcomes.

The local model includes, in addition to the moving spatial window, a spatial weighting 

scheme in which observations that are closer to the center of a spatial window are assigned 

greater weights than those observations that are farther from the center [52]. In other words, 

the spatial window is characterized by (1) the window size and (2) the distance decay 

function used for calculating the spatial weights for each observation. The window size can 

be determined based on either a fixed distance or a fixed number of observations. However, 

it is the latter “adaptive” spatial window, which automatically adjusts the size of the spatial 

window based on a fixed number of observations, that is used in this research because 

configurations of the regional rubber plantations are by nature irregular even though the data 

points are randomly sampled. A bisquare weights function is used for the spatial weighting 

scheme to ensure clear local extents for model fitting. Golden section search is used to 

identify the optimal spatial window, and the values of R2, adjusted R2, CV, AIC, AICc, and 

BIC are applied to evaluate goodness-of-fit. The R ‘spgwr’ package and GWR 4.0 software 

are used to execute the GWR runs [53,54].
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The global model is specified as: , and is therefore, locally invariant. 

The specification of local model is as follows:

(1)

where yi is the dependent variable at location i, xik is the kth independent variable at location 

i, βik is the coefficient for the kth independent variable at location i, βio is the intercept at 

location i, and εi is the error term at location i.

To specify the local model, it is necessary to set an adaptive bisquare weights function αij, 

which is expressed as follows:

(2)

where dij is the Euclidean distance between observations i (denoting the center of the spatial 

window) and j (denoting any other observation within the spatial window);θi(k) represents 

the radius of the adaptive window or the Euclidean distance between observations i and k 
(where this adaptive window encompasses the k nearest neighbors of observation i). Based 

on this spatial weighting scheme, the weight matrix Wi is constructed as follows:

(3)

where N denotes the total number of observations [55]. Finally, the parameters βî of the 

local model are estimated as follows:

(4)

where a nonparametric approach is used to estimate the coefficients. As a result, the local 

model produces numerous βîs, their values varying over space, and their significance levels 

indicated by pseudo t statistics [52].

2.3.2. Iterative Self-Organizing Data Analysis Technique—Proposed by Ball and 

Hall [56], ISODATA is a data-driven method for clustering observations in multi-

dimensional space. In this research, it is used to cluster the local model’s outcomes into 

regional strata, so that each can indicate different levels of potential yield to more effectively 
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communicate any findings that might prove valuable for intervention or policy decision-

making. When generating a land-cover map from satellite imagery, ISODATA classifies 

pixels into groups based on spectral similarity. The GWR spatial surfaces can be classified in 

a similar way. Instead of using spectral bands as variables, one can employ such spatial 

surfaces for measuring the Age of rubber tree, Percent of clay in soil, Elevation, etc. Each 

measure identifies a different characteristic of landscape that is meaningful in explaining 

potential latex yields.

A patch of land (i.e., a pixel) in the study area is characterized by these multi-dimensional 

spatial surfaces, where each spatial surface of parameter estimates of the local model 

denotes a single dimension. In multi-dimensional space, ISODATA calculates the cluster 

means once the number of clusters is specified by the researcher; it then calculates the 

minimum Euclidean distance between pixels and all cluster means. After the calculation, 

each pixel is assigned to the cluster that shows the minimum distance; the allocation results 

in new clusters, and then the cluster means are recalculated. ISODATA repeats such 

processes until no re-allocation happens or all cluster means stabilize.

3. Results

3.1. Global Model

Through the Box-Cox transformation, square roots of the dependent variable are considered 

optimal in fitting the GWR. The final parameter estimates of the global model, based on 

stepwise selection, are listed in Table 1. The Moran’s i statistics of the dependent variable in 

the global model are 0.74 and 0.47, respectively; they all are significant at the α = 0.01 level. 

From the test results, it is evident that the global model captures spatial structure embedded 

in the data to some extent. The Durbin-Watson statistic for the global model is 1.88, 

significant at the α = 0.01 level, indicating that it is inconclusive whether or not the residuals 

retain significant serial autocorrelation.

Table 1 shows that according to the global model, Age of rubber tree has a significant 

positive relation with Latex yield, which is reasonable—older trees produce more latex than 

younger ones when other conditions remain the same, but as indicated by the Squared age of 

rubber tree parameter the older trees end up becoming unproductive at very high age. The 

lack of significance of the Squared age of rubber tree, however, reflects the observed 

tendency of both smallholders and local government to replant their rubber trees every 25 

and 35 years, respectively [7]. This replanting results in the virtual absence of old, 

unproductive rubber trees, and this may be the reason why the coefficient of Squared age is 

not statistically significant in the global model.

Theoretically, the direction of the effect of the Percent of clay in soil on Latex yield could be 

ambiguous. It could be positive since soil with more clay in it would be expected to hold 

more water and nutrition than would soil with less clay, but when the Percent of clay in soil 

approaches 100%, this may make the soil more vulnerable to aridity and hardening, which 

would negatively affect the Latex yield. As shown in Table 1, however, in the study area its 

effect turns out to be positive, which is reasonable because few rubber plantations are placed 

on heavy clay soil. From this outcome, one can learn that clay in Banna facilitates latex 
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production by holding water and nutrition in soil. There is also no evident non-linear 

relationship for this variable as the squared term is not significant.

The results in Table 1 also show that Elevation is negatively related to Latex yield. The 

significant and positive parameter estimate of Squared elevation, however, shows that the 

adverse effect of Elevation on Latex yield eventually fades away and even reverses. Not 

surprisingly, rubber plantations are mostly planted at medium levels of elevation. Bananas 

are often cultivated at the lowest areas, while tea or coffee plantations are frequently located 

at the highest areas [46].

The parameter estimate of Solar radiation is positive, and this too is a reasonable outcome as 

more solar radiation would result in accelerated tree growth, and hence larger latex yields. 

Precipitation and Mean temperature are both positively related to Latex yield for the same 

reason.

Population is negatively related to Latex yield, implying that sparsely populated areas (e.g., 

rural areas) are showing higher productivity than densely populated areas (e.g., urban areas). 

The significant and positive parameter estimate of the effect of Squared population indicates 

that if a rural area is too remote, and hence having a very small size of population, one can 

expect that the area would grow few rubber trees. The parameter estimate of Distance from 

road also turns out positive for the same reason.

Distance from stream is also positively related to latex yields. This might seem surprising 

because it would seem strategic to plant rubber trees close to a water source to assure 

sufficient water for growing and producing latex. In Banna, however, planting rubber trees 

near local rivers and streams is strictly forbidden by governmental order to prevent soil loss 

and conserve fresh water. In other words, Distance from stream in the case study reflects the 

effect of a deliberate policy intervention, rather than that of the rubber plantations’ physical 

access to water.

3.2. Local Model

Through Golden section search, the adaptive bisquare bandwidth turns out optimal when 

508 observations are included for each regression run. The parameter estimates of the local 

model are summarized in Table 2. The results make clear that the effects of local conditions 

vary considerably over space and in ways that would otherwise be missed in the global 

model. All of the parameter estimates range from negative to positive with respect to varying 

locations, whereas the global model only provides one value for each independent variable.

As can be seen from Table 3, the local model’s goodness-of-fit measure turns out to be better 

than that of the global model as measured by numerous statistics: larger R2 and Adjusted R2, 

and smaller CV, AIC, AICc, and BIC. The ANOVA test comparing the global and local 

models indicates that the parameter estimates of local model are significantly non-stationary. 

As indicated by the Moran’s i the local model variant of the GWR application reduces the 

spatial autocorrelation embedded in the residuals even further—from 0.47 to 0.15.

Unlike the global model, the local model provides micro-level, subregional information in a 

spatially disaggregated yet exploratory fashion (Figure 3a–i). For example, while the global 
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model shows that older trees produce more natural latex than do younger trees when the 

other conditions stay the same (Table 1), according to the local model, the relationship is 

reversed in the southeastern part of the study area (i.e., southern part of Mengla), as shown 

in Figure 3a, i.e., where younger rubber trees are more productive than older ones.

Similarly, although in the global model the Percent of clay in soil is found positively related 

to Latex yield (Table 1), according to the local model, that positive relation is only valid for 

the northeastern part of the study area (Figure 3b). There, the clay-rich soil holds more water 

and nutrition than does soil with less clay, offering conditions that can promote the 

productivity of natural latex yield. In the rest of the study area, clay-rich soils seem to be 

vulnerable to aridity and hardening of the soil.

In the case of Elevation, more areas reflect a positive relation between Elevation and Latex 

yield; however, the areas showing negative relations have larger parameter estimates (Figure 

3c). The larger negative parameter estimates for this subregion may explain why the global 

model indicates that Elevation is on average negatively related to Latex yield (Table 1). The 

negative relation of Elevation and Latex yield is mainly found in the northeastern and some 

eastern parts of Banna, and while Elevation is positively related to Latex yield for most of 

the study area, the actual effect could be minor because the parameter estimates are 

relatively small in size.

Solar radiation is positively related to Latex yield for most of Banna, and the positive 

parameter estimates are larger in size than where they are negative as shown in Figure 3d. 

Yet, Figure 3d also shows that solar radiation is negatively related to Latex yield (as in Table 

1). In the eastern part of the study area, solar radiation tends to have an adverse impact on 

latex production.

More areas show that Population is negatively related to Latex yield (Figure 3e), and the 

global model also demonstrates the same result (Table 1). In contrast, a sizable positive 

relation is found in the northeastern part of Banna, implying that more latex yields would be 

produced with more manpower given that latex yields are manually harvested by farmers 

every day.

From Figure 3f it can be seen that Distance from road is generally negatively related to 

Latex yield (in terms of area); however, there are also areas in eastern part of Banna where 

the parameter estimates are positive. Unlike Population, the positive relation between 

Distance from road and Latex yield dominates their negative relation (in terms of 

magnitude), so that the global model indicates that Distance from road is positively related 

to Latex yield (Table 1). It may be more beneficial to operate rubber plantations in a 

subregion where roads are closer, and this finding applies to the majority of subregions in 

the study area.

According to the global model, the parameter estimates of Population and Distance from 

road are capturing the same information; that is, both variables are regarded as similar 

proxies differentiating urban from rural areas. This explanation is only valid when it is 

validated by the local model’s outcomes. In other words, the spatial coverage of 

Population’s positive parameter estimates has to be similar to that of Distance from road’s 
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negative parameter estimates; otherwise, it is illogical to conclude that Population and 

Distance from road represent the urban-rural differentiation. According to the local model, 

however, the two variables do not show that mirrored pattern (Figure 3e, f).

Figure 3g shows that Distance from stream is positively related to Latex yield for most of the 

study area, a finding consistent with the results of the global model, yet it also shows that in 

two subregions greater accessibility to streams tends to result in higher latex yields.

Consistent with the results of the global model in Table 1, Figure 3h, i show that 

Precipitation and Mean temperature are positively related to Latex yield both in terms of 

areas and the magnitudes of parameter estimates. The exceptions (characterized by negative 

relations) are found in and around Jinghong City.

Lastly, it should be mentioned that spatial surfaces of the squared terms are not included in 

this paper since as shown in Kim [57] their outcomes are almost identical compared to the 

non-squared terms, so that their interpretation would be redundant.

3.3. ISODATA

Figure 4 demonstrates the outcome of the ISODATA application on the spatial surfaces. It 

has been found that three groups are optimal to classify Banna’s landscape in terms of latex 

potential yield. The dark green indicates the region with the highest potential yield for latex 

production; the medium and light greens show the areas of medium and low potential yields, 

respectively. Mengla contains most of the areas with high and medium potential yields. 

Compared to this fertile land, Jinghong and Menghai are relatively less suitable for 

producing natural latex (Figure 4).

4. Discussion

This paper examines an important ecological problem with inherent spatial complexity. 

According to the global model, Age of rubber tree, Percent of clay in soil, Elevation, Solar 

radiation, Population, Distance from road, Distance from stream, Precipitation, and Mean 

temperature all have statistically significant effects on latex yields, indicating that these are 

the major determinants shaping latex yields in Banna at the prefecture level. However, the 

signs and magnitudes of the parameter estimates at the aggregate level are generally quite 

different from those at the lower spatial levels; their differences have been identified and 

explanations for them offered. This implies that it is important to interpret the GWR 

outcomes by considering the global and local models in tandem. From Figure 4 it has been 

shown that Mengla County, or more generally the eastern part of Banna, is most suitable for 

producing natural latex, whereas Jinghong City and Menghai County are considerably less 

suitable. The result, however, does not necessarily mean that Jinghong City and Menghai 

County are unsuitable for growing rubber trees in an absolute sense.

The map in Figure 4 also displays this usefulness of streamlining many maps into one. 

Although it loses detail, it facilitates use by the region’s land-use managers as well as the 

smallholders themselves, and it can facilitate communication between and among them. This 

is in keeping with a common cartographic concept that map making varies based on the 
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intended audience—the same data being processed to maximize communication to diverse 

stakeholders.

There are, of course, limitations and uncertainties in our novel exploratory approach as many 

factors can affect the analysis. Even though the selection of final variables has been 

systematically carried out through stepwise selection, it is by no means guaranteed that the 

variable set optimized for the global model would be equally well suited for the local model. 

One can easily imagine that a variable significant at the aggregate level could be non-

significant at a lower (or higher) spatial levels; moreover, not all parameter estimates of the 

local model are significant. It would be ideal if there is a mechanism similar to the stepwise 

selection for the local model, but developing and applying that mechanism is beyond the 

scope of this research. Therefore, it is important to note that there might be some 

uncertainties due to the imperfect variable selection for different spatial scales. In future 

research, numerous GWR spatial surfaces should be generated showing the statistical 

significance of each local model’s parameter estimates so that they could be compared to 

verify the associated uncertainties. It would be better yet to develop a mechanism to select 

only the significant parameter estimates of a local model and utilize these for estimating 

parameters at any location in a dynamic fashion. Wheeler and Tiefelsdorf [58] also proposed 

similar thoughts for the same issue.

5. Conclusions

Basically, our overall analysis is a mixture of producing deterministic outcomes and 

exploring statistical relationships among variables to find different relationships between 

latex yields and their determinants across subregions within the Banna region. In other 

words, the GWR application in this paper considers the global and local models to be 

complementary to each other. The global model provides helpful outcomes for analyzing 

macro-level relationships between the natural latex yields and its determinants. By contrast, 

the local model visualizes spatial surfaces of parameter estimates at a micro-level and helps 

in finding explanations for any embedded spatial structures in a map form. In sum, although 

it is exploratory, we believe the proposed mixed method is indeed useful in geographical 

research and should be regarded as an evolving method. If land allocated to rubber 

production was in keeping with yield maximization, greater latex production could be 

obtained with considerably less loss of the natural forests, thereby providing significant 

environmental benefits.
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Figure 1. 
Map of the study area: Xishuangbanna Dai Autonomous Prefecture, Yunnan, China, adapted 

from Kim [46] with permission.
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Figure 2. 
Spatial coverage of rubber plantations in Xishuangbanna (because of a need for data 

confidentiality, the exact locations of the data points cannot be revealed more precisely in 

map form. Latex yields and the associated income are closely tied to government subsidies, 

so to avoid negatively affecting the relationship between the plantation owners and their 

government, the authors cannot share the information in a spatially explicit form).
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Figure 3. 
Spatial surfaces of the parameter estimates of (a) Age of rubber tree; (b) Percent of clay in 

soil; (c) Elevation; (d) Solar radiation; (e) Population; (f) Distance from road; (g) Distance 

from stream; (h) Precipitation; and (i) Mean temperature, Xishuangbanna prefecture, 

Yunnan province, south China.
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Figure 4. 
Classified landscape by the mixed application of GWR and ISODATA, showing high, 

medium, and low potential latex yields, Xishuangbanna prefecture, Yunnan province, south 

China.
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Table 1

Parameter estimates of the global model for latex yields

Variable Parameter Estimates p-Value

(Intercept) −273.50 0.00

Age of rubber tree 0.02 0.02

Percent of clay in soil 0.13 0.00

Soil pH

Elevation −0.01 0.00

Slope

Aspect

Solar radiation 0.00 0.04

Population −0.00 0.02

Distance from road 0.00 0.00

Distance from stream 0.00 0.10

Nature reserve (dummy)

Precipitation 35.13 0.00

Mean temperature 30.87 0.00

Maximum temperature

Minimum temperature

Squared age of rubber tree

Squared percent of clay in soil −0.00 0.00

Squared soil pH

Squared elevation 0.00 0.00

Squared slope

Squared aspect

Squared solar radiation −0.00 0.10

Squared population 0.00 0.10

Squared distance from road −0.00 0.00

Squared distance from stream −0.00 0.06

Squared precipitation

Squared mean temperature −0.86 0.00

Squared maximum temperature

Squared minimum temperature

Interaction (Percent of clay in soil and Precipitation)

Interaction (Percent of clay in soil and Distance from stream)

Interaction (Population and Slope)

Interaction (Population and Distance from road)
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Table 2

Parameter estimates of the local model for latex yields

Variable Minimum Mean Median Maximum

(Intercept) −7964.84 −1484.24 −1291.43 2310.32

Age of rubber tree −0.11 0.03 0.04 0.13

Percent of clay in soil −0.12 0.02 −0.02 0.32

Elevation −0.03 −0.00 −0.00 0.01

Solar radiation −0.00 0.00 0.00 0.00

Population −0.00 −0.00 −0.00 0.01

Distance from road −0.00 0.00 −0.00 0.00

Distance from stream −0.00 0.00 0.00 0.00

Precipitation −27.89 86.33 89.94 242.54

Mean temperature −262.04 163.78 139.31 894.24

Squared percent of clay in soil −0.00 −0.00 0.00 0.00

Squared elevation −0.00 −0.00 −0.00 0.00

Squared solar radiation −0.00 0.00 0.00 0.00

Squared population −0.00 0.00 0.00 0.00

Squared distance from road −0.00 0.00 0.00 0.00

Squared distance from stream −0.00 0.00 0.00 0.00

Squared mean temperature −25.13 −4.53 −3.86 7.47
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Table 3

Goodness-of-fit and spatial autocorrelation

Statistics Global Model Local Model

R2 0.53 0.76

Adjusted R2 0.52 0.74

CV 2.48 2.64

AIC 4351.13 3673.84

AICc 4351.13 3686.53

BIC 4442.34 4092.56

Moran’s i 0.47 0.15
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