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In this paper, a hybrid electroencephalography–functional near-infrared spectroscopy 
(EEG–fNIRS) scheme to decode eight active brain commands from the frontal brain 
region for brain–computer interface is presented. A total of eight commands are decoded 
by fNIRS, as positioned on the prefrontal cortex, and by EEG, around the frontal, pari-
etal, and visual cortices. Mental arithmetic, mental counting, mental rotation, and word 
formation tasks are decoded with fNIRS, in which the selected features for classification 
and command generation are the peak, minimum, and mean ΔHbO values within a 2-s 
moving window. In the case of EEG, two eyeblinks, three eyeblinks, and eye movement 
in the up/down and left/right directions are used for four-command generation. The 
features in this case are the number of peaks and the mean of the EEG signal during 
1 s window. We tested the generated commands on a quadcopter in an open space. 
An average accuracy of 75.6% was achieved with fNIRS for four-command decoding 
and 86% with EEG for another four-command decoding. The testing results show the 
possibility of controlling a quadcopter online and in real-time using eight commands from 
the prefrontal and frontal cortices via the proposed hybrid EEG–fNIRS interface.

Keywords: brain–computer interface, hybrid eeg–fnirs, mental task, classification, quadcopter control

inTrODUcTiOn

Brain–computer interface (BCI) or brain–machine interface (BMI) is a method of communication 
between brain and hardware by means of signals generated from the brain without the involvement 
of muscles and peripheral nervous system (Naseer and Hong, 2015b; Schroeder and Chestek, 2016). 
Although prosthetic devices utilize muscles or peripheral nerve signals (Ravindra and Castellini, 
2014; Chadwell et al., 2016; Chen et al., 2016), brain signals are equally viable for provision of direct 
neural signals for interface purposes (Waldert et al., 2009; Quandt et al., 2012; Kao et al., 2014). A 
BCI, specifically, is an artificial intelligence system that can recognize a certain set of patterns gener-
ated by brain. The BCI promises as a platform to improve the quality of life of individuals with severe 
motor disabilities (Muller-Putz et al., 2015). The BCI procedure when acquiring control commands 
from the brain consists of five steps: signal acquisition, signal enhancement, feature extraction, clas-
sification, and control-interfacing (Nicolas-Alonso and Gomez-Gil, 2012).

The complicated surgical procedures performed for microelectrode implantation and establish-
ment of BCI have been outstandingly successful in achieving control of robotic and prosthetic arms 
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by means of neuronal-signal acquisition (Hochberg et al., 2006, 
2012). These methods, however, are far from perfect options for 
BCI purposes, as they are all invasive and incur significant risks 
(Jerbi et  al., 2011; Schultz and Kuiken, 2011; Rak et  al., 2012; 
Ortiz-Rosario and Adeli, 2013).

The alternative non-invasive methods measure brain activi-
ties via either detection of electrophysiological signals (Li et al., 
2010; Bai et al., 2015; Weyand et al., 2015) or determination of 
hemodynamic response (Bhutta et  al., 2014; Ruiz et  al., 2014; 
Hong et al., 2015; Naseer and Hong, 2015a; Weyand et al., 2015). 
Electrophysiological activity is generated by the neuronal firings 
prompted in the performance of brain tasks (Guntekin and Basar, 
2016). The hemodynamic response is the increase of hemoglobin 
as a result of the neuronal firing that occurs when the brain 
performs an activity (Ferrari and Quaresima, 2012; Boas et al., 
2014). The leading non-invasive BCI modalities in terms of cost 
and portability are electroencephalography (EEG) and functional 
near-infrared spectroscopy (fNIRS) (von Luhmann et al., 2015; 
Lin and Hsieh, 2016). The selection criterion for each modality 
is task dependent.

Electroencephalography has applications for active-, passive-, 
and reactive-type BCIs (Turnip et al., 2011; Zander and Kothe, 
2011; Turnip and Hong, 2012; Urgen et  al., 2013; Yoo et  al., 
2014). It is most widely employed with reactive-type tasks in the 
performance of which the brain output is generated in reaction 
to external stimulation. Commands are generated by detection of 
steady-state visually evoked potentials (SSVEP) and P300-based 
activations (Li et  al., 2010, 2013; Turnip and Hong, 2012; Cao 
et al., 2014; Bai et al., 2015). fNIRS-based BCIs, meanwhile, are 
most commonly of the active type, which obtains brain activity 
output via user intentionality, independent of external events. 
For the purposes of fNIRS-based active BCIs, mostly mental 
(e.g., math, counting, etc.) and motor-related tasks (e.g., motor 
imagery) are selected (Naseer et  al., 2014; Hong et  al., 2015; 
Hong and Naseer, 2016). Although recent studies have shown 
the importance of fNIRS-based BCI for reactive and passive tasks 
(Hu et  al., 2012; Santosa et  al., 2014; Bhutta et  al., 2015; Khan 
and Hong, 2015), active-type tasks are primarily used to increase 
the number of commands for this modality. The active-type 
BCI is preferred over the reactive BCI, as it allows a person to 
communicate with a machine at will. For both EEG and fNIRS, 
the drawback of increasing the number of active commands is 
the decrease in accuracy for BCI (Vuckovic and Sepulveda, 2012; 
Naseer and Hong, 2015a).

As a means of compensating for the accuracy reduction 
problem is the use of a single-brain signal acquisition modality, 
the hybrid BCI concept was proposed (Pfurtscheller et al., 2010). 
The design of a hybrid BCI entails the combination of either two 
modalities (at least one of which is a brain signal acquisition 
modality) or different brain signals (e.g., SSVEP and P300). The 
EEG–fNIRS-based hybrid BCI has been reported to enhance 
classification accuracy (Fazli et al., 2012; Putze et al., 2014; Tomita 
et al., 2014) and increase the number of commands (Khan et al., 
2014). Classification accuracy can be improved by simultane-
ously decoding EEG and fNIRS signals for the same activity and 
combining the features. The number of active commands can be 
increased by decoding brain activities from different brain regions 

(e.g., motor tasks for EEG and mental tasks for fNIRS). However, 
for these cases, the reported window size using fNIRS for optimal 
classification is around 10 s (Tomita et al., 2014). The problem 
of window size reduction and others relevant to real-time/online 
BCI applications require further research. Table  1 summarizes 
the most recent work (Kim et al., 2014; Bai et al., 2015; Combaz 
and Van Hulle, 2015; Hortal et al., 2015; Ma et al., 2015; Naseer 
and Hong, 2015a; Ramli et al., 2015; Yin et al., 2015) in terms of 
command number, accuracy, and window size as those param-
eters relate to robotic-control applications.

In the present BCI research, we decoded eight active com-
mands using signals from the frontal and prefrontal cortices. 
Four tasks (mental math, mental counting, word formation, and 
mental rotation) were decoded using fNIRS, and four eye move-
ment signals (up/down eye movement, left/right eye movement, 
twice or three times eyeblinks) were decoded using EEG. In the 
fNIRS classification and generation of commands, a 0- to 2-s 
window was used, whereas in the case of EEG, a 1-s window was 
used. The commands thus generated were used to update a quad-
copter’s movement coordinates (six movements and start/stop). 
Revealing the obtained results briefly, the signal mean, peak, and 
minimum-value features obtained using oxyhemoglobin data in 
0–2 s window provided 76.5% accurate classification. For EEG, 
signal peak and number of peaks achieved 86% accurate results. 
The testing of the drone in an arena showed the possibility of 
quadcopter control using eight-brain commands from the frontal 
cortex. To the authors’ best knowledge, this is the first fNIRS study 
to decode and classify brain activity in 0–2 s window. Also, this 
is the first study to decode four commands from the prefrontal 
cortex using fNIRS. Moreover, this work shows the first hybrid 
EEG–fNIRS-based decoding of eight active commands from the 
frontal and prefrontal cortices.

MaTerials anD MeThODs

subjects
A total of 10 healthy adults were recruited (all right-handed 
males; mean age: 28.5  ±  4.8). Right-handers had been sought 
in order to minimize any variations in the electrophysiological 
and hemodynamic responses due to the hemispheric dominance 
difference. None of the selected participants had participated in 
any previous brain signal acquisition experiment, and none had a 
history of any psychiatric, neurological, or visual disorder. All of 
them had normal or corrected to normal vision, and all provided 
a written consent after having been informed in detail about the 
experimental procedure. Experiments with fNIRS and EEG were 
approved by the Institutional Review Board of Pusan National 
University, and they were conducted in accordance with the ethi-
cal standards encoded in the latest Declaration of Helsinki.

electrode/Optode Placement
The frequency domain system ISS Imagent (ISS Inc., USA) 
was used for the signal acquisition. A total of eight sources 
and two detectors, making a combination of 16 channels, were 
positioned around the prefrontal cortex. The FPz location was 
positioned between the two detectors. The Emotiv EEG headset 
(Emotiv Epoc, USA) was used to acquire the EEG signals. The 
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TaBle 1 | comparison of our proposed method with recent electroencephalography (eeg)-based work on command generation, accuracy, and window size.

reference Brain area activity Brain–computer 
interface (Bci) 
type

Modality application commands accuracy (%) Window size

Kim et al. (2014) Complete brain Eye movement Active EEG + Eye 
tracker

Quadcopter control 8 91.67 5 s

Bai et al. (2015) Complete brain Motor imagery and 
P300

Active + reactive EEG Opening, closing, selection of files in Internet 
Explorer

9 (can achieve 
50)

4 s window for motor 
imagery and 600 μs for P300

Hortal et al. (2015) Motor and parietal Mental imagination Active EEG + EOG Robotic arm control for pick and place task 6 Task 1:71.13 
and Task 
2:61.51

0.5 s to synchronize output 
to brain–machine interface

Naseer and Hong 
(2015a)

Prefrontal and 
motor cortex

Mental arithmetic, 
mental counting and 
motor imagery

Active Functional 
near-infrared 
spectroscopy

Decoding answers to four-choice questions 4 73.3 2–7 s

Ma et al. (2015) Parietal and 
occipital

P300 and eyeblink Reactive + active EEG + EOG Mobile robot control 9 87.3 for average 
of 5 trials

~1.6 s

Combaz and Van 
Hulle (2015)

Whole brain P300 and steady-
state visually evoked 
potentials (SSVEP)

Reactive EEG Applications to locked-in patients option 
selection

12 Maximum 
achieved >95

200 μs before stimulation to 
800 μs after stimulation for 
experiment 1

Ramli et al. (2015) Motor and occipital Eye gaze Reactive EEG + EOG Application to BCI applications (wheelchair 
control)

6 97.88 0.5 s

Yin et al. (2015) Parietal and 
occipital cortex

P300 and SSVEP Reactive EEG Speller paradigm with applications to BCI 
systems control

Up to 64 
commands

95.18

The proposed 
method

Frontal Mental task + eye 
movement

Active NIRS + EEG Applications to quadcopter control 8 76.5% for NIRS 
and 86% for 
EEG

1 s for EEG and 2 s for NIRS

3

K
han and H

ong
H

ybrid E
E

G
–fN

IR
S

-B
ased C

ontrol

Frontiers in N
eurorobotics | w

w
w

.frontiersin.org
February 2017 | Volum

e 11 | A
rticle 6

http://www.frontiersin.org/Neurorobotics/
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive


FigUre 1 | configuration of optodes and electrodes for hybrid 
functional near-infrared spectroscopy–electroencephalography 
(fnirs–eeg) experiment. (a) 16-channel fNIRS with 2 detectors and 8 
emitters in the prefrontal brain region and (B) 14-electrode configuration of 
the Emotiv EEG headset.
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electrodes/optodes were positioned on the head according to the 
International 10–20 system (Jurcak et  al., 2007). The electrode 
and optode placement is illustrated in Figure 1.

experimental Procedure
The experimental procedure consisted of two sessions: training 
and testing. The subjects were trained to perform eight tasks 
detected simultaneously by EEG and fNIRS, after which the 
recorded brain activities were tested using real-time/online 
analysis.

Training Session
For the training session, the subjects were seated in a comfort-
able chair and told to relax. A computer monitor was set up 
approximately 70 cm in front of the subjects. The session began 
with a resting period of 2 min to establish a data baseline. After 
the resting period, the screen cued the participants to perform 
one of eight specific tasks. The tasks were as follows:

• Mental counting: counting backward from a displayed number;
• Mental arithmetic: subtraction of two-digit numbers 

from three-digit numbers in pseudo random order (e.g., 
233 − 52 = ?, ? − 23 = ?);

• Mental rotation: visualization of the clockwise rotation of a 
displayed stationary object (i.e., a cube);

• Word formation: formation of five scrambled words (e.g., 
“lloonab”), the first letter of which is shown as a cue (e.g., “B”);

• Two eyeblinks: blinking twice within 1 s window;
• Three eyeblinks: blinking thrice within 1 s window;
• Up/down eye movement: movement of both eyes in the up or 

down direction within 1 s window;
• Left/right eye movement: movement of both eyes in the left or 

right direction.

The mental tasks were recorded mainly using fNIRS, as 
the previous work (Weyand et  al., 2015) has shown its utility 
for high-accuracy detection of the above-noted tasks. The eye 
movement tasks were recorded principally using EEG, as the 
Emotiv EEG head set, as noted earlier, is commercially available 
as a system for detection of various facial movements and motor 
signals. The training session was divided into two parts: mental 
task training and eye movement training. In the first part, the 
subjects were trained for mental arithmetic, counting, rotation, 
as well as word formation tasks. Each task consisted of five 10-s 
trials separated by a 20-s resting session. In the second part of 
the training session, the subjects were instructed to move their 
eyes according to the cue given. Each trial in this case was 5 s in 
duration, and the resting period was 10 s. Details on the experi-
mental paradigm and data recording sequence are provided in 
Figure 2.

Testing Session
As part of the testing session, the training data were used to test 
the movement of a quadcopter (Parrot AR drone 2.0, Parrot SA., 
France). Specifically, the eight commands recorded during the 
training session were used to navigate the quadcopter in an open 
arena. The data were translated into commands and the subjects 
were asked to move the quadcopter in a rectangular path.

signal acquisition and Processing
The data for both modalities (EEG and fNIRS) were independently 
processed and filtered to acquire the desired output signals. In 
both cases, band-pass filtering was used to remove physiological 
noise from the acquired signals.

fNIRS Signal Processing
The frequency domain fNIRS system used two wavelengths 
(690 and 830 nm) to determine the changes in the concentra-
tion of hemoglobin. The sampling rate of 15.625 Hz was used to 
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FigUre 2 | experimental paradigm of a training session (per subject). 
After the initial 2-min rest, each functional near-infrared spectroscopy 
recording block consists of five 10-s activations and five 20-s rests, while 
each electroencephalography block consists of five 15-s tasks and five 10-s 
rests. The total duration of the experiment is 17 min.
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acquire the data. The modified Beer-Lambert law (Baker et al., 
2014; Bhatt et  al., 2016) was utilized to convert the data into 
concentrated changes of oxy- and deoxy-hemoglobin (ΔHbO 
and ΔHbR):
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where A is the absorbance of light (optical density), Iin is the 
incident intensity of light, Iout is the detected intensity of light, α 
is the specific extinction coefficient in µM−1 cm−1, c is the absorber 
concentration in micromolars, l is the distance between the source 
and the detector in centimeters, d is the differential path-length 
factor, and η is the loss of light due to scattering.

The data were first preprocessed to remove physiological 
noises related to respiration, cardiac, and low-frequency drift 
signals. In order to minimize the physiological noise due to 
heart pulsation (1–1.5 Hz for adults), respiration (approximately 
0.4  Hz for adults), and eye movement (0.3–1  Hz), the signals 
were low-pass filtered using a fourth-order Butterworth filter at a 
cutoff frequency of 0.15 Hz. The low-frequency drift signals were 
minimized from the data using a high-pass filter with a cutoff 
frequency of 0.033 Hz (Kamran and Hong, 2014; Bhutta et al., 
2015; Hong and Santosa, 2016).

EEG Signal Processing
The 14-channel EEG data were acquired at a sampling rate of 
128  Hz. The α-, β-, Δ-, and θ-bands, acquired by band-pass 
filtering between 8 and 12 Hz, 12 and 28 Hz, 0.5 and 4 Hz, and 
4 and 8 Hz, respectively, enabled isolation of the electrodes cor-
responding to the eye movement activities (Lotte et  al., 2007; 
Ortiz-Rosario and Adeli, 2013; Ma et al., 2015).

channel selection
Several channels were activated for both EEG and fNIRS. Proper 
channel selection is essential to the high-accuracy generation 
of commands. Previous work has employed t-value-based 
approaches (Hong and Nguyen, 2014; Hong and Santosa, 2016), 
bundled-optode-based approaches (Nguyen and Hong, 2016; 
Nguyen et al., 2016), and channel-averaging approaches (Khan 
and Hong, 2015; Naseer and Hong, 2015a). Other studies 
alternatively have employed their own algorithms, for instance, 
independent component analysis, etc. (Hu et al., 2010; Kamran 
and Hong, 2013; Santosa et  al., 2013). We used the following 
criteria for selection of fNIRS and EEG channels.

fNIRS Channel Selection
For fNIRS channel selection, we calculated the peak (max) value 
of ΔHbO in the baseline and in the first trials of the mental arith-
metic, mental counting, mental rotation, and word formation 
tasks, respectively. If the difference between the max value of the 
trial and the baseline value was positive, the channel was selected 
for classification; if neutral or negative (equal to or less than zero), 
it was discarded.

EEG Channel Selection
In case of EEG, we measured the power spectrum for each 
channel. The selected channels were those in which the signal 
power corresponding to the eyeblink and movement tasks was 
significant. Mostly the channels near the frontal brain region were 
active in this case.

Feature extraction and classification
In order to generate commands, we first extracted the relevant 
features for classification. We selected signal peak and signal 
mean as features as, according to the literature (Khan and Hong, 
2015), they provide better performance for fNIRS-based BCI 
systems. Also, in consideration of a recently reported possibil-
ity of an initial fNIRS signal dip (Hong and Naseer, 2016; Zafar 
and Hong, 2017), we added a minimum (min) signal value as 
a feature. We also investigated the possibility of minimizing the 
time for command generation by means of 0–1, 0–1.5, and 0–2 s 
windows.

For EEG signals, following channel selection we selected 
the signal mean and number of peaks as features for command 
generation. In this case, we used a moving window of 1 s to extract 
the relevant feature values.

For both modalities, MATLAB®-based functions were used 
to calculate the features of the mean, peak, min, and number of 
peaks. For offline processing, the extracted features were rescaled 
between 0 and 1 by the equation

 ′ =
−
−

a a a
a a
min 

max min 
, (3)

where a ∈ Rn represents the feature value, a′ is the rescaled value 
between 0 and 1, max a denotes the largest value, and min a 
indicates the smallest value. These normalized feature values 
were used in a four-class classifier for training and testing of the 
data. We used linear discriminant analysis (LDA) to classify the 
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FigUre 3 | Block diagram of the proposed brain–computer interface scheme for generation of eight commands.
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signals for EEG and fNIRS, as, in one of our previous studies, 
we found it to be faster than support vector machine (Khan and 
Hong, 2015).

For our case, xi ∈ R2, where, for fNIRS, i denotes the classifica-
tion class, μi is the sample mean of class i, and μ is the total mean 
over all of the samples l. That is,

 µ µi
i x i

l
ln

x
n

x= =
∈
∑ ∑1 1
class 

, , (4)

where ni is the number of samples of class i and n is the total 
number of samples. The optimal projection matrix V for LDA that 
maximizes the following Fisher’s criterion is

 J V V S V
V S V

T

T( ) ( )B

W

=
det
det( )

, (5)

where SB and SW are the between-class scatter matrix and the 
within-class scatter matrix, respectively, given by

 S ni
i

m

i i
T

B = − −
=
∑

1

( )( ) ,µ µ µ µ  (6)

 S x xl i l i
T

l ii

m

W
class

= − −∑∑
=

( )( ) ,µ
∈

µ
x1

 (7)

where the total number of classes is given by m. Equation 5 was 
treated as an eigenvalue problem in order to obtain the optimal 
vector V corresponding to the largest eigenvalue. In the case of 
offline testing, 10-fold cross-validation was used to estimate the 
classification accuracy (Lotte et  al., 2007; Hwang et  al., 2013; 
Ortiz-Rosario and Adeli, 2013).

control scheme for Quadcopter
For control of the quadcopter, we formulated eight commands for 
classification: up/down movements, clockwise/counterclockwise 
rotations, forward/backward movements, and start/stop. After 
classification, we updated the quadcopter’s movement coordinates 

by Wi-Fi communication. The quadcopter has navigated using 
the transmitted commands. Figure 3 provides a block diagram 
of the BCI scheme for quadcopter control.

resUlTs

Figure 4 plots Subject 2’s ΔHbO values for all 16 channels and 
four activities. It can be seen that not all of the channels were 
active when performing a brain activity. However, for all four 
of the mental tasks, the activation pattern appears in the same 
channels.

The plots in Figure  4 serve to emphasize the necessity of 
selecting proper channels for distinguishing of brain activi-
ties. As per our channel-selection criterion, we subtracted the 
max value in the baseline from the max value of the first trial. 
Accordingly, channels 4, 9, and 10 were selected for Subject 
2, whereas channel 8 was not, due to having a higher value of 
baseline. We intended to identify different brain channels for 
different activities; therefore, as per our criterion, the subtrac-
tion of the first trial for each activity can identify different 
channels. However, in this case, for all subjects selected, the 
common channels were activated as corresponding to the 
mental tasks.

As various windows sizes have been used for detection of fNIRS 
features in different studies (Utsugi et al., 2008; Luu and Chau, 
2009; Power et al., 2010; Naseer and Hong, 2013; Schudlo et al., 
2013; Schudlo and Chau, 2015; Weyand and Chau, 2015; Weyand 
et al., 2015; Naseer et al., 2016a,b), we intended to minimize the 
window size applicable to BCI applications. We therefore selected 
0–0.5, 0–1, 0–1.5, and 0–2  s windows for feature acquisition 
and investigated both hemodynamic and initial dip features to 
acquire the best window size for reduced computation time. The 
signals of Subject 2 as averaged over all of the trials in the reduced 
window are plotted in Figure 5.

In the case of EEG, we examined the power spectrum in 
order to identify the activated channels. The F3, F4, O1, and O2 
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FigUre 4 | hbO examples for Figure 1a (subject 2). Channels 4, 9, and 10 were selected as active channels by the proposed method, but channel 8 was not 
(even if it was identified as such by the t-value analysis).
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regions were most active. We selected the channel showing the 
highest power corresponding to the eye movement task. Figure 6 
plots the normalized power spectrum of the selected channel for 
Subject 2.

The accuracies obtained for fNIRS are shown in Table 2. The 
accuracies achieved using EEG for the selected channels are 
shown in Table 3.

For real-time/online testing, we associated each activity with 
quadcopter movement. The associated activity for each is shown 
in Figure 7.

We associated opposite movements with EEG/fNIRS activi-
ties; for example, if forward movement was associated with EEG 
signals, backward movement was associated with fNIRS signals. 
This was done to ensure safety from the quadcopter and any-
one in the area. This scheme has benefits in any case, as, if a 
command is misclassified/misinterpreted, a command with the 
second modality can be generated to countermove the misclas-
sified movement. As per Figure 7, when EEG was used for one 
motion, fNIRS was used for its counter motion. This selection 
reflected EEG’s demonstratively higher accuracy for most of the 
subjects.

We have tested the movement of the quadcopter in an arena. 
The subjects were asked to move the quadcopter in a rectangular 
path. They were asked to land the quadcopter near to the takeoff 
position. After take off, the subjects were informed to move the 
drone almost 3 m in forward direction, then 2 m to the left. The 
subjects had to increase the height by almost 0.5 m when reaching 

the left corner. After increasing the height, the subjects were to 
move the quadcopter backward 3 m and then 2 m to the right 
to reach the takeoff spot. After reaching the final position, the 
subjects were asked to land the drone. The path followed by the 
drone from Subject 2 is shown in Figure 8.

Since the drone requires quick response commands to maneu-
ver, it can be clearly seen that the path was not properly followed. 
The subject had to adjust the path to the desired path to reach the 
final position. This is due to the delay in command generation 
and transmission to the drone for movement control. Further 
improvement can be made by incorporating an adaptive control 
algorithm to the drone’s control and reduction of window size to 
stabilize the trajectory followed by the drone.

DiscUssiOn

In this study, we decoded eight active brain commands using 
hybrid EEG–fNIRS for BCI. The generated commands were 
tested using a quadcopter. To the best of the authors’ knowledge, 
there are only two previous studies that have tested their BCI 
schemes for control of a quadcopter in 3D space (LaFleur et al., 
2013; Kim et  al., 2014). Our work has an advantage over both 
studies, as we were able to control the quadcopter with a greater 
number of active commands. LaFleur et al. (2013) controlled the 
height and rotation of a quadcopter using motor imageries for 
the left, right, and both hands. However, in this case, the quad-
copter was given a fixed forward speed. Therefore, this work did 
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TaBle 2 | classification accuracies of four functional near-infrared 
spectroscopy window sizes (based upon the mean, peak, and minimum 
values of ΔhbO).

subjects Window size
0–0.5 s

Window size
0–1 s

Window size
0–1.5 s

Window size
0–2 s

1 65 70 70 75
2 80 85 90 95
3 80 80 85 85
4 50 55 60 65
5 85 85 90 95
6 70 70 70 75
7 55 60 65 70
8 65 60 65 70
9 60 65 65 70
10 50 55 60 65

Mean 66 ± 12.6 68.5 ± 11.5 72 ± 11.8 76.5 ± 11.3

FigUre 6 | normalized power spectra of electroencephalography 
(subject 2). (a) F3 electrode and (B) P7 electrode. The local peak in the red 
circle in (a) corresponds to the eye movement task measured by the F3 
electrode.

FigUre 5 | comparison of the averaged hbOs of four mental tasks 
and the magnified responses during 0–4 s window.
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not give full quadcopter control to the user for navigation. Also, 
as it is impossible for some subjects to perform motor imagery 
(Vidaurre and Blankertz, 2010), their scheme is suited only to a 
specific set of users who can in fact perform it. Kim et al. (2014) 
integrated EEG with an eye tracker for generation of eight com-
mands. Although their eye tracking was effective, an LED-based 
flash light was used to monitor the eye movement. As such, with 
the illuminating LED enhancing the contrast between the pupil 
and iris, it would be difficult to maintain quadcopter-controlling 
concentration for any significant span of time. In our case, there 
are no such drawbacks, as the necessary mental and eye move-
ment commands are easy to generate. Also, our scheme yields 
more freedom to the user for drone control. It also includes a 
measure—specifically EEG/fNIRS integration—for avoidance 
of any miss-directional movement. A given EEG command has 
been matched with an opposing fNIRS command (see Figure 7). 
Thus, in the event that an EEG command is incorrectly classified 
and the quadcopter follows a wrong direction, fNIRS signals can 
be used to counteract that command.

Our proposed scheme for fNIRS classification incorporates 
features for both hemodynamics and initial dips. To the best of 
our knowledge, this is the first work to generate commands in a 

0–2  s window for BCI. Whereas previously, different windows 
have been reported for fNIRS-based classification using fNIRS, 
in the current work, the smallest window size for classification 
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TaBle 3 | electroencephalography accuracies of selected electrodes.

subjects electrodes selected accuracy (%)

1 F3 100
2 F3 95
3 F3 100
4 AF3 90
5 F7 75
6 F3 75
7 F4 75
8 F3 80
9 F7 80
10 F3 90

Mean 86 ± 10.2
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Further investigation of feature selection and the use of adaptive 
algorithms will improve the results in both window size and 
classification.

Another advantage of the proposed scheme is its decoding 
of all four fNIRS activities from the prefrontal cortex. In previ-
ous research (Naseer and Hong, 2015a), four choices have been 
decoded using fNIRS in a 2–7 s window. However, in this case, 
only two classes were decoded from the prefrontal cortex, the 
other two commands having been generated using data from 
the motor cortex. Our proposed work is more advantageous for 
more users, as those suffering from locked-in syndrome cannot 
properly perform motor tasks. Another advantage of our work is 
the reduced command-generation time using fNIRS. This enables 
patients who are partially locked-in (with minor eye movements) 
to use eight commands in controlling a robot in online/real-time 
scenarios.

A previous fNIRS study (Hong and Santosa, 2016) proposed 
channel selection based on a t-value criterion. It classified four 
sound categories from the auditory cortex using the channels’ 

FigUre 7 | The quadcopter control scheme based on electroencephalography and functional near-infrared spectroscopy signals.

was used. Although the reported optimal window size, which is 
to say, the size allowing for the highest classification accuracy, 
is 2–7 s (Naseer and Hong, 2013), the 0–2 s window size, albeit 
causing a decrease in accuracy, is still usable for BCI. Also, we 
used the mean, min, and peak values of ΔHbO for classification. 
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highest t-values. In our approach, we used the baseline as a refer-
ence for selection of channels. For classification, we selected, for 
four prefrontal activities, the common channels yielding a posi-
tive value after taking the difference between the peak value and 
the baseline. The drawback here is that only a limited number of 
channels can be selected. The algorithm can be further improved 
by adding the “difference of mean” for channel selection. In the 
comparison of our approach with t-value-based channel selection 
(see Table 4), most of the selected channels were common. It can 
be seen that the t-value-based scheme can identify more active 
channels. However, channel detection time also is an important 
factor for real-time applications, and our proposed scheme can 
identify the activated channels much quicker than the previous 
schemes. Thus, our method allows much room for further devel-
opment in terms of command generation and real-time control.

A limitation of this method is the acquisition of activities using 
eye movement tasks. Although the use of eye movement for robot 
control has already been demonstrated to be effective (Ma et al., 
2015), eye movements are related to motor activity, and so, it is 
difficult for motor-disabled patients to generate four EEG-based 
commands. The selection of different active tasks for EEG can 
improve the results. Another, fNIRS-related limitation of the 
proposed method is the variation in hemodynamic responses in 
subjects due to trial-to-trial variability (Hu et al., 2013). Granted, 
the proposed features (peak, mean, and min ΔHbO) might not 
yield the best performance for each subject in the 0–2 s window. 
However, this problem is not insoluble, and certainly, it will be 
addressed in further investigations into feature selection. Also, 
the use of adaptive algorithms promises improvement in fNIRS 
command generation time.

cOnclUsiOn

In this study, we investigated the possibility of decoding 
eight commands from the frontal and prefrontal cortices 

by combining electroencephalography and functional near-
infrared spectroscopy (fNIRS) for a BCI. Four EEG commands 
were generated by eye movements (two and three blinks as 
well as left/right and up/down movements), using the number 
of peaks and the mean value as features. In the case of fNIRS, 
we chose mental counting, mental arithmetic, mental rotation, 
and word formation tasks for the purpose of activity decoding. 
We selected a 0–2  s window to generate the commands using 
fNIRS signals. The signal mean, peak, and minimum values were 
used as features for incorporation of hemodynamic signals and 
initial dip features in the classifier. The obtained 76.5% accuracy 
indicates the possibility of classifying the activities in reduced 
windows. We tested the generated commands in a real-time 
scenario using a quadcopter. The movement coordinates of the 
quadcopter were updated using the hybrid EEG–fNIRS-based 
commands. The performed experiments served to demonstrate 

FigUre 8 | an example of trajectories of the quadcopter in the 3D space (subject 2).

TaBle 4 | comparison of selected channels and time between the 
proposed method and the t-value-based method.

subjects selected channels

The proposed 
scheme

selection 
time (s)

t-value-based 
scheme

selection 
time (s)

1 4, 10 0.0005 4, 8, 10 0.172
2 4, 9, 10 0.0005 2, 3, 4, 9, 10, 11 0.185
3 3, 5, 7,11, 12, 15 0.0005 2, 3, 5, 7, 11, 15 0.203
4 2, 3, 5, 6, 11, 14 0.0005 2, 3, 5, 6, 9, 11, 

14, 15 
0.192

5 6, 7, 14, 15 0.0005 5, 6, 7, 14, 15, 16 0.195
6 6, 8–16 0.0005 1,5–16 0.198
7 1, 4, 5, 8, 15 0.0005 1, 2, 3, 4, 5, 8, 10 0.191
8 1, 2, 3, 4, 5, 8, 

11, 14
0.0005 1, 2, 3, 4, 5, 8, 11–15 0.198

9 1, 2, 3, 4, 5, 6,10 0.0005 1, 2, 3, 4, 5, 8, 9, 
10, 16

0.196

10 1, 2, 6, 7, 14 0.0005 1, 5, 6, 7, 9, 13, 14 0.172
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the BCI feasibility and potential applications of the proposed 
eight-command decoding scheme. Further research on better 
feature selection and minimization of time window for com-
mand generation can improve the controllability of the quad-
copter. Moreover, the incorporation of adaptive algorithms for 
flight control along with brain signal decoding for stable flight 
can further strengthen the results.
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