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Multiple Imputation of Missing Covariates in NONMEM and Evaluation
of the Method’s Sensitivity to η-Shrinkage

Åsa M. Johansson1,2 and Mats O. Karlsson1

Abstract. Multiple imputation (MI) is an approach widely used in statistical analysis of incomplete data.
However, its application to missing data problems in nonlinear mixed-effects modelling is limited. The
objective was to implement a four-step MI method for handling missing covariate data in NONMEM and to
evaluate the method’s sensitivity to η-shrinkage. Four steps were needed; (1) estimation of empirical Bayes
estimates (EBEs) using a base model without the partly missing covariate, (2) a regression model for the
covariate values given the EBEs from subjects with covariate information, (3) imputation of covariates using
the regression model and (4) estimation of the population model. Steps (3) and (4) were repeated several
times. The procedure was automated in PsN and is now available as the mimp functionality (http://
psn.sourceforge.net/). The method’s sensitivity to shrinkage in EBEs was evaluated in a simulation study
where the covariate was missing according to a missing at random type of missing data mechanism. The η-
shrinkage was increased in steps from4.5 to 54%. Two hundred datasets were simulated and analysed for each
scenario. When shrinkage was low the MI method gave unbiased and precise estimates of all population
parameters. With increased shrinkage the estimates became less precise but remained unbiased.
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INTRODUCTION

Missing data is a frequently encountered problem which
needs to be considered in all statistical analyses (1). The statistical
power is reduced with decreasing amount of data and it is
therefore important to retain as much data as possible. Various
imputation methods have been suggested to fill in missing values
in order to receive complete data sets. Since variables in the data
set might contain partly the same information (2), relationships
can be established between the observed and the missing data
and the imputations can be based on these relationships (3,4).
When the imputations are done only once (single imputation)
the completed data set will be analysed as if the imputed values
are the true ones, without taking the uncertainty in the
established relationships into account. Rubin suggests repeating
the imputations many times (multiple imputation), by sampling
from the predictive distribution of the missing data given the
observed data, and then analyse each completed data set and
combine the statistics considering the variability (5,6). There are
several MI methods available for handling missing data in linear
mixed effectsmodels (7–9) and the Journal of Statistical Software
give a survey of software implementations ofMImethods in their
December 2011 issue (10–15). However, so far there is only one
MI method available which can handle missing data in general
nonlinear mixed effects modelling (16).

Longitudinal clinical data are usually analysed with nonlin-
ear mixed effects modelling to characterize the pharmacokinetic
(PK) and/or pharmacodynamic (PD) properties of the investi-
gated treatment, where the fixed effects are the typical values in
the population and the random effects describe the between
subject parameter variability. The predictability of the models is
improved by inclusion of covariates, such as demographics and
physiological information, which explain some of the observed
between subject variability. Information about missing covariates
can be available in the observed covariates and in the dependent
variable (response variable) and proper imputations should
therefore be based on relationships established between these
variables (17–20). Since the model for the dependent variable is
nonlinearwithmultiple hierarchies of randomeffects it cannot be
used directly in the imputation model. Wu and Wu suggest a MI
method where the imputations are based on observed covariates
and individual parameter estimates (16). The individual param-
eter estimates contain information about the dependent variable
(21,22) and hence also about the missing covariates. With
decreasing information on the individual level in the data set to
be analysed, the individual parameter estimates will shrink
towards the estimates of the fixed effects (η-shrinkage) (23).
Shrunken individual estimates will affect the imputed values and
it is therefore important to investigate how this will influence the
final model. Wu and Wu implemented their MI method in a
hierarchical Bayesian setting while in this study the method was
implemented in a maximum likelihood model.

NONMEM (24) is the most widely used software in
nonlinear mixed effects modelling of PK/PD data. The objective
of this study was to implement the MI method presented by Wu
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andWu in NONMEMand to evaluate the method’s sensitivity to
η-shrinkage.

METHODS

The Multiple Imputation Method

General Model

LetN be the number of subjects in the study, independently
sampled from the study population, and let yi be a vector of the
observed dependent variable (e.g. measured concentrations) of
individual i (i=1,…,N). Then the general nonlinear mixed
effects model can be defined as

yi ¼ f ti; g xi; zi; θið Þð Þ þ h ti; g xi; zi; θið Þ; εið Þ ð1Þ
where f() is the vector function of the model, h() is the vector
function describing the residual error model, ti is a vector of the
independent variable (e.g. observation times) of size ni (number
of independent variables of individual i) and g() is a vector
function defining the relationship between the vector of discrete
design variables xi (e.g. dose), the vector of covariates zi (e.g.
weight), and the vector of individual parameters θi, of individual
i. The individual parameters of the ith individual deviate from the
population fixed effects θwith the randomeffects ηi (η∼N(0,Ω)),
where θ and ηi are vectors of size s and Ω is the s×s covariance
matrix describing the correlations between the individual
parameters. The diagonal elements of Ω are also referred to as
the between subject variabilities. In the residual error model εi
(ε∼N(0,Σ)) describes the deviation of the model predictions
from the observed values of the dependent variable, where εi is a
vector of size ni and Σ is the covariance matrix describing the
correlation between the ∑i¼1

N ni residual error parameters.

Missing Covariates

The number of observed covariates can vary from individ-
ual to individual. Suppose that p is the total number of
covariates intended to be observed according to the study
design and let p=q+r, where q is the number of covariates which
are completely observed for all individuals and r is the number
of covariates which are incompletely observed. Z is the N×p
matrix of all covariates intended to be observed and the ith row
of thematrix is the vector zi. TheZmatrix can be divided intoU
and V, where U is the N×q matrix containing the completely
observed covariates and V is the N×r matrix containing the
incompletely observed covariates. The ith row ofU is the vector
ui=(ui1,…,uiq) and the ith row ofV is the vector vi=(vi1,…,vir).B
is a binaryN×rmatrix that indicates which data inVare missing
(1=missing, 0=observed). The nonlinear mixed effects model in
Eq. 1 can be directly estimated if only the subjects inN for whom
all data are available are kept in the analysis or if zi is exchanged
to ui. Both scenarios imply that potentially informative data are
excluded from the analysis.

Imputation Model

Wu and Wu suggest the following four steps MI method
where the information available in the observed covariates and the
dependent variable is used to impute the values of the missing
covariates (16);

Step 1 Estimate the parameters in (1) without inclusion
of any covariates, alternatively only include
covariates in U. The model can then be written as

yi ¼ f ti; g xi; θ
0ð Þ
i

� �� �
þ h ti; g xi; θ

0ð Þ
i

� �
; εi

� �
ð2Þ

where θi
(0) is the vector (size s) of individual

parameters for individual i.

Step 2 Create an imputationmodel for themissing covariate
values given the observed covariates and the indi-

vidual parameter estimates (bθ 0ð Þ
i ) obtained from (2).

V ¼ k l U bθ 0ð Þ� �
D; e

� �
¼ k WD; eð Þ ð3Þ

where k is a matrix function describing the residual
error model (a regression model), l represents a
vector of sizeNwhich only contain ones (l=(1,…,1)),
W ¼ l U bθ 0ð Þ� �

is an N×(1+q+s) matrix with the
ith row wi ¼ 1; ui1;…; uiq;bθ 0ð Þ

i1 ;…;bθ 0ð Þ
is

� �
, bθ 0ð Þ

is an
N×s matrix with individual parameter estimates of
all parameters for all individuals, D is a (1+q+
s)× r matrix of parameters describing the
relationship between the observed covariates
in U and the individual parameter estimates inbθ 0ð Þ

with the partly missing covariates in V,
and e is an N×r matrix of residual errors e∼N
(0,Ξ) where Ξ is a covariance matrix describ-
ing the correlation between the residual error
parameters in e. All values in W and part of
the values in V are known which enables
estimation of the parameters in D and Ξ.

Step 3 The missing values in V are imputed by drawing m
independent samples of each missing value using
the model in (3) and the parameters estimated in
step 2. Note that the samples will be drawn from the
distributions defined by Ξ.

Step 4 Fit the model in (1) to the data in the m imputed
data sets and combine the estimates according to
the equations in (4) (6,19).

β
~¼ 1

m

X
γ¼1

m βb γð Þ

b
~¼ 1

m

X
γ¼1
m bb γð Þ þ mþ 1

m m−1ð Þ
X

γ¼1
m ð βb γð Þ

−β
~Þ2

ð4Þ

where β is a parameter in θ, Ω or Σ, β
~
is the

calculated estimate of β, eb is the calculated variance
associated with eβ , bβ jð Þ

is the estimate of β from
imputed data set γ (γ=1,…,m) and bb γð Þ

is the
estimate of b from the imputed data set γ.

Shrinkage

The individual estimates generated in step 1 can suffer from
η-shrinkage (23). The amount of shrinkage in the individual
estimates for a particular individual is dependent on the
magnitude of the variability of the residual errors (Σ), the
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number of observations of the dependent variable for that
individual and the informativeness of these observations (25).
An increasing shrinkage will decrease the apparent impact of
the partly missing covariate on the dependent variable. The
weakened relationship will then be incorporated in theDmatrix
where it is used to impute themissing values inV. The shrinkage
(sh) is evaluated by comparing the distribution of the individual
estimates (bη ) with the corresponding estimated distribution inbΩ for each parameter j ( j=1,…,s) using the empirical equation
in (5) (25,26).

shη j
¼ 1−

sd bηij

� �
bω j

ð5Þ

where sd bηij

� �
is the standard deviation of the N individual

estimates of parameter j and bω j is the square root of the jth
diagonal element in bΩ .

Multiple Imputation in NONMEM

Three NONMEM models were developed to adapt the
presented MI method to NONMEM syntax; a base model for

estimation of bθ 0ð Þ
, a regressionmodel for estimation ofD andΞ,

and an imputation model for imputing the missing values in V
and for fitting the model in (1) to the imputed data sets.
Information was transmitted from one NONMEMmodel to the
subsequent model(s) by printing the generated information in a
table file which was then used as input to the next model.

NONMEM data sets are constructed as matrices and
consist of data records (rows) and data items (columns) (24).
There is one data record for each event (e.g. dosing event or
sampling of dependent variable) occurring for each individual.
All events associated with an individual are assembled in the
consecutive data records of the matrix and the events are
ordered according to the time they occurred. All data records
contain the same number of data items. Data items which are
only measured once during a study (e.g. non time varying
covariates) are filled in so that all data records for an individual
contain the same value of that data item. The following
paragraph explains how the original NONMEM data set had
to be modified to enable MI in NONMEM, how the dataset
evolved when generated information was incorporated and how
the information in the data set was used during estimation of
parameters in the different NONMEMmodels.

The information in the binary matrix B was added to the
original data set as new data items. For all data records where
the partly missing covariate(s) was observed the corresponding
new data item was assigned zeros (0) and for all data records
where the covariate(s) was missing the corresponding new data
item was assigned ones (1). The new data set (data1) was used
as input to the base model. The individual parameter estimates

in bθ 0ð Þ
were obtained after fitting the base model (Eq. 2) to

data1. The estimates in bθ 0ð Þ
were added to data1 as new data

item(s) (same individual parameter estimate(s) in all data
records of an individual) and the extended data set (data2)
was generated and outputted from the base model. The file
data2 was used as input to the regression model. In the
regression model the data item of the partly missing covariate

functioned as the dependent variable and the corresponding
binary data item (which indicated when the partly missing
covariate was observed and when it was not) served as a missing
dependent variable data item. Only data records where the
dependent variable was observed (i.e. where the missing
dependent variable data item was ‘0’) was used during the
estimation of the regression model parameters inD andΞ. Note
that this step was executed for one covariate at a time which
yielded a D matrix of size (1+q+s)×1 and an e matrix of size
N×1 (i.e. D and e were column vectors). The estimated

parameters in D (bD ) and Ξ (bΞ ) were added to data2 as new
data items (same parameter estimates in all data records of all
individuals) and the extended data set (data3) was generated
and outputted from the regression model. The file data3 was
used as input to the imputation model. For each individual with
a missing covariate the missing values were imputed by using the

estimates in bD and bΞ together with the value(s) of the individuals’

observed covariate(s) and estimated individual parameter (bθ 0ð Þ
)

and by drawing (i.e. simulating) a random value from bΞ . The
model in (1) was fitted to the imputed data set directly in the
imputation model. The imputation step could be repeated by
drawing new random values from the residual error distribution.

The MI procedure was automated in PsN (version 3.5.3)
(27,28) and is available as the mimp functionality. The user can
choose number of imputations and there is a possibility to add
extra models which will be estimated between the base model
and the regression model. The mimp functionality can also be
used in a stochastic simulation and estimation (SSE) type of
setting and in that case a simulation model has to be provided.

Evaluation of the Multiple Imputation Method

An SSE analysis was applied to evaluate the implemented
MI method’s performance with respect to bias and precision in
population parameter estimates and to evaluate the method’s
sensitivity to η-shrinkage. Simulations and model analyses were
performed in NONMEM 7.1.2 facilitated with PsN 3.5.3. All
models were fitted to data using the first-order conditional
estimation algorithm, except the regression model in (3) which
was fitted using the first-order algorithm. Statistical analyses of
the data were completed in R 2.14.1 (http://www.r-project.org).

Population Model

A population pharmacokinetic (PK) model with constant
infusion at steady state was used for simulations and estimations.
A covariate effect was implemented on clearance (CL) and two
levels of the effect were investigated. The relative difference in
thefixed effect ofCLbetweenmales and females were 17 or 50%,
where females were assigned to have a lower CL thanmales. The
individual CL values were log-normally distributed around the
fixed effects with a random effect of 30% and the residual error
model was proportional with a random effect of 20, 50 or 70%.

Simulation of Covariates

Each data set consisted of data for 200 individuals. The
individuals were randomly assigned to be males (60%) or
females (40%) and their weights were simulated from truncated
log-normal distributions (lnN(85.1, 0.0329) for males and lnN
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(73.0, 0.0442) for females). The fixed and random effects of the
sex-specific weight distributions were estimated, prior to the
simulations, using an external dataset with 1,022 males and 423
females (29). The number of observations (i.e. concentration
measurements) simulated was either two for all individuals or
two for one third of the individuals and one for the remaining
two thirds (equally distributed between males and females). In
each data set 50% of the individuals were assigned to lack
information about the covariate sex according to a missing at
random type of missing data mechanism (1). The mechanism
gave a higher probability of missing sex with increasing weight,
e.g. the probability of missing information about sex was 27%
for an individual weighing 40 kg and 83% for an individual
weighing 145 kg. The proportion of males among the individuals
with observed sex was approximately 56%.

Multiple Imputation of the Missing Covariate

Individual estimates of CL were obtained from the base
model and the relationship between weight, the individual
estimate of CL and sex was estimated as a logistic regression
in the regression model. In the imputation model the missing
sexes were imputed by drawing (simulating) random values
from the uniform distribution [0, 1] and comparing these
values with each individual’s probability of being male given
by the logistic regression curve. When the drawn value was
lower than or equal to the estimated probability the missing
sex was imputed as ‘male’ otherwise ‘female’. After imputa-
tion the population model was fitted to the imputed data set.
The imputation followed by estimation was repeated six times
for each simulated dataset and the estimates reported were
calculated according to the equations in (4).

Simulation Study

A total of eight scenarios were investigated, where the
settings were altered to change the amount of information
available on the individual level in the simulated data sets
(Table I, columns 2–4). An SSE analysis was conducted where
200 data sets were simulated for each scenario. The data sets
were analysed using the MI method and, to enable a compar-
ison, they were also analysed using all data. The difference in
objective function values (ΔOFV) between the base model and
the model including the covariate effect was considered
approximately χ2-distributed and a decrease of at least 3.84 in
OFV when adding the covariate effect (one extra parameter)
was regarded as significant (p<0.05). η-shrinkage is theoretically
independent on number of individuals in the data set. However,
a greater number of individuals will reduce the uncertainty in
the estimates of θ andΩ and hence improve the precision of the
estimated η-shrinkage when calculated using the empirical
equation (Eq. 5) (25). The level of η-shrinkage was calculated
using Eq. 5 after simulating data for 10,000 individuals (6,000
males and 4,000 females) for each scenario and fitting the base
model to the data.

Comparison of Bias and Precision

The efficiency of the MI method was evaluated by
comparing the bias and precision in the estimated fixed and
random effects with the bias and precision received when all data

was used in the estimations. The bias was defined as the deviation
of the mean of the estimates from the true value and the relative
bias (RBias) was hence calculated as;

RBias eβh i
¼ β−βT

βT
ð6Þ

where β is the parameter (fixed or random effect), eβ is the
calculated estimate of β (see Eq. 4), eβ is the mean of the estimates
of β and βT is the true value of the parameter, i.e. the value used in
the simulation. A RBias <5% for the fixed effect parameters and
<10% for the random effect parameters was considered as no bias.

The precision was defined as the spread of the estimates
around the mean estimate (β ) of β and was evaluated by
calculating the relative standard deviation (RSD);

sd β
~h i

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

C−1

X
φ¼1
C β

~
φ−β

�� �2
s

RSD β
~h i

¼
sd β

~h i
β
�

ð7Þ

where sd is the standard deviation of the distribution of the
estimates and C is the total number of estimates, i.e. the
number of simulated datasets. A RSD <10% for the fixed
effect parameters and <20% for the random effect parame-
ters was considered as precise parameter estimates.

The RBias and the RSD were calculated for each
population parameter under each scenario investigated.
When all data were used to estimate the parameters the
RBias and the RSD were calculated as in (6) and (7) but the

estimates of β (bβ ) was used instead of eβ .
RESULTS

The individual estimates of CL, received after fitting the
base model to simulated data, was summarized in histograms
to show their distributions and overlap for the different
scenarios (Fig. 1). The η-shrinkage was calculated for each
scenario and the values are presented in Table I (column 5).

The RBias and RSD of the estimated fixed and random
effects are presented in Table I (RBias, columns 8–11; RSD
columns 12–15) and the bias and precision of the fixed effect
estimates of CL are visualized in box plots, showing the bias as
the deviation of themedian estimate from the true value and the
precision as the width of the box and the whiskers (Fig. 2). All
population parameters were unbiased under all scenarios. The
precision decreased with increasing shrinkage for both the fixed
effects and the BSV. For the scenarios with highest shrinkage,
i.e. scenarios 4 and 8, the precision of the fixed effect of CL for
females (CLfemale) was on the border of the predefined limit
(RSD, 10%). For all scenarios with increased shrinkage, i.e.
scenarios 2–4 and 5–8, the precision of the BSV was lower than
the predefined limit (RSD, 30–70%). For all tested scenarios the
MImethod gave similar bias and precision as when all data were
used in the analysis.

The percentage of data sets for which the covariate effect
was significant was calculated for each scenario and is reported
in the 7th column of Table I.
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DISCUSSION

The MI method, first presented by Wu and Wu (16), was
successfully implemented in NONMEM and automated using
PsN. The method had four steps and in the first step the
individual parameters were estimated from a base model
(Eq. 2). Wu and Wu suggest that this model should not
contain any covariates. However, covariates which are fully
observed and which are known a priori to be of importance
for the PK/PD (e.g. body weight in a pediatric study) can be
included in the base model to reduce the unexplained

differences between subjects and thus give a clearer signal
of the information available about the partly missing covariate.

Note that the vector bθ 0ð Þ
i is a function of the estimates of θ (bθ )

and the estimates of ηi (bηi ) and in the present example does not
include values of any covariates. For proper imputations it
is crucial to include at least as much information as will
be used in the final PK/PD model in the regression model
and that comprises the covariates used in the base model
and the information extracted from the dependent vari-
able in the base model. Since the imputations benefit from
inclusion of many descriptive variables, additional covariates

Fig. 1. Distribution of individual CL estimates received after fitting data for 10,000 individuals (6,000
males and 4,000 females) to the base model. The distribution of individual estimates for the females (light
grey) starts at the upper end of the distribution of individual estimates for the males (dark grey). The
panels present the distribution of the individual estimates for the different scenarios investigated

Fig. 2. Box-plots showing bias and precision of the estimated fixed effects of CL. The panels present the
results for the different scenarios and 200 data sets were simulated and thereafter estimated for each
scenario. The covariate sex was missing at random for 50% of the individuals and the multiple imputation
method (MI) was used to handle the missing data in the estimations, here compared with the results
received when no data was missing (All)
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may be advantageously included in the regression model (17–
20). The relationships between the descriptive variables and the
partly missing covariates in the regression model (Eq. 3) are
linear in the paper by Wu and Wu (16). Other relationships can
be tested with the implementation in NONMEM but caution
has to be taken against over parameterization of the model.
With the current notation inEq. (3) the residual error model can
only have one parameter. However, there is nothing preventing
a more advanced error model if there is information in the data
to support it. Moreover, a residual error model with one
homoscedastic (additive) and one heteroscedastic (proportional)
component would enable different types of errors for different
parameters. When data have been imputed for the missing
covariate valuesm times, them completed data sets are analysed
and the final parameter estimates are combined according to
(4) to obtain one set of final estimates (6,19). The random
effects in NONMEM are assumed to be normally distributed
and the estimates in Ω and Σ are point estimates of the
variances and covariances (24). Therefore it is valid to use the
equations in (4) to calculate the combined final estimates also
for these parameters.

The implemented method was evaluated for different
levels of η-shrinkage. The shrinkage was increased by
decreasing the amount of information on the individual level
in the simulated data sets, i.e. the residual error was increased
and/or the number of samples per individual in the data sets
was decreased. The method was also evaluated for small and
large covariate effects (17 and 50% difference in CL between
males and females). The distributions of individual estimates
of CL for males and females overlapped more with increasing
η-shrinkage but when the covariate effect was small the
overlap was large for lower shrinkage levels as well (Fig. 1,
top panel). That explains why the covariate was not found
significant in all data sets even when shrinkage was low
(Table I, column 7). The MI method gave similar results as
when all data were used in the analysis for all scenarios
tested, independent on covariate effect and η-shrinkage.
When the amount of information on the individual level
decreases and the individual estimates shrink towards the
fixed effects, the amount of information available in the
dependent variable about the partly missing covariate de-
crease. The MI method, which extracts information about the
partly missing covariate from the dependent variable, is hence
insensitive to η-shrinkage even though the individual esti-
mates, used in the imputations, suffer from shrinkage.

MI is a flexible method when it comes to advanced
relationships between variables and when more than one
variable is partly missing at a time. The implementation in PsN
makes MI readily accessible to people working in the field of
nonlinear mixed effects modelling of clinical data. However, with
the method as presently implemented in PsN, it is only possible
to impute missing values for one covariate at a time while other
software implementations of the MI methodology impute
missing data for all partly missing variables at the same time
(10–15). It is possible to extend the MI method presented in this
paper by adding extra regression models, one for each partly
missing covariate, and include all the established relationships in
the imputation model. The modelling procedure would not be
completely straight forward but no other software than NON-
MEM would be needed to analyse a data set with partly missing
covariate data using MI.

CONCLUSIONS

A MI method for handling of missing covariate data was
successfully implemented in NONMEM and automated in PsN.
Themethod gave unbiased parameter estimates independent on
level of η-shrinkage and the precision of the estimates are
comparable to those received when all data were used in the
estimations.
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