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Bioaffinity ultrafiltration combined with LC-Orbitrap-MS/MS was applied for the first time

to achieve rapid screening and identification of tyrosinase inhibitory peptides (TYIPs) from

grass carp scale gelatin hydrolysates. The binding mode of TYIPs with tyrosinase was

investigated by molecular docking technology. The whitening effect of TYIPs was further

studied by evaluating the tyrosinase activity and melanin content in mouse B16F10 cells.

Four new TYIPs were screened from hydrolysates, among which DLGFLARGF showed

the strongest tyrosinase inhibition with an IC50 value of 3.09mM. Molecular docking

showed that hydrogen bonds were the main driving force in the interaction between the

peptide DLGFLARGF and tyrosinase. The addition of DLGFLARGF significantly inhibited

the tyrosinase activity and melanin production of B16F10 melanoma cells. These results

suggest that DLGFLARGF is a promising skin whitening agent for the treatment of

potential pigment-related diseases.

Keywords: grass carp scale gelatin, tyrosinase inhibitory peptides, bioaffinity ultrafiltration, LC-Orbitrap-MS/MS,

whitening

INTRODUCTION

Gelatin has a rich sources and is widely used in the food and medicine industries (1–5). The
hydrolysis product of gelatin is collagen peptide, which is a mixture of peptides. After separation
and purification, specific bioactive peptides could be obtained that have a wide range of significant
functional activities. At present, the functional activities of collagen peptides such as antioxidant
activity (6), angiotensin-converting enzyme inhibition activity (7), anti-tumor activity (8), and
antibacterial activity (9) have been studied. Recent studies have shown that many active peptides
contain some hydrophobic amino acids, uncharged polar amino acids, aromatic amino acids, etc.,
which have the ability to inhibit the production of melanin (10, 11).

The production of melanin is regulated by enzymes such as tyrosinase, tyrosinase-binding
protein-1 (dopa pigment isomerase), and tyrosinase-binding protein-2 (melanin precursor oxidase)
(12). Tyrosinase (EC1.14.18.1) is a multifunctional enzyme with three histidine (His) residues and
two Cu ions in the active center, which is widely found in fungi, plants and animals. Tyrosinase
oxidizes tyrosine to produce dopamine and then continues to oxidize dopamine to produce
dopamine quinone. Dopamine quinone is a very active molecule that can generate a polymer
complex or brownish pigment when it reacts with amino acids or proteins, finally producing
melanin (13). Substances with tyrosinase inhibition activity are commonly found in whitening
foods. At present, tyrosinase inhibitors widely used in foods have been reported, including arbutin,
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kojic acid, oxidative resveratrol, etc. (14). However, studies have
shown that these substances show limiting effects and certain side
effects, including the lack of good permeability, high toxicity and
poor stability (15). Scientists have recently become interested in
the tyrosinase inhibitory activity of extracts from natural sources,
due to the benefits of mild functional activity, simple absorption,
and excellent skin compatibility (16–18). Active polypeptide is
composed of 2–20 amino acids, which has the above advantages
that could provide the possibility for its application in foods (19).

The conventional procedures for screening active peptides
from complex protein hydrolysates include the preparation
of hydrolysates, bioassay-guided separation, purification
and peptide sequence identification. In general, traditional
methods require multi-step extraction and separation
with organic solvents, resulting in low efficiency, serious
environmental pollution, time-consuming and laborious
(20, 21). The combination of bioaffinity ultrafiltration and
liquid chromatography-mass spectrometry based on the
interaction between small molecule ligands and enzyme
active sites is an effective approach for a powerful approach
for identifying biologically active compounds from complex
mixtures (22). It has been widely used to screen and identify
a variety of biologically active compounds from natural
extracts and traditional Chinese medicine (23). Qin et al. (24)
established a bioaffinity ultrafiltration-high performance liquid
chromatography-electrospray ionization-time of flight-mass
spectrometry (BAUF-HPLC-ESI-TOF/MS) method to identify
potential new bioactive substances. This method has been
demonstrated to be a quick way to obtain high-purity, high-
activity bioactive substances. However, there is no report about
screening tyrosinase inhibitor peptides by this method.

In this paper, a rapid screening and identification method
for the tyrosinase inhibitory peptides (TYIPs) in the hydrolysis
of fish scale (by-products during freshwater fish production)
gelatin was established for the first time based on ultrafiltration
and Nano-LC-Orbitrap-MS/MS. Then, molecular docking was
used to determine the interaction of the identified peptide with
tyrosinase in order to investigate the biological activity and
mechanism. Finally, the effect of peptides on B16F10’s ability to
produce melanin was further studied.

MATERIALS AND METHODS

Materials
Grass carp scale gelatin was obtained from the laboratory.
Alcalase (≥200,000 units/g) was purchased from Solarbio
Chemical Co. (Shanghai, China). Mushroom tyrosinase (6,680
U/mg) and 3,4-dihydroxyphenylalanine (L-DOPA) were
purchased from Sigma-Aldrich (St. Louis, MO, USA). The
murine melanoma B16F10 cells (CL0039) were acquired from
Fenghui Biological Technology Co., Ltd. (Hunan, China). All the
other reagents were analytical grade.

Preparation of TYIPs From Fish Scale
Gelatin
The grass carp scale gelatin was prepared according to the
method of Sha et al. (25). According to previous experiments,

the optimal enzymatic hydrolysis conditions for preparing TYIPs
were: substrate concentration of 125 mg/ml, alcalase dosage of
1%, pH 9.0, enzymatic hydrolysis temperature of 60◦C, and
enzymatic hydrolysis time of 2 h.

Analysis of the Tyrosinase Inhibitory
Activity
The determination of the tyrosinase inhibitory activity was made
according to Uysal et al. (26). Sample solutions (50 µl) with the
appropriate concentration were reacted with 50 µl of 200mM
pH 6.8 phosphate buffer saline (PBS) solution and 50 µl of
tyrosinase at room temperature for 15 mins. Then, 50 µl of
2.5mM L-DOPA was added, and allowed to react at 30◦C for
10min. The absorbance (As) at 475 nm was finally measured
with a microplate reader (Synergy H1, BioTek Co., Ltd., USA).
Taking the reaction system without enzyme and sample as a
blank. Kojic acid (2 mg/ml) used as the positive control, and
the rate of tyrosinase inhibition could be calculated using the
following equation:

Tyrosinase inhibition rate/% =
(Ac − Ab)− (As − Ab)

(Ac − Ab)
× 100%

(1)

where, As is the absorbance of the sample after reaction; Ac is
the absorbance of the reaction system with distilled water instead
of the sample; Ab is the absorbance of the reaction system with
distilled water instead of tyrosinase.

Analysis of the Amino Acid Composition
The amino acid composition was determined based on the
report of Chen et al. (27) with appropriate modifications. The
samples were hydrolyzed with 6M HCl at 110◦C for 24 h prior
to composition analysis with a High-Speed Amino Acid Analyzer
Model L-8900 (Hitachi Co., Japan).

Analysis of Molecular Weight Distribution
The molecular weight (MW) distribution was determined using
an Agilent 1260 Infinity HPLC system (Agilent Technologies,
Inc., Santa Clara, CA, USA) equipped with a waters XBridge
Protein BEH 125Å SEC (3.5µm, 7.8 × 300mm) (28).
Hydrolysates were eluted with water (0.1% FA) and acetonitrile
(60:40, V/V) at a flow rate of 0.4 ml/min. The injection volume
was 10 µl. The detection wavelength was 220 nm (28). The
MW of peptides was calculated based on the calibration curve
constructed with cytochrome C (12,384 Da), aprotinin (6,511.51
Da), bacitracin (1,422.69 Da), L-oxidized glutathione (612.63 Da)
and hydroxyproline (131.13 Da).

Rapid Screening of TYIPs
Bioaffinity Ultrafiltration

The screening method was slightly modified based on the
previous report (22). The inhibitory activity of tyrosinase was
evaluated at 1–6 mg/ml to obtain the best binding concentration.

4ml of hydrolysis product (5 mg/ml) and 2ml of
mushroom tyrosinase (10 U/ml) were incubated for 1 h
at 37◦C. Inactivated mushroom tyrosinase (heated in a
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boiling water bath for 10 mins) was also prepared as a
blank group. The detailed method is shown in Figure 2A.
Filtrates, including peptides binding active tyrosinase (PAT)
and peptides binding inactive tyrosinase (PIT), were collected
and freeze-dried for tyrosinase inhibition evaluation and
peptide identification.

Peptide Identification

The amino acid sequence of the components obtained in
2.6.1 was determined by Nano-LC-ESI-Q-Orbitrap-MS/MS.
Peptides were separated on an AcclaimR PepMap RSLC (50µm
×150mm, C18, 2µm, 100 Å) column at a flow rate of
220 nl/min. Mobile phase A and B was consisted of 0.1%
formic acid aqueous solution and 0.1% acetonitrile solution,
respectively. Gradient elution conditions were as follows: 0–
2min, 4–12% B; 2–25min, 12–22% B; 25–32min, 22–32% B; 32–
37min, 32–75% B; 37–40min, 75% B (isoelution). The positive
ion scanning mode was adopted, and the mass spectrometry
data were collected using Xcalibur 2.2 SP1 software, with a
mass range of 250–1,250 m/z and a resolution of 70,000. The
top 20 peptides were selected for fragmentation according to
the signal strength of the first mass spectrometry, and the
fragmentation mode was HCD with an energy of 27%. The
parent ion map was analyzed by Xcalibur software and De
Novo was sequenced using PEAKS Studio 7.0 software to
obtain the amino acid sequence of peptides. The peptides
identified in this paper met the requirements of false discovery
rate (FDR) ≤ 5% and average local confidence score (ALC)
≥ 95%.

Molecular Docking and Peptides Synthesis
The X-ray crystal structure of Agaricus bisporus tyrosinase
(2Y9W) was downloaded from the Protein Data Bank (https://
www.rcsb.org/structure/2Y9W) (29), and three-dimensional
(3D) structure of TYIPs segment were obtained by ChemBio
3D Ultra 14.0. Based on the 3D crystal structure of tyrosinase,
the computer-aided technology was used to analyze the action
mode and site of peptide segment with tyrosinase, and to
clarify the action mechanism. The specific docking process
was as follows: first, the AutoDock tool is used to remove
water molecules from tyrosinase and add Gasteiger charges and
hydrogen atoms to tyrosinase molecules. Then, the AutoDock
tool was used again to dock ligand small molecules (peptides)
with tyrosinase. The docking process and calculation were
carried out according to default parameters. The coordinates
of the docking center of the peptide with tyrosinase were
(64, 70, 116). Results were obtained based on the lowest
free energy.

Cell Culture
B16F10 cells were kept in Dulbecco’s modified eagle medium
supplemented with 10% heat-inactivated fetal bovine serum, and
cells were cultured at 37◦C in an atmosphere with 5% CO2. These
cells were then used for cell viability, tyrosinase inhibition and
melanin content determination.

Determination of the Cell Viabilities of
B16F10 Melanoma Cells
The previously described cell counting kit-8 (CCK-8) assay
was used to assess cell viability (30). The cells were incubated
in a 96-well plate with 5×104 cells per well in a 5% humid
CO2 atmosphere at 37◦C for 24 h. DLGFLARGF was added
to the cells at concentrations of 0, 0.1, 0.2, 0.4, 0.8 and 1.6
mg/ml, while 0.75 mg/ml of kojic acid was used as a positive
control. The cells were re-incubated for 24 h under the same
conditions. The cells were then treated with the CCK-8 reagent
and incubated at 37◦C for 1 h. Cell viability is calculated by
reading the absorbance value at 450 nm. The calculation formula
is shown below.

Cell viability/% =
(As − Ab)

(Ac − Ab)
× 100% (2)

where, As is the absorbance of experimental wells (medium
containing cells, CCK-8, sample to be tested); Ac is the
absorbance of control well (medium containing cells,
CCK-8, no sample to be tested); Ab is the absorbance
of blank wells (medium without cells and samples to be
tested, CCK-8).

Determination of Tyrosinase Activity in
B16F10
The tyrosinase inhibition was determined according to the
method of Ullah et al. (31). B16F10 cells were seeded into 96-
well plates at a rate of 5 × 104 cells per well and incubated
at 37◦C in a humid atmosphere of 5% CO2 for 24 h. The cells
were then treated with kojic acid (0.75 mg/ml) and DLGFLARGF
(0, 0.1, 0.2, 0.4, 0.8 and 1.6 mg/ml), and re-incubated for
24 h under the same conditions. The cells were then washed
with PBS buffer, lysed with lysate buffer [100 µl containing
50mM PBS, 0.1mM phenylmethanesulfonyl fluoride (5 µl)
and Triton X-100 (5 µl)], and frozen at −80◦C for 30min.
The cell lysate was then centrifuged at 12,000 rpm at 4◦C for
30min and transferred to a 96-well plate with a total volume
of 100 µl (80 µl lysate supernatant and 20 µl 10mM L-
DOPA) and incubated for 30min at 37◦C. The absorbance was
measured at 450 nm using an enzyme-linked immunosorbent
assay (ELISA) reader.

Determination of Melanin Content in
B16F10
After cultivated according to the instructions above, the cells were
digested with 0.25% trypsin when reached to 80–90% confluence
to make a single cell suspension. Fresh culture medium was
used to adjust the cell concentration to 1×106 cells/ml, 2ml of
which was inoculated in a 6-well culture plate for incubation
overnight.When the cells adhered, the supernatant was discarded
and the cells were rinsed with PBS once. 2ml fresh culture
medium was added again for incubation under CO2 for 48 h.
The supernatant was discarded after the incubation, and the
adhered cells were rinsed with PBS and then dispersed with
trypsin. The dispersed cells were collected and centrifuged at
1,500 r/min for 10min. The precipitation was added with
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1ml NaOH (1 mol/L) containing 10% dimethyl sulfoxide for
1 h water bath at 80◦C before being transferred to a 96-well
culture plate. Measured the optical density value of each well

TABLE 1 | Amino acid composition of fish scale gelatin hydrolysate.

Amino acid Content (g per 100g) Amino acid Content (g per 100g)

Asp 4.58 ± 0.16 Ile* 1.03 ± 0.02

Thr 2.00 ± 0.05 Leu* 2.60 ± 0.08

Ser 2.49 ± 0.05 Tyr 0.41 ± 0.05

Glu 7.82 ± 0.16 Phe* 1.53 ± 0.03

Gly 16.71 ± 0.03 Lys 2.83 ± 0.03

Ala* 5.58 ± 0.04 His 0.26 ± 0.01

Cys 0.05 ± 0.01 Arg 6.74 ± 0.01

Val* 1.83 ± 0.04 Pro* 9.43 ± 0.07

Met* 1.24 ± 0.07

*Hydrophobic amino acid.

at 405 nm with a microplate reader, and calculated the melanin
content (32).

Melanin content/% =
(As − Ab)

(Ac − Ab)
× 100% (3)

TABLE 2 | Molecular weight distribution of fish scale gelatin hydrolysate.

Component Molecular

weight

range (Da)

Retention

time (min)

Relative

content (%)

Peak

molecular

weight (Da)

I 9,217–4,642 14.05–15.64 9.75 4,974

II 4,642–3,358 15.64–16.39 8.80 4,044

III 3,358–1,992 16.39–17.60 17.05 2,560

IV 1,992–904 17.60–19.43 29.65 1,441

V 904–503 19.43–20.67 10.51 568

VI 503–180 20.67–23.17 16.12 452

FIGURE 1 | The size exclusion chromatogram of standards (A), molecular weight distribution curve of standards (B), and the size exclusion chromatogram of fish

scale gelatin hydrolysates, I, II, III, IV, V, VI represent the different components obtained (C).
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FIGURE 2 | Diagrams of biological affinity ultrafiltration—liquid mass spectrometry screening methods (A), the tyrosinase activity of hydrolysates (B), ultrafiltration

fractions (C), the total ion chromatography (TIC) of PAT (D), and PIT (E). Different lowercase letters represent significant differences between different

groups (p < 0.05).

where, As is the absorbance of experimental wells; Ac is the
absorbance of control well; Ab is the absorbance of blank wells.

Statistical Analysis
In each analysis, three parallel tests were performed. The results
were presented in the form of mean ± standard deviation (SD).
SPSS Statistics 20 software (IBM, Armonk, NY, USA) was used
to perform one-way analysis of variance (ANOVA, P < 0.05)
and Duncan’s multiple range test to analyze the differences
between samples.

RESULTS AND DISCUSSION

Amino Acid Composition and Molecular
Weight Distribution of Hydrolysates
The amino acid composition of hydrolysates was shown in
Table 1 and the total amount of amino acids was 67.12 g
in 100 g hydrolysates. Many amino acid residues in collagen
peptides are associated to tyrosinase inhibitory activity, according
to the structure-activity relationship investigation between the
peptide chain and melanin production inhibition (10, 33, 34).
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FIGURE 3 | The full MS scan spectrum (A) and the full MS/MS spectrum (B) of DLGFLARGF.

Val (V), Ala (A), Leu (L) and Ile (I) are four aliphatic
hydrophobic amino acids that can directly interact with enzymes
to inhibit the formation of dopaquinone, hence inhibiting
melanin production, and have an additive effect. As shown in
Table 1, the total amount of these four amino acids was 11.04
g/100 g hydrolysates, accounting for 16.45% of the total amino
acid content. Arg (R) residues enhance cell penetration and
facilitate the interaction between peptides and tyrosinase; Phe
(F) is similar in structure to Tyr (Y) (the natural substrate
of tyrosinase), which facilitates the binding of peptides and
enzymes (10). The contents of these two amino acids were 6.74
g/100 g and 1.53 g/100 g in hydrolysates, respectively. Cys (C),
Ser (S) and Thr (T) can form a complex with the enzymatic
reaction product (dopaquinone) to prevent the conversion of
dopaquinone into melanin, instead of inhibiting enzyme activity.
The total amount of these three amino acids was 4.54 g/100 g
in hydrolysates. Asp (D) and Glu (E) are negatively charged
amino acid residues, which are not conducive to binding to
tyrosinase. The total amount of these two amino acids was 12.40

g/100 g hydrolysates, accounting for 18.47% of the total amino
acid. From what has been discussed above, the content of amino
acids beneficial to inhibiting melanin was up to 35.44%. These
results suggested that hydrolysates may have strong tyrosinase
inhibitory activity.

The MW distribution reflects the hydrolysis degree of fish
scale gelatin (35). Peptides with different MW have different
tyrosinase inhibition abilities (36). As shown in Figure 1 and
Table 2, there were mainly six peaks (I-VI), indicating that the
hydrolysate contained six components, and the MW distribution
of components I, II, III, IV, V and VI were 9,217–4,642 Da,
4,642–3,358 Da, 3,358–1,992 Da, 1,992–904 Da, 904–503 Da
and 503–180 Da, respectively. The MW of the hydrolysates
were mainly concentrated in components III, IV, V and VI,
whose relative contents were 17.05, 29.65, 10.51, and 16.12%,
accounting for more than 73% of the total contents. In addition,
the MW of hydrolysates was mainly concentrated below 1,992
Da, accounting for 56.28% of proteolytic products. Alcalase is a
non-specific protease that can cleave many sites in a protein at
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TABLE 3 | Identification of peptides unique to PAT by LC–ESI–Q–Orbitrap–MS/MS.

No. Peptide RT (min) Length ALC (%) m/z Mass Local confidence (%)

1 PGPVGVKL 27.98 8 99 383.7446 765.4749 99 100 100 100 100 100 100 100

2 LDALNENK 20.2 8 99 458.7404 915.4661 100 100 100 99 98 99 98 100

3 VPGPM 25.62 5 98 500.2538 499.2465 99 99 100 99 98

4 GPVGSF 29.02 6 98 563.2829 562.2751 97 98 99 99 100 100

5 TGPLGL 34.4 6 98 557.3301 556.322 97 98 99 99 99 100

6 FDLGFLAR* 42.62 8 98 469.7591 937.5021 99 99 99 98 98 97 97 99

7 FSGM 24.61 4 97 441.1804 440.1729 96 96 100 99

8 WSVEF* 45.45 5 97 667.3090 666.3013 93 95 100 100 100

9 GEPGLLGM 42.87 8 97 773.3893 772.3789 89 95 97 98 99 100 99 100

10 GPPGLGQR 20.59 8 96 391.2201 780.4242 99 99 100 98 97 94 90 95

11 WQLTL* 47.88 5 96 660.3729 659.3643 97 94 99 96 95

12 EAPDPF 50.31 6 95 675.3026 674.2911 96 94 97 98 92 96

13 LVGPAGPTQR 21.96 10 95 498.2855 994.5560 100 100 100 100 99 99 91 86 85 93

14 DAPGLLRGF 35.7 9 95 473.2618 944.5079 79 88 100 100 100 99 97 95 99

15 DLGFLARGF* 45.92 9 95 498.2695 994.5236 81 82 99 100 100 99 98 99 99

16 GFTGM 28.03 5 95 512.2175 511.2101 90 92 98 99 97

The above refers to the molecular mass less than or equal to 1,000 Da. The proportion of amino acids that are marked with * means that the contribution of tyrosinase inhibition is

greater than or equal to 0.6.

FIGURE 4 | Tyrosinase inhibitory activity of synthetic peptides. Different

lowercase letters represent significant differences between different groups

(p < 0.05).

random and generate a higher number of low MW peptides (37),
which are attractive for higher biofunctional activity (38).

Enrichment and Identification of
Potential TYIPs
Appropriate concentration and ratio are required in order
to achieve a saturated state of binding. Figure 2B shows the
tyrosinase activity residual rate of hydrolysates with different
concentrations. Significant dose-dependence was observed in
the concentration range of 0–5.33 mg/ml, which indicated
that most of the active sites of tyrosinase can be bound
by peptides. However, the inhibitory effect per milligram

of inhibitor decreased as the hydrolysates concentration
increased. In order to retain an ideal tyrosinase inhibitory
activity, the concentration of hydrolysates was set at 5
mg/ml with tyrosinase inhibitory activity rate at 61.7%
for screening.

After bioaffinity ultrafiltration, tyrosinase inhibitions
of PAT and PIT were evaluated. The results are shown
in Figure 2C. The inhibition rate of tyrosinase on
PAT was 74.92%, while the corresponding inhibition
rates of PIT and hydrolysates were 51.37 and 62.58%,
respectively. This suggests that certain peptides in the
hydrolysates can specifically bind to the active site of
tyrosinase and can be enriched effectively by bioaffinity
ultrafiltration, resulting in a higher inhibition of PAT than PIT
and hydrolysates.

The peptide composition in PAT and PIT was identified
by Nano-LC-Q-Orbitrap-MS/MS to screen potential TYIPs.
The total ion chromatograms were shown in Figures 2D,E.
By matching the b and y series ions detected in the MS/MS
spectrum with that recorded in database (uniprot-taxonomy
Anabantaria 201912), the exact amino acid sequence of each
peptide can be drawn. For example, peptide 9 (Figure 3A)
has MS ion 498.26952+, b series of b2 (229.11832+),
b3 (286.13972+) and b4 (433.20822+), y1 (166.08632+),
y2 (223.10772+), y3 (379.20882+), y4 (450.24592+), y5
(563.33002+), y6 (710.39842+) and y7 (767.41992+), and
the sequence was identified as DLGFLARGF (Figure 3B). By
this method, 52 of the peptides identified in PAT were not
found in PIT. Inhibitors can bind specifically to the active
site of tyrosinase and be released by acetonitrile (39), which
confirmed the high selectivity of bioaffinity ultrafiltration.
Therefore, these specific peptides in PAT are considered as
potential TYIPs.
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FIGURE 5 | Predicted binding mode of DLGFLARGF and tyrosinase (A,B). Hydrogen bond formed by DLGFLARGF and amino acid residues of tyrosinase (C).

Hydrophobic interaction between DLGFLARGF and amino acid residues of tyrosinase (D). Electrostatic interaction between DLGFLARGF and amino acid residues of

tyrosinase (E).

Rapid Screening and Tyrosinase Inhibitory
Activity Verification
Studies have shown that peptides with lower MW tend to have
higher functional activity (38). Therefore, peptides with MW
≤ 1,000 Da were selected from the 52 peptides obtained, and
16 peptides (shown in Table 3) were obtained for subsequent
analysis. Section Amino Acid Composition and Molecular
Weight Distribution of Hydrolysates introduced some amino
acids that contribute to tyrosinase inhibition, such as Val, Ala,
Leu, Ile, Arg, Phe, Cys, Ser, and Thr. According to the screening
method from previous study (10), 16 peptides in Table 3 were
counted for their tyrosinase inhibitory contribution ratio of
amino acids, and 4 peptides (marked ∗ in Table 3) with a
contribution ratio of amino acids greater than or equal to
0.6 were obtained, they were discovered to be novel peptides
by searching the data on the website http://www.uwm.edu.pl/
biochemia/index.php/en/biopep. Therefore, the four peptides
were used for subsequent synthesis to verify the tyrosinase
inhibitory activity in vitro, the purity of the synthetic peptides was
more than 95%. The tyrosinase inhibition ability of the synthetic
peptide was shown in Figure 4. The peptide DLGFLARGF
showed the strongest tyrosinase inhibition ability, with an IC50

value of 3.09mM. The IC50 of peptides WQLTL, WSEVF and
FDLGFLAR were 3.86, 5.81, and 4.00mM, respectively, and
they all showed good tyrosinase inhibitory activity. Similar
peptides from natural sources have also been found in other
studies, such as Phe-Pro-Tyr (FPY) from defatted walnut (Juglans

regia L.) meal hydrolysate with an IC50 value of 3.22 ±

0.22mM (40), and RHAKF from Chinese quince seed protein
hydrolysate with IC50 value of 1.15 mg/ml (41). In order to
further explore the reasons for the difference in tyrosinase
inhibition of these four peptides, molecular docking analysis
was performed.

Molecular Docking
In recent years, as a computer simulation technology, molecular
docking has been widely used to study the possible interaction
mechanism between inhibitors and enzymes (42–44). In order
to show the binding mode of TYIPs with tyrosinase more
intuitively, the AutoDock tool was used, and the results are
shown in Figures 5, 6. Peptide DLGFLARGF bonded to the
D chain of tyrosinase and interacted with its surrounding
amino acid residues, nine hydrogen bonds were formed with
Glu 340, Arg 111, Gly 115, Arg 108, Ile 96, Ser 95, Gly 113,
Lys 5 and Glu 97 on the enzyme D chain (Figure 5C). In
addition, amino acid residues Try 62, Pro 338, Pro 349, Glu
112, and Arg 111 can form a hydrophobic pocket on the
enzyme D chain, which tightly surround and hold the peptide
DLGFLARGF through hydrophobic action (Figure 5D). At the
same time, electrostatic interaction also occurred between Glu
97, Glu 340, Glu 67, Asp 60 and the peptide DLGFLARGF on
the D-chain (as shown in Figure 5E). These results intuitively
indicated that hydrogen bonding was the main driving force
(as shown in Table 4) involved in the interaction between
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FIGURE 6 | 2D diagram showing interactions between TYIPs and tyrosinase amino acid residue.

peptide DLGFLARGF and tyrosinase. It can be inferred that
the peptide DLGFLARGF binds to the inactive center of
tyrosinase through hydrogen bonding, and indirectly inhibits the

binding of substrate to tyrosinase by changing the conformation
of the enzyme, thereby inhibiting the catalytic activity of
the enzyme.
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TABLE 4 | Docking results according to hydrophobic interaction, electrostatic

interaction and hydrogen bond for complex.

DLGFLARGF WQLTL WSEVF FDLGFLAR

Hydrogen

bonds

Glu 340, Arg

111, Gly 115,

Arg 108, Ile

96, Ser 95, Gly

113, Lys 5, Glu

97

Asp 42, Lys

147, Ile 40

Asp 42, Ile

40, Trp 53

Ala 149, Asp

51, Thr 45,

Lys 147

Electrostatic

interaction

Glu 97, Glu

340, Glu 67,

Asp 60

Asp 42 Asp 42 No

Hydrophobic

interaction

Tyr 62, Pro

338, Pro 349

Ile 121, Ile 39,

Pro 46, Ala

50, Trp 53,

Phe 41

Trp 53, Phe

41, Pro 46,

Ala 50, Ile 39

Phe 148, Trp

53, Phe 41

In Figure 6 and Table 4, it could be seen that driving
forces in the peptides WQLTL, WSEVF, and FDLGFLAR were
less than DLGFLARGF, which also led to lower tyrosinase
inhibitory activity of these peptides. Moreover, molecular
docking can also be used to screen enzyme inhibitors based
on binding energy changes (45, 46). The three peptides have
different binding energies with WQLTL = −8.3 kcal/mol,
WSEVF = −9.2 kcal/mol, FDLGFLAR = −6.4 kcal/mol,
which was not completely consistent with the trend of
tyrosinase inhibition ability in Figure 4. This may be because
the most stable conformation was selected based on the
lowest binding energy, but the peptide conformation in
the reaction system may not be the most stable (47). On
the other hand, it may also be due to the longer-chain
of FDLGFLAR closer to the center of the hydrophobic
cavity and the more hydrophobic interactions of WQLTL
than WSEVF.

The Effect of DLGFLARGF on B16F10
Melanoma Cells
The CCK-8 method was used to determine the potential
cytotoxicity of different concentrations of DLGFLARGF
compared with kojic acid (0.75 mg/ml). Figure 7A shows
the effect of DLGFLARGF and kojic acid on the viability of
B16F10 cells. With the increase of DLGFLARGF concentration,
the cell survival rate gradually decreased. But within the
tested concentration range (0–1.6 mg/ml), no obvious
cytotoxicity was obtained (viability > 50%). Therefore, the
concentrations of 0, 0.1, 0.2, 0.4, 0.8, and 1.6 mg/ml were
selected to study the inhibitory effect of DLGFLARGF on
melanin synthesis.

To further evaluate the tyrosinase inhibition of DLGFLARGF,
B16F10 melanoma cells were treated with different
concentrations of DLGFLARGF and kojic acid (0.75 mg/ml). The
result is shown in Figure 7B. With the increase of DLGFLARGF
concentration, tyrosinase activity gradually decreased, indicating
gradually increased tyrosinase inhibitory ability. The inhibition
rate was 23.19% for 1.6 mg/ml of DLGFLARGF, which was very

close to that of kojic acid with 28.34% inhibition rate under
0.75 mg/ml. According to the previous results, the peptide
DLGFLARGF was found to reduce tyrosinase activity by binding
to the amino acid residue sites on the D chain of tyrosinase
upon entry into the cells, but kojic acid in published study
was proved to be docked to the catalytic site of mushroom
tyrosinase and thus had a stronger tyrosinase inhibitory
activity (48).

The content of melanin can directly determines the degree
of skin whiteness. At present, the recognized process of
melanin formation is roughly that tyrosine is oxidized to
dopa under the action of tyrosinase, and then dopa is
oxidized to dopa-quinone, which finally forms eumelanin
through a series of reactions. Tyrosinase is the key enzyme
for melanin formation (49). As shown in Figure 7C, the
melanin content gradually decreased as the concentration of
DLGFLARGF increased and showed a concentration-dependent
relationship, indicating that DLGFLARGF can effectively inhibit
the production of melanin. In terms of the inhibitory effects
on melanin production, the melanin content was reduced
by 55.4% in the cells treated with kojic acid (0.75 mg/ml),
while DLGFLARGF reduced by 38.3% at 1.6 mg/ml. Kojic
acid had been proved to be better than DLGFLARGF in
inhibiting tyrosinase activity. On the other hand, the synthesis
of melanin involves various factors besides tyrosinase, and kojic
acid could also regulate transcription of tyrosinase pathway
genes and bleach produced melanin (50). Moreover, collagen
peptide has mild functional activity, easy absorption and high
skin compatibility, while kojic acid lacks good permeability
in application, and show high toxicity and low activity
stability (51).

CONCLUSIONS

In this work, the alcalase hydrolysate of grass carp fish
scale gelatin was discovered to have promising tyrosinase
inhibitory activity. The tyrosinase inhibition rate of fish scale
gelatin treated with alcalase was 61.7% (at 5 mg/ml). The
MW distribution of the hydrolysate was mainly below 3,358
Da (73.33%), and the content of amino acids that inhibit
melanin was up to 35.44%. A rapid screening method of
TYIPs based on bioaffinity ultrafiltration combined with LC-
Orbitrap-MS/MS was established. 52 peptides were identified
from PAT, among which 4 new peptides were screened. The
peptide DLGFLARGF showed excellent tyrosinase inhibitory
activity with an IC50 value of 3.09mM. Hydrogen bonds were
the predominant driving force in the interaction between peptide
DLGFLARGF and tyrosinase according to molecular docking. In
addition, when the concentration of DLGFLARGF reached 1.6
mg/ml, the melanin content and tyrosinase activity decreased
to 61.7% and 76.81% of the control group, respectively. The
above results indicate that bioaffinity ultrafiltration combined
with LC-Orbitrap-MS/MS is an effective method for high-
throughput screening of TYIPs. Moreover, DLGFLARGF can
be widely used as a tyrosinase inhibitor in the whitening foods
and pharmaceuticals.
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FIGURE 7 | The effect of DLGFLARGF on B16F10 melanoma cells cytotoxicity (A), tyrosinase activity (B), and melanin content (C). Kojic acid (0.75 mg/ml) was used

as a positive control. The results are expressed as a percentage of the control, and the value is the mean ± SD of three independent experiments. According to

Duncan’s test, different letters indicate that the statistical difference between the two groups is p < 0.05.
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