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Abstract: With recent advances in object detection, the tracking-by-detection method has become
mainstream for multi-object tracking in computer vision. The tracking-by-detection scheme
necessarily has to resolve a problem of data association between existing tracks and newly received
detections at each frame. In this paper, we propose a new deep neural network (DNN) architecture
that can solve the data association problem with a variable number of both tracks and detections
including false positives. The proposed network consists of two parts: encoder and decoder.
The encoder is the fully connected network with several layers that take bounding boxes of both
detection and track-history as inputs. The outputs of the encoder are sequentially fed into the decoder
which is composed of the bi-directional Long Short-Term Memory (LSTM) networks with a projection
layer. The final output of the proposed network is an association matrix that reflects matching
scores between tracks and detections. To train the network, we generate training samples using the
annotation of Stanford Drone Dataset (SDD). The experiment results show that the proposed network
achieves considerably high recall and precision rate as the binary classifier for the assignment tasks.
We apply our network to track multiple objects on real-world datasets and evaluate the tracking
performance. The performance of our tracker outperforms previous works based on DNN and
comparable to other state-of-the-art methods.

Keywords: multi-object tracking; data association; deep neural network; long short-term
memory network

1. Introduction

Multi-object tracking is of great importance in computer vision for many applications including
visual surveillance [1], robotics [2], and biomedical data analysis [3]. Although it has been extensively
studied for decades, its practical usage for a real-world environment is still limited. Modern advances
in object detection algorithms [4–8] in computer vision make the track-by-detection approach become
the mainstream of multi-object tracking (MOT). MOT with track-by-detection necessarily exploits data
association between existing tracks and new detections at each frame so that it forms trajectories of
multiple objects. Thus, data association results produce sequences of detections with unique identities.

Many algorithms have been developed to solve data association problem in MOT. Several research
works reformulated the problem as a graph partitioning problem and solved it using either binary
integer programming or minimum cliques optimization [9–11]. Another group of recent research
works uses network flow-based methods [12–14] that solve the problem by finding flows in their
network. In addition, many tracking methods exploit the appearance of object to discriminate
between objects [15–17]. There are also conventional approaches such as joint probabilistic data
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association (JPDA) [18,19] and multiple hypothesis tracking (MHT) [20–22] as well as stochastic
filtering approaches [17,23].

In [24], Milan et al. proposed data-driven approximations of the data association problem under
recurrent neural network approach using Long Short Term Memory (LSTM) that approximates the
marginal distributions of a linear assignment problem. They tested their method with simulated
scenarios and showed that their method outperformed the JPDA [25] based methods. However,
a limitation of their work is that it can process and produce fixed size of input and output. In contrast,
we propose a new method based on a bi-directional LSTM that sequentially processes inputs so that it
is able to handle arbitrary-size data association problems. The proposed network is comprised of two
parts: encoder and decoder. The encoder is a fully connected network with several layers that learns
a feature representation of inputs (the position and size of detection bounding box). The decoder is
a bi-directional LSTM that can deal with the input sequence of variable size and help to learn from
such data.

As new detection responses are received at every frame, we have two sets (i.e., a set of detections
and a set of existing tracks) to arrange an input to the network. Then, the input of our network is
formed by concatenating a detection with an existing track as illustrated in Figure 1b. All possible pairs
of detection-to-track at current frame and false alarm for each detection compose a sequence of inputs
(a batch of training set). The sequence is consumed by the encoder. Each encoder is a fully connected
network with several layers and produces encoded vectors that are sequentially used as inputs to
the decoder of our network. The decoder is a bi-directional LSTM with a projection layer solving
the association problem for each input in the sequence. Specifically, at the training time, it outputs a
sequence of association results by classifying each input into either positive or negative assignment,
while at the test time, it outputs a sequence of scores by measuring the quality of the association for
each input. The sequence is reshaped to form an association (score) matrix. In Figure 1, an example of
the training samples and architecture of the proposed network are described. We show the input pairs
(rectangles and arrows) in Figure 1b to clearly specify the data flows. The proposed network is trained
using generated samples, by using the ground-truth annotation of a Stanford Drone Dataset (SDD) [1].
We detailed training process in Section 3.2. Finally, the proposed network for data association is used
for MOT. The detailed explanation of the MOT algorithm is given in Section 4.2.

(a) (b)

Figure 1. This figure illustrates an example of training sample and model architecture of the proposed
deep neural network: (a) rectangles are detection bounding boxes in current video frame and each
curved arrow represents an existing track; (b) each encoder takes bounding boxes of both detection
and history of existing track. Then, the decoder reads encoded vectors one by one to generate the
association matrix which is fed into the loss layer. The rectangles and arrows in bracket refer to the
input pairs in training sample. The same symbols in parentheses after the encoder show their origin
(this figure is best viewed in color).
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Contributions of this paper are as follows: (1) We propose a new deep neural network that
can the solve association problem with arbitrary-sized inputs; and (2) we tested the proposed MOT
algorithm based on the deigned deep neural network with the real-world datasets, e.g., SDD [1] and
MOTChallenge [26]. The proposed network solves data association problems at every frame while it
simultaneously produces trajectories. We argue that the result achieves an accuracy comparable to
previous works that are similar to ours i.e., data association methods based on deep neural networks
which do not exploit the appearance cue. (3) The experiment demonstrates that the proposed network
achieves considerably high accuracy as the binary classifier for the assignment tasks.

The remainder of this paper is organized as follows. In Section 2, we review relevant previous
works. The detailed explanation of the proposed method is given in Section 3. In Section 4, we state the
implementation details and report the experiment results. Finally, we conclude this paper in Section 5.

2. Related Works

MOT algorithms are largely classified into two categories: an offline method and online method.
In literature, the offline method is getting popular due to superior performance compared to the online
method. The offline method takes a sequence of frames as its input. Then, data association for a batch
of frames is solved by various optimization algorithms, e.g., network flow [13], shortest path [12,14],
linear programming (LP) [27], and conditional random field (CRF) [28]. However, delayed outputs
and complexity of the NP-hard (non-deterministic polynomial-time) problem limit its application for
real-time requirements.

On the other hand, the conventional approaches based on stochastic filtering such as JPDA [18]
and MHT [21] are recently revisited and produce good results due to the good detection quality.
Rezatofighi et al. [25] propose an efficient approximation of JPDA to relax the combinatorial complexity
in data association. Kim et al. [21] demonstrate that the MHT framework can be extended to include
online learned appearance models, resulting in performance gains.

The solution of data association problem described above is obtained by optimizing the objective
function. Accordingly, it is required to define an explicit model (e.g., appearance model and motion
model) to compute the objective function. Our work is inspired by a series of deep neural
network based detection and tracking of multi-objects [24,29–31] for the design of objective function.
Hosang et al. [29] proposed a learning based non-maximum suppression using a convolutional neural
network. The designed network takes bounding boxes of detection responses as input and output
exactly one high scoring detection per object. The loss function penalizes double detections for one
object during the training procedure. They proposed the GossipNet (Gnet) that jointly processes
neighbouring detections so the network has necessary information to report whether an object was
detected multiple times. Vinyals et al. [30] propose Pointer Network (Ptr-Net) that provides solutions
for three different combinatorial optimisation problems (e.g., convex hull, Delaunay triangulation and
the traveling salesman problem). Variable sized inputs are allowed in Ptr-Net. Milan et al. [31] present
the end-to-end learning approach for online multi-object tracking using recurrent neural network
(RNN). They test their method on real world dataset, MOTChallenge [27], but the performance is
inferior to other existing methods. In addition, one drawback of their method is that objects are tracked
independently ignoring interactions among objects because they compute the state estimation and
data association for one object at a time. The closely related work with ours is [24]. In [24], the solution
of combinatorial problems (e.g., marginalisation for data association, feature point matching and the
traveling salesman problem) is approximated with an LSTM network. However, their method has one
important limitation that it works only on the fixed input and output size.

In practice, the size of data association problem varies with respect to the number of detections
and objects that change over time. To handle this issue, we consider a data association problem for a
sequence of inputs (a batch) and propose a network to process it sequentially. Hence, our method can
learn to solve the data association problem with variable size. Furthermore, we designed our network
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to consider the context of a sequence when it outputs an association score by using the bi-directional
LSTM to exploit future and past information [32].

3. Problem Formulation

Let us briefly recap the data association problem of MOT. Data association is a key component of
MOT with tracking-by-detection strategy that is used for detection-to-track or detection-to-detection
association. Here, we consider association between two sets, i.e., a set of detections Mk at time k and a
set of existing tracks Nk−1 at time k− 1. For notational simplicity, the time index k is omitted when
no confusion arises. Then, the data association problem is to find correspondences between elements
in the two sets representing which detection is generated from which track, while maintaining the
one-to-one assignment constraints [33]. The one-to-one constraint is due to the assumption that one
object can generate at most one detection. The solution of this problem is described by an association
matrix whose elements are logical (binary) variables. The association matrix is usually designed to cope
with false positives and false negatives. Thus, the shape of the matrix is (|M|+ |N|)× (|M|+ |N|).
Specifically, the top-left |M| × |N| logical values of the matrix indicate whether the assignment of
corresponding detection-to-track pair is made. Similarly, elements of the last |M| columns show the
occurrences of false positive for each detection, and the bottom |N| rows are used for indications of the
missed detection for each track. Therefore, any solution of the problem is a permutation of the binary
matrix satisfying the constraints.

In this paper, the original association matrix is modified by discarding all rows of the missed
detections and by collapsing the columns of false positives into a single column (the last column).
The size of the original data association matrix can be reduced by introducing an inequality constraint
of one-to-one mapping between the existing track and the detection and removing redundant entries
of lower part of the matrix. Thus, each row of this last column be δm which describes whether
the m-th detection in M is a false positive. Then, the modified association matrix, Z, is shaped
|M| × (|N|+ 1). Consequently, the solution of modified association matrix always satisfy following
modified assignment constraints:

∑
n∈N∪δm

zm,n = 1, ∀m ∈ M,

∑
m∈M

zm,n ≤ 1, ∀n ∈ N,

zm,n ∈ {0, 1},

(1)

where zm,n ∈ Z is 1 if m-th detection and n-th track are positive assignment; otherwise, it is set to
0. Note that, in the constraints (1), the false positive of each detection is resolved with the column
δM (the column for false positives) while missed detection of each track is resolved with inequality.
In addition, this smaller matrix helps us use the graphic memory efficiently.

Therefore, the solution of the data association problems is a permutation of the binary matrix
satisfying the constraints (1). The solution can be found by computing the maximum assignment set
using the score matrix S by maximizing the total score of the assignment task. The score matrix S
has the same shape as Z and each element represents an association score of corresponding elements.
We show the prediction of our trained network is readily acceptable as the score matrix in Sections 4.1
and 4.2 since the network is trained to learn the association matrix. Specifically, we maximize the total
assignment score over the space of feasible solution of Z subject to the constraints (1):

max
Z

∑
m∈M

∑
n∈N∪δm

sm,nzm,n, (2)

where sm,n ∈ S is a score of the pair m-th detection and n-th track; in other words, it measures how
likely the detection is generated from the track. Once the score matrix is given, the optimization
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problem of Equation (2) subject to the constraints (1) can be solved in polynomial time, for instance
using either the binary integer programming (BIP) or the Hungarian algorithm [24,33].

3.1. Model

The proposed network consists of two parts: encoder and decoder (Figure 1). The encoder is
the fully connected neural network with several layers. An input of each encoder is a set of pairs
of bounding boxes (detection and track/false-positives). Let dm be the m-th detection in M and xn

be the n-th existing track in N. dm is a vector containing the spatial information (bounding boxes)
and the detection confidence. xn consists of a number of detections, i.e., the last K detections of the
object from K previous frames. Then, detection dm and track xn are concatenated and reshaped as a
vector to form an input to the encoder. In Figure 1b, the notation [·, ·] represents the concatenation
operator. The possibility of false positives of given detection is also considered by feeding [dm, 0] to
the encoder. [dm, 0] concatenates the detection dm with zero vectors. A batch of the training set is
constructed consisting of all possible detection-to-track pairs including the false positives for each
detection at the frame. Then, the encoder processes a whole batch one at a time and consequentially
generates |M| × (|N|+ 1) encoded vectors. For now, let us |Z| = |M| × (|N|+ 1). For consistency,
these |Z| encoded vectors are sequentially processed by the decoder in the form of the association
(score) matrix from left-top to right-bottom.

The decoder of a proposed network consists of a bi-directional LSTM (bi-LSTM) [34,35] and
a projection layer on top of the bi-LSTM. The output of decoder is the association (score) matrix.
At the training time, the association matrix is used for calculating the loss of the network (Figure 2).
The forward LSTM (LSTMF) and backward LSTM (LSTMB) in the bi-LSTM are implemented as in [35].
The encoded vectors em,n from the encoder are read by the both LSTMs in two directions, LSTMF for
positive direction (left-top to right-bottom of the association matrix) and LSTMB for negative direction
(right-bottom to left-top of the matrix) as

−→
h i,
−→
C i =LSTMF(em(i),n(i),

−→
h i−1,

−→
C i−1),

←−
h i,
←−
C i =LSTMB(em(i),n(i),

←−
h i+1,

←−
C i+1),

(3)

where m(i) and n(i) are functions that determine the equivalent row number and column number of
the i-th element in the matrix, respectively, and i = 1, 2, ..., |Z|. For instance, m(j) = 1 and n(j) = j,
if 0 < j ≤ |N| + 1 and j ∈ N. h is the hidden state (after the output gate) and C is the cell state.
Note that the recursion for LSTMF starts from i = 1 while LSTMB starts from i = |Z|. Moreover,
we learn the initial hidden state (

−→
h 0 and

←−
h |Z|+1), and cell state (

−→
C 0 and

←−
C |Z|+1) using the encoded

vectors as

−→
h 0 =

←−
h |Z|+1 = tanh (Wh · ē + bh),

−→
C 0 =

←−
C |Z|+1 = tanh (Wc · ē + bc),

ē =
1
|Z|

|Z|

∑
i=1

em(i),n(i),

(4)

where Wh, bh, Wc and bc are parameters to be trained. The learned initial states are used for both
forward and backward LSTMs. We use averaged encoded vector to learn an initial hidden state for
LSTMs since it can help to access information of entire inputs at the beginning of decoding procedure.
In addition, as introduced in [32,36], the bi-LSTM has an ability to exploit future and past information
when it computes the current input. This consideration of information flow in two directions is useful
because each association result in the sequence is correlated, i.e., not independent from each other.
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Figure 2. Decoder of the proposed network. Computed hidden states of both forward and backward
LSTM are concatenated and inputted to projection layer. Each projection layer outputs an association
score of corresponding input.

Finally, the concatenation of the forward and backward hidden states, [
−→
h i,
←−
h i], is fed into the

projection layer. The projection layer is the fully connected network with several layers where the
output of the last layer whose dimension is 1-by-1 is activated by a hyperbolic tangent function. At the
training time, the outputs of the projection layers are input into the loss layer as an association matrix,
i.e., the solution of given sequence. In Section 4, we specify the architecture of a proposed model with
the encoder in Table 1 and the decoder in Table 2, respectively.

Table 1. The architecture of the encoder.

Layer Type Input Output Activation

1 fully-connected |dm| × (K + 1) 128 ReLU
2 fully-connected 128 128 ReLU
3 fully-connected 128 64 tanh

Table 2. The architecture of the decoder.

Layer Type Input Output Activation

4, 5 bi-LSTM 64 128 −
6 fully-connected 128 64 ReLU
7 fully-connected 64 1 tanh

3.2. Training Proposed Network

To train our network, we have generated training samples from the annotation (ground truth) of
the Stanford Drone Dataset (SDD) [1]. The dataset has sixty video sequences in total and each sequence
is 6–7 min long in average. We use fifty video sequences to generate training samples and use the
remaining sequences for testing purposes. The annotated objects are not just pedestrians, but also
bicyclists, skateboarders, cars, buses, and golf carts. Among them, the pedestrian class is used to
generate samples. A single training sample is made up of all combinations of detection-to-(track/false
positive) assignments at the frame, i.e., a data association problem at the frame. In Figure 3,
two examples of training sample at a certain frame are displayed. A detection set M for training is
formed with a subset of true detections (ground truth) in the frame and plus randomly generated
false positive detections. We simulate missed detection by randomly discarding true detections.
The discarding probability is determined by 1− PD, where PD is probability of detection and the
number of false positives (alarm) is the Poisson distribution with mean of λFA. The existing track set
N is formed with tracks (objects) from the previous frame. An element in N is a track history of an
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object that consists of the last K detections of the object in the past. Some detections in the track history
are also discarded according to the discarding probability (1− PD). Then, a sequence of assignment
problems with the two sets is labeled by a set L, where lm,n ∈ L is 1 if a pair (m, n) is a positive
association. Otherwise, it is −1 (negative association), where m ∈ M and n ∈ N ∪ δm. For example,
if m-th detection in M is a true false positive, then lm,δm is 1, and, consequently, all other lm,· are −1
due to the constraints (1).

The loss, L, of our network is weighted mean-squared error (MSE) between labels and predictions
of our model. Since every detection is associated only once, the number of negative associations is
larger than that of positive associations. To balance the loss, we set weight wm,n to |L

− |
|L+ | if lm,n is a

positive association; otherwise, wm,n is set to one. |L−| and |L+| are the number of negative associations
and the number of positive associations in the label set L, respectively. In Equation (5), we show the
mathematical expression of the loss of our model (L):

L =
1
|Z|

|Z|

∑
i=1

wm(i),n(i)(am(i),n(i) − lm(i),n(i))
2,

wm(i),n(i) =

{
|L− |
|L+ | , if lm(i),n(i) = 1

1, otherwise
,

(5)

where am(i),n(i) is the i-th prediction of our model. Therefore, at the training time, our model learns the
association matrix, i.e., the solution of given data association problem.

Figure 3. Two examples of training samples. Yellow rectangles are the false positive detections; greens
are the true detections. Existing tracks are denoted by blue lines. Note that, since the track length is set
to 5 (K = 5), they seemed rather short.

4. Results

We demonstrate the efficacy of our network on two experiments. First, we compute the precision
and recall to show how accurately our network classifies the positive and negative associations. Second,
we apply the data association results from our proposed network for tracking of multiple objects on
real-world datasets. The performance of tracking results is reported in both CLEAR-MOT [37] and
ID-Measure [38] metrics.

The details of the implementation and the hyperparameters of our network are as follows:
to construct training and test samples, a detection dm is defined as a vector (x, y, u, v, w, h, b), where
(x, y) is the coordinate of left-top, (u, v) is the coordinate of right-bottom, (w, h) is the size of bounding
box and b is the detection confidence. The coordinates, width and height are normalized to the
range [0, 1] with respect to the image dimension. For the false positive detections, b is uniformly
distributed between (0, 1), whereas, for the true detections, b is assumed to be normally distributed as
b ∼ N (b; µ, σ2), with mean µ = 0.8 and standard deviation σ = 0.1. The length of track history K is
set to 5. For both the training samples and test samples, PD is set to 0.97 and λFA is set to 60.
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In Tables 1 and 2, we show the architecture of the encoder and the decoder, respectively.
The encoder consists of three fully connected layers with size 128, 128 and 64 for each layer, respectively.
The activation function for first two layers is ReLU (Rectified Linear Unit), while the hyperbolic tangent
function is used for the third layer. In Table 1, |dm| is the size of dm. We use the bi-directional LSTM of
size 128 for the decoder. Then, the projection layer consists of two fully connected layers with size 64
and 1, respectively. The hyperbolic tangent function is applied for activation of the last layer and ReLU
is used for the first layer. The learning rate is set to 0.001 and is decreased by 5% every 3000 iterations.

4.1. Performance Analysis

In this section, we analyze the performance of our network. We regard each prediction in a
sequence as the result of binary classification. Specifically, at test time, our network outputs a sequence
of association scores of all detection-to-(track/false positive) pairs in a test sample, and we use
thresholding these scores at different points to obtain a precision–recall (PR) curve across all test
samples. The precision is the fraction of the reported true association that are correct, while the
recall is the fraction of the true association that are found. In addition, we also report the receiver
operating characteristic (ROC) curve. The PR and ROC curves are illustrated in Figure 4. It is
known that the PR curve gives a more informative picture of the performance of the algorithm if
there is a large skew in class distribution [39]. In both Figure 4a,b, the yellow curves are drawn
from detection-to-false-positive assignments, i.e., (m, δm) while the green curves are generated with
detection-to-track assignments, i.e., (m, n), n ∈ N. The cyan curves are produced from all samples,
i.e., (m, n), n ∈ N ∪ δm. The distribution of positive associations is very different from each assignment
subset. Specifically, the percentage of positive associations in detection-to-false-positive assignments
is about 90.9% while the percentage of positive associations in detection-to-track samples is about
1.5%. This is because many false alarms exist in samples due to the high λFA as well as we collapse
|M| columns for false positives into a single column (δM). Accordingly, in Figure 4b, the ROC curve of
yellow shows that the predictions of detection-to-false-positive assignments contain fairly many false
positives. Nevertheless, ROC curves of cyan and green are close to ideal performance due to its ability
of rejecting negative associations. The PR curve shows that the performance of our algorithm achieve a
promising result. In Figure 4a, we achieve average precision (AP) of 0.90 in whole test samples. The AP
of detection-to-track samples is 0.89, whereas that of detection-to-false-positive samples is 0.90.

(a) (b)

Figure 4. (a) precision–recall curve; (b) receiver operating characteristic curve.

4.2. Multi-Object Tracking Using a Proposed Network

To demonstrate the benefits of the proposed network, we test the proposed network for data
association in multiple objects tracking (MOT). Training of our network is done offline and no further
online training is required. Thus, for the MOT task, the loss layer of the network is removed and
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the output (prediction) of the network is considered to be the score matrix. Furthermore, our tracker
does not exploit either the future information or the batch processing, i.e., our tracking system is an
online tracker. We use a subset of the matrix (the detection-to-track elements of the score matrix)
for data association since many false alarms reside in detection-to-false-positive assignments as
we noted in the previous Section 4.1 (Figure 4b). Once the network computes the score matrix,
the best assignment in terms of the score is found using the Hungarian algorithm, which satisfies the
one-to-one constraint. Note that, in this case, the constrains for detections in Equation (1) is changed
to ∑n∈N zm,n ≤ 1, ∀m ∈ M. Since the predictions of our network generated by a certain threshold
sometimes conflict with the constraints, it is inappropriate to use the output with simple thresholding
as the association matrix. A new track is initiated with a detection that is not associated with any
existing track. Termination of a track is done if a track misses D consecutive frames. We also remove
tracks whose lengths are not longer than threshold T.

For this task, the performance of trackers is mainly evaluated by the CLEAR-MOT [37]. In addition,
we also report the ID-Measure [38]. MOTA (Multiple Object Tracking Accuracy), for which higher
accuracy is better, combines three error sources: false positives, missed targets and identity switches,
to show the tracker performance. MOTP (Multiple Object Tracking Precision), for which higher is better,
is the misalignment between the ground truth and the predicted bounding boxes. MT (Mostly tracked
targets), for which higher is better, is the ratio of ground-truth trajectories that are covered by a
tracker for at least 80% of their respective life span. ML (Mostly lost targets), for which lower is
better, is the ratio of ground-truth trajectories that are covered a tracker for at most 20% of their
respective life span. IDsw (identity switch), for which lower is better, is the total number of identity
switches. Frag (Fragmentation), for which lower is better, the total number of times a trajectory is
fragmented. FP (false positives) and FN (false negatives) are the total number of false positives and
negatives (missed targets), respectively. IDP (ID precision), for which higher is better, is a fraction
of computed detections that are correctly identified. IDR (ID recall), for which higher is better, is a
fraction of ground-truth detection that are correctly identified. IDF1 (ID F-score), for which higher
is better, is a ratio of correctly identified detections over the average number of ground-truth and
computed detections.

The processing time of our network is dependent on the size of input sequence, which is equal
to |M| × (|N|+ 1). On the SDD dataset, we found that our tracker takes about 500 ms (about two
frames per second) when the length of input sequence is 2140, which is the maximum sequence
length of the dataset. For the MOTChallenge dataset, the average processing speed is about 172.8 fps
(frames per second) while the average sequence length of the dataset is around 42.5. The experiments
are performed on the machine with Intel i7-7700K processor, 16 GB RAM and one NVIDIA GTX 1080ti
GPU. In addition, our algorithm is implemented with PYTHON and TensorFlow (version 1.4).

4.2.1. Stanford Drone Dataset

We first track multiple objects on the Stanford drone dataset (SDD). For this experiment, we set
parameters as D = 3 and T = 10, respectively. We also report the performance of a Kalman Filter (KF)
tracker as a baseline method. We implement the KF tracker with a linear model [40] algorithm. To track
multi-objects with the KF tracker, existing tracks are associated with newly received detection using the
Hungarian algorithm after the assignment cost matrix is computed using Euclidean distance between
tracks and detections (in this case, the minimum cost will be found). The same track initiation and
termination is used as ours. We further report the tracking method of [1], which is a modified version
of [41] and solves the MOT problem with a Markov Decision Process (MDP). In [1], they replaced the
linear motion model with their social forces model. In addition, we show the result of [2] which jointly
reasons on multiple cues (appearance, motion, interaction cues) over a specific period of time using
LSTMs. Note that [2] with multiple cues is the method that produces the second best performance on
the test set of a MOTChallenge dataset (Section 4.2.2). In this experiment, the performance of tracking
results is measured by the CLEAR-MOT [37] and ID-Measure [38]. In Table 3, the reported results are
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aggregated over all video sequences in the testset. The percentage of Rcll, Prcn, MT and ML are shown
in Table 3 to match with the tracking results from [1,2]. Since references [1,2] do not share the detection
input, both our method and KF tracker take different input from theirs. The large gap (21.9%) between
ours and [1,2] in MOTA might result from the difference of detection inputs. However, the highest
MOTA score of our method indicates the excellence of the tracker that uses a proposed data association
method. Furthermore, our method produces better results than KF trackers for all metrics except the
MOTP because our method constructs trajectories by merely linking detections at each frame without
any prior motion. Since a KF tracker corrects the trajectory after the measurement update stage, which
results in precise localization, it achieves 2.1% more than ours in MOTP. Our method recovers most of
the life span of objects, and consequently it achieves the best performance in terms of mostly tracked
objects (MT) in addition to not producing any mostly lost objects (ML). Examples of the qualitative
results of our method are shown in Figure 5.

Table 3. The results on the stanford drone dataset (SDD). The first three columns are for the ID-Measure
and the remaining columns are for the CLEAR-MOT. The boldface represents the best score.

Tracker IDF1 IDP IDR MOTA MOTP Rcll Prcn MT ML

[1] - - - 75.6 78.2 86.1 92.6 60.0 23.2
[2] - - - 82.9 80.3 92.3 95.3 85.0 15.2
KF 90.0 90.0 90.0 96.4 90.6 98.2 98.2 95.5 3.6

Ours 90.5 90.3 90.6 97.5 88.5 99.0 98.7 98.9 0.0

Figure 5. Examples of the qualitative results of multi-object tracking using proposed network on SDD.
(Left) coupa sequence; (Right) gates sequence.

4.2.2. MOTChallenge

We further test our data association network by tracking pedestrians on MOTChallenge
dataset [26]. Before testing our network on the dataset, we tried fine-tuning the model using training
samples of MOTChallenge dataset. However, we confirm that the fine-tuning does not improve the
tracking performance on the validation set (for the fine-tuning task, we isolate the validation set from
training set). Accordingly, we keep using the model trained with SDD. We believe that the small size
of training samples makes the training procedure difficult.

The MOTChallenge dataset consists of 22 video sequences which are separated into 11 sequences
for training and 11 sequences for testing. In all videos, tracking is performed using publicly available
detections. Sequences in the dataset are very different from each other, such as view point, target
motion, camera motion and person density. These variations make the dataset more challenging.
In addition, the annotations of the testing sequences are not released and the evaluation of the testset
is performed on a server (https://motchallenge.net/results/2D_MOT_2015/). We use the training
set to find the best parameter for the tracking task, i.e., D and T, by accomplishing higher MOTA as
possible. This might lead our tracker to suffer from the precision and FP on the training set (precision
and FP are related to each other). On the other hand, however, our tracker makes good scores in the

https://motchallenge.net/results/2D_MOT_2015/
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recall and FN as it achieves high MOTA at the same time. This shows the strong point of our method
that our network tends to associate true detections more frequently than false positive detections. It is
underpinned by the outstanding classification performance in Section 4.1. We set D and T to 1 and 10,
respectively. In Tables 4–6, performance of our tracker is generated with D = 1 and T = 10.

In Table 4, we compare the tracking results on the training set with other baseline methods [25,31]
which are related to us. As noted in [25,31], the methods use the same strategy of track
initiation/termination, which is similar to our approach mentioned in Section 4.2.1. Note that,
in Table 4, all methods including ours only use the spatial information, e.g., detection bounding
boxes, but not exploit any other information, e.g., the appearance cue. Both RNN_HA and RNN_LSTM
are the online trackers with the same learned motion model using RNN (recurrent neural network),
but the difference between them is the data association method [31]. Ref. [25] is the offline tracker
unlike [31] and ours. In Table 4, our tracker achieves the best score in terms of MOTA, which is the
main criterion of the MOTChallenge.

Table 4. The results on the MOTChallenge training dataset.

Tracker MOTA MOTP Rcll Prcn MT ML FP FN IDsw Frag

JPDA [25] 23.5 69.0 30.6 81.7 7.6 69.6 2728 27,707 109 380
RNN_HA [31] 24.0 68.7 37.8 75.2 10.0 53.4 4984 24,832 518 963

RNN_LSTM [31] 22.3 69.0 37.1 73.56 10.0 52.0 5327 25,094 572 983

Ours 28.8 72.3 44.2 75.7 14.6 51.6 5663 22,284 452 802

Table 5. The results on the MOTChallenge test dataset.

Tracker MOTA MOTP MT ML FP FN IDsw Frag fps

AP_HWDPL_p [42] 38.5 72.6 8.7 37.4 4005 33,203 586 1263 6.7
AMIR15 [2] 37.6 71.7 15.8 26.8 7933 29,397 1026 2024 1.9

JPDA [25] 23.8 68.2 5.0 58.1 6373 40,084 1365 1716 32.6
EAMTTpub [43] 22.3 70.8 5.4 52.7 7924 38,982 833 1485 12.2
RNN_LSTM [31] 19.0 71.0 5.5 45.6 11,578 36,706 1490 2081 165.2

RMOT [44] 18.6 69.6 5.3 53.3 12,473 36,835 684 1282 7.9
SMOT [45] 18.2 71.2 2.8 54.8 8780 40,310 1148 2132 2.7

Ours 22.5 70.9 6.4 61.9 7346 39,092 1159 1538 172.8

We show the tracking results on the test set in Table 5 (the date of submission: 21 September
2018). All results in Table 5 are generated using the public detection set as an input. The first two
rows are the top two competitors [2,42] on the leader board sorted by MOTA that exploit not only the
spatio-temporal cues but also the appearance (visual) cues. We gather trackers (including ours) that
are not using any appearance cue on the following rows for fair comparison. The margins in MOTA
score between first two rows and the others might results from the existence/absence of the visual
information. The visual information of the MOTChallenge dataset is an important information since all
targets of the dataset are pedestrians. Human also tracks people by discriminating person-of-interest
from others using their appearance. However, since there are many applications that can not utilize
such features, e.g., cell or animal tracking, making a good tracker only with spatio-temporal cues
is also an importance line of research. In Table 5, Our network performs favourably compared to
the other methods using spatio-temporal cues ([31,43–45]) and even comparable to [25] which is the
offline tracker. Our tracker demonstrates the best processing speed by achieving 172.8 fps. In addition,
even if our tracker suffers from the FP on the training set (Table 4), it overcomes the limitation on
the test set (Table 5). Specifically, the FP of our tracker is even lower than that of RNN_LSTM in
Table 5. This confirms that our tracker is good at rejecting unlikely detection-to-track assignment as
we mentioned in Section 4.1. We also add Figure 6 to show qualitative results of our proposed network
for MOTChallenge dataset.
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(a)

(b)

(c)

Figure 6. Some examples of the qualitative results of multi-object tracking using the proposed network
on the test set of MOTChallenge dataset. From the left to the right, (a) TUD-Crossing sequence:
the results are sampled at frame 30, 42 and 54, respectively; (b) PETS09-S2L2 sequence: the results are
sampled at frame 352, 360 and 368, respectively; (c) ADL-Rundle-1 sequence: the results are sampled at
frame 221, 231 and 241, respectively. The color of each bounding box indicates the person identity.

Furthermore, to clearly show the power of our method, we compare ours with AMIR15(M + I) and
AMIR15(M). The full implementation of [2], i.e., AMIR15, uses multiple cues, namely the appearance
(A), motion (M), and interactions (I), while AMIR15(M + I) is limited to use motion and interactions.
Likewise, AMIR15(M) is limited to use only the motion cue. We conduct this experiment on a subset
of the training set to match with the experiment in [2]. We follow the same rule as in [2] to compose
the subset. In Table 6, the results show that the performance of our method is even better than that of
AMIR15(M + I) if [2] do not use the appearance information. Note that the full implementation of [2]
(AMIR15) holds the second rank among all trackers in Table 5. The results clearly demonstrate that
our tracker that uses the spatial information (the position and size of detection bounding boxes) and
the detection confidence is outstanding.

Table 6. Comparison between ours and [2] without the appearance component.

Tracker MOTA MOTP MT ML FP FN IDsw

AMIR15(M) [2] 19.2 73.7 8.5 68.4 3312 15,023 313
AMIR15(M + I) [2] 22.0 73.8 9.8 52.1 2714 14,954 298

Ours 24.5 73.3 16.2 47.8 3473 13,177 141
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5. Conclusions

We have proposed a new deep neural network architecture that is able to solve the data association
problem of MOT. The proposed network consists of an encoder and decoder. The encoder takes the
spatial information and the detection confidence of both a detection and an existing track as an input.
It is a fully connected network with several layers while the decoder is a bidirectional LSTM with the
projection layer that outputs the association (score) matrix of a given input sequence. At the training
time, our model learns the association matrix, i.e., the solution of a given data association problem.
Once the training network is finished, the prediction of our network is considered the score matrix.
With the score matrix, the maximum assignment set with the maximal total score is found to solve
the data association problem for MOT. The experiments show that our proposed network achieves
outstanding results on assignment tasks. Furthermore, we show that it can accurately associate
detections across time to form trajectories of multiple objects.

For the future work, we plan to apply the convolutional neural network to the encoder in order
to capture the appearance feature of objects. In addition, we also have a plan to train our network
with more challenging datasets, such as a recent version of the MOTChallenge dataset [26,46] and
DukeMTMC dataset [38]. We will further investigate the online MOT framework, e.g., MHT [20–22],
in order to combine them with our method.
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