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The polarization of microglia/macrophage, the resident immune cells in the brain, plays
an important role in the injury and repair associated with ischemia-reperfusion (I/R).
Previous studies have shown that DJ-1 has a protective effect in cerebral I/R. We
found that DJ-1 regulates the polarization of microglial cells/macrophages after cerebral
I/R and explored the mechanism by which DJ-1 mediates microglial/macrophage
polarization in cerebral I/R. Middle cerebral artery occlusion/reperfusion (MCAO/R)
and oxygen and glucose deprivation/reoxygenation (OGD/R) models were used to
simulate cerebral I/R in vivo and in vitro, respectively. DJ-1 siRNA and the DJ-1-based
polypeptide ND13 were used to produce an effect on DJ-1, and the P62-specific
inhibitor XRK3F2 was used to block the effect of P62. Enhancing the expression of
DJ-1 induced anti-inflammatory (M2) polarization of microglia/macrophage, and the
expression of the anti-inflammatory factors IL-10 and IL-4 increased. Interference with
DJ-1 expression induced pro-inflammatory (M1) polarization of microglia/macrophage,
and the expression of the proinflammatory factors TNF-α and IL-1β increased. DJ-1
inhibited the expression of P62, impeded the interaction between P62 and TRAF6,
and blocked nuclear entry of IRF5. In subsequent experiments, XRK3F2 synergistically
promoted the effect of DJ-1 on microglial/macrophage polarization, further attenuating
the interaction between P62 and TRAF6.

Keywords: DJ-1, microglial/macrophage polarization, ND13, XRK3F2, P62, TRAF6-IRF5, ischemia-reperfusion
injury

INTRODUCTION

The inflammatory response after cerebral ischemia-reperfusion (I/R) is characterized by the
activation and polarization of resident microglia/macrophage (Badimon et al., 2020), whose
dynamic polarization state plays a dual role in brain injury and repair (Kanazawa et al.,
2017). Although there is controversy (Ransohoff, 2016), it is generally believed that after

Abbreviations: ND13, DJ-1-based polypeptide; XRK3F2, P62 inhibitor; TRAF6, TNF receptor factor 6; IRF5, interferon
regulatory factor 5; TNF-α, tumor necrosis factor-α.
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stroke, microglia/macrophage are polarized into the pro-
inflammatory (M1) phenotype and anti-inflammatory (M2)
phenotype (Yang et al., 2016). The pro-inflammatory phenotype
is characterized by the markers iNOS, CD86, CD16/32, and
CD40 (MacMicking et al., 1997; Taylor et al., 2005; Zhou et al.,
2017) and the secretion of the proinflammatory cytokines tumor
necrosis factor (TNF)-α, IL-1β and IL-6. M2 phenotype cells
express high levels of arginase 1 (Arg1), CD163, CD206, and
Ym1 (Laffer et al., 2019) and secrete the anti-inflammatory
cytokines IL-4 and IL-10 (Rosi, 2016). The anti-inflammatory
phenotype is detectable at 12 h, peaks at 1 d, and decreases after
3 d. The pro-inflammatory microglia is increased in the first
14 d after ischemic stroke (Perego et al., 2011, 2016). Although
inflammatory damage and microglia/macrophage phenotype
caused by cerebral I/R are dynamic, selective regulation of
microglial/macrophage polarization to the anti-inflammatory
phenotype may be a therapeutic strategy for treating ischemic
stroke (Xia et al., 2015; Ma et al., 2017).

Interferon regulatory factor 5 (IRF5) is a transcription
factor (Almuttaqi and Udalova, 2019; Jefferies, 2019) and is
currently defined as a key factor associated with the phenotype
of inflammatory microglia/macrophages (Mamun et al., 2018,
2020b; Corbin et al., 2020). IRF5 is activated by interacting
with MyD88 and TNF receptor-associated factor 6 (TRAF6)
(Krausgruber et al., 2011). After activation, IRF5 enters the
nucleus binds to the IFN-stimulated response element (ISRE)
to induce further IRF5 nuclear translocation and facilitate the
transcription of proinflammatory factors (Takaoka et al., 2005;
Lawrence and Natoli, 2011). Abdullah Al Mamun (Mamun et al.,
2018) confirmed that the IRF5 also mediates microglial activation
after stroke and suggested that microglia appears to have the same
IRF5 signaling mechanism as peripheral origin macrophages
(Mamun et al., 2020b). Downregulation of IRF5 signaling by
siRNA or conditional knockout (CKO) results in enhanced M2
activation, abrogated proinflammatory responses, and improved
stroke outcomes, whereas increased IRF5 expression enhances
M1 activation, exacerbates proinflammatory responses, and
worsens functional recovery (Mamun et al., 2020a). Therefore,
the TRAF6/IRF5 signaling pathway is crucial in regulating
microglial/macrophage polarization.

DJ-1 was identified as a causative gene for autosomal recessive,
encoded in a causative gene of familial Parkinson’s disease
(PARK7) (Bonifati et al., 2003). As a multifunctional protein,
DJ-1 is involved in a variety of signal transduction pathways,
including those associated with antioxidative stress, free radical
scavenging and mitochondrial homeostasis (Repici and Giorgini,
2019). Our previous study showed that DJ-1 negatively regulated
cerebral I/R inflammatory responses by promoting SHP-1 and
TRAF6 interactions (Peng et al., 2020). Researchers hypothesized
that DJ-1-deficient microglia exhibited increased cytotoxicity by
promoting the secretion of the proinflammatory cytokines IL-1β

and IL-6 (Trudler et al., 2014). This finding was consistent with
the conclusion of our previous research, in which we confirmed
that DJ-1 played a key role in neuroprotection in ischemic injury
(Peng et al., 2019). DJ-1 induced WT and DJ-1−/− bone-derived
macrophages polarization in sepsis mice (Amatullah et al., 2017).
iNOS protein levels were increased in wild-type (WT) and

DJ-1−/− bone marrow-derived macrophages (BMMs), whereas
Arg1 protein levels were decreased. Neuroprotective efficacy of
DJ-1 is reported to mediate thorough attenuating oxidative stress
(Yanagisawa et al., 2008; Yanagida et al., 2009), however, its role
in managing neuroinflammation is not reported yet.

P62 is a multifunctional protein that has recently been
shown to be involved in neurological disease. The abnormal
accumulation of P62 may lead to neuronal loss and pathogenesis
of neurodegenerative diseases (Watanabe et al., 2012; Song et al.,
2016; Liu et al., 2017). As a protective factor, DJ-1 can inhibit
the abnormal expression of P62 (Gao et al., 2012; Nash et al.,
2017). In addition, hypoxia promotes the degradation of P62
(Pursiheimo et al., 2009). After treatment with siRNA targeting
DJ-1, the human osteosarcoma cell line U2OS expressed a high
level of P62 during hypoxia for 16 h, which was not conducive
to P62 translocation (Vasseur et al., 2009; Lee et al., 2018). DJ-
1 overexpression plays a neuroprotective role in dopaminergic
neurons by clearing accumulated P62 (Gao et al., 2012). How DJ-
1 regulates the expression of P62 in cerebral I/R is inexplicably.
And its role in managing neuroinflammation is not reported yet.

In this study, we established cerebral I/R models
in vivo and in vitro to investigate the effects of DJ-1 on
microglial/macrophage polarization and the inflammatory
immune response. We found that DJ-1 promoted microglial
anti-inflammatory (M2) polarization and anti-inflammatory
cytokine secretion, and inhibited pro-inflammatory (M1)
polarization and proinflammatory cytokine secretion. DJ-1
regulated the level of P62. By blocking the interaction between
P62 and TRAF6, DJ-1 negatively regulated the levels of TRAF6
and IRF5 and impaired IRF5 nuclear translocation. Therefore,
DJ-1 participates in the protective effect of microglia/macrophage
on cerebral I/R.

MATERIALS AND METHODS

Experimental Animals, Cell Culture, and
Reagents
Healthy male adult Sprague–Dawley rats weighing 250 ± 10 g
were used for in vivo and were provided by the Animal
Experimental Center of Chongqing Medical University. Animals
were cared for in strict accordance with the Guide for the Care
and Use of Laboratory Animals (NIH Publication No. 85-23,
revised 1996). All experiments were approved by the Institutional
Animal Ethics Committee of Chongqing Medical University,
Chongqing, China. All measures were made to minimize animal
suffering. All the rats were housed under a 12 h light/dark cycle
with 23 ± 2◦C temperature and 60–65% humidity, and provided
free access to water and food. Before the MCAO operation,
fasting for 12 h, water prohibition for 4 h. To minimize animal
suffering, all rats were anesthetized by peritoneal injection with
1 ml/100 g of 3.5–4% chloral hydrate. During the operation,
aseptic operation was carried out. Sputum was cleared in time,
and the incision size was reduced as much as possible under
the condition of ensuring the surgical field of vision. During
postoperative anesthesia recovery, the animals were placed on
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37◦C thermostatic pad and covered with cotton cloth to keep
warm. The incision was closed and coated with antibiotics.
During the whole process, the animal’s breathing was stable and
the heart rate was normal. 24 h after MCAO/R, the rats were given
a blind evaluation using Zea-Longa Neurological Deficit Score
(Longa et al., 1989). When neurofunctional score below two, rats
in the model group were excluded.

The number of SD rats and groups used in the study were
as follows (Figures 1A,B): each experimental group contained 6
rats, and each experiment was repeated three times.

The highly aggressively proliferating immortalized (HAPI)
microglial cell line was a generous gift from Dr. Yixin LI. HAPI
cells were cultured in DMEM (high glucose, HyClone) with 10%
fetal bovine serum (FBS, Grand Island, NY, United States) and 1%
penicillin/streptomycin (Beyotime, Shanghai, China) in 5% CO2
at 37◦C.

The DJ-1 siRNA was designed and synthesized by Gene
Pharma (Shanghai, China) (sense primer: 5′-CCCAUUGGCUA
AGGACAAATT-3′ and antisense primer: 5′-UUUGUCCUU
AGCCAAUGGGTT-3′). The negative control siRNA without
any target sequence was also constructed (sense primer: 5′-UU
CUCCGAACGUGUCACGUTT-3′ and antisense primer: 5′-
ACGUGACACGUUCGGAGAATT-3′). Knockdown efficiency
of DJ-1 siRNA in rats was shown in Figures 1C,D.

ND13 is a DJ-1-based peptide synthesized by China Peptides
(Suzhou, China). The complete 20 amino acid sequence is
YGRKKRRKGAEEMETVIPVD, which includes a 13 amino acid
DJ-1-based sequence. The control peptide used was a scrambled
amino acid sequence peptide (13 amino acids in the opposite
order). XRK3F2 was purchased from MedChemExpress (HY-
112904, MCE, China) (Lev et al., 2015a).

Middle Cerebral Artery
Occlusion/Reperfusion Model, Treatment
With DJ-1 siRNA or ND13 and XRK3F2
Dosing
The Middle Cerebral Artery Occlusion/Reperfusion (MCAO/R)
surgical procedure was performed as described (Peng et al., 2019)
by our research center. After anesthetization by chloral hydrate,
a nylon monofilament (2838A5; Cinontech, Beijing, China. The
length is 45mm, head diameter is 0.38 ± 0.02 mm.) was inserted
into the middle cerebral artery through the left external carotid
artery for 1 h. Then, the nylon monofilament was removed for
reperfusion for 24 h. All rats were sacrificed, and the sham group
rats underwent the same surgery without MCAO.

The DJ-1 siRNA was obtained as described in our
previous studies (Peng et al., 2019) and administered by
intracerebroventricular injection into the left lateral cerebral
ventricle 24 h before MCAO. The coordinates for ICV injection
were: 1.0 mm posterior to the bregma, 2.0 mm from the midline,
and 3.5 mm beneath the skull surface. DJ-1 siRNA was dissolved
in DEPC at a final concentration of 3.3 µg/ul. Needles used for
ICV is a Hamilton microsyringe of 25 µl. In order to prevent
the backflow of the siRNA, injection of the siRNA liquid at rate
of 2 µl/min. When completed, the needle was kept for 10 min
and then withdrawn slowly. The injection hole was covered with

bone wax. The same volume of control siRNA was injected in the
same way as the control group. ND13 and the control peptide
were injected by the same method. We dissolved XRK3F2 in 10%
DMSO with 90% saline and injected the solution at a dose of
2.5 µg/µl (Figure 1B).

Laser Doppler Flowmeter
Changes in cerebral blood flow were monitored during MCAO
modeling by laser Doppler flowmeter (PeriFlux System 5000,
Perimed, China). Anesthetized rats were then fixed on the
locator to expose the cranial coronal and sagittal joints. The
anterior fontanelle is the origin of coordinates. The left 5 mm
of the anterior fontanelle and the back 3 mm are selected
for positioning. Secured the probe. The MCAO operation was
performed after LDF detection of stable blood flow. After the
embolus was inserted into the internal carotid artery into the
intracranial area, we observed a precipitous drop of blood
flow using LDF. A decrease of 70% was considered successful
(Figures 1E,F).

Oxygen and Glucose
Deprivation/Reoxygenation Treatment of
HAPI Cells
After expansion, HAPI cells were grown to 70–80% confluence,
subcultured, detached by trypsinization, and seeded into 10 cm
culture dishes at a density of 1.0∗106/ml. Normal cells without
any treatment were used as controls. The cells for the Oxygen and
Glucose Deprivation/Reoxygenation (OGD/R) experiment were
placed in glucose-free DMEM and in a tri-gas incubator for 4 h
with 1% oxygen, 94% N2 and 5% CO2. Then, the glucose-free
DMEM was replaced with normal culture medium (high glucose
DMEM containing 1% penicillin/streptomycin and 10% FBS) in
an incubator with 5% CO2 for 24 h.

Evaluation of Neurological Deficits
Measured neurofunctional deficits 24 h after MCAO/R. The rats
were given a blind evaluation using Zea-Longa Neurological
Deficit Score (Longa et al., 1989). This score follows a 5-point
scale. Briefly, 0: no neurological deficiency; 1: the inability to fully
extend left forepaw when held by tail; 2: animals circle to the
contralateral side while walking, but exhibit normal posture at
rest; 3: animals which lean to the injured side; and 4: animals
with no spontaneous locomotor activity and a depressed level
of consciousness.

Infarct Volume Measurement and
Hematoxylin and Eosin (HE) and Nissl
Staining
After MCAO/R, the animals were sacrificed. The entire brain
was quickly removed and frozen at −80◦C for 4 min. The
brains were cut into five 2 mm-thick sections, stained with 2%
2,3,5-triphenyltetrazolium chloride (TTC, Sigma, United States)
at 37◦C for 20–30 min, and fixed in 4% paraformaldehyde
at 4◦C for 24 h. The brain sections were photographed
and analyzed by ImageJ (version 6.0, NIH). The percentage
infarct volume was calculated by the following equation: [total
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FIGURE 1 | Experimental groups and protocol. (A) The numbers of SD rats used and the groups. (B) Experimental protocol schedule. (C,D) Knockdown efficiency
of DJ-1 siRNA in rats. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001; n = 6 per group. (E,F) Changes in cerebral blood flow were monitored during MCAO
modeling by laser Doppler flowmeter.

infarct volume – (ipsilateral hemisphere volume – contralateral
hemisphere volume)]/contralateral hemisphere volume× 100%.

After MCAO/R 24 h, taken the neurological examination, then
the animals were anesthetized with 3.5% chloral hydrate and
perfused with 4% paraformaldehyde. After fixation for 24 h, the
brain tissues were dehydrated, paraffin-embedded, cut into 5-µm

coronal sections. Paraffin brain sections were baked at 60◦C for
15 min, dewaxed, and washed by water.

For HE staining, the sections stained with hematoxylin for
5 min. Then the color was separated by 1% hydrochloric acid
alcohol for 25 s. Backed to blue for 30 s with 1% ammonia.
After stained with eosin for 5 min, dehydrated with increasing
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concentrations of alcohol, hyalinized with dimethyl benzene.
Finally sealed with neutral resin.

For Nissl staining, the sections stained by Nissl staining
solution (0.1% cresol purple) for 10 min, washed by double
distilled water for 1 min. Then dehydrated with increasing
concentrations of alcohol. After transparentized by xylene for
3 min, sealed with neutral resin (Peng et al., 2020). All the sections
were assessed the pathological changes by a microscope.

Double-Labeling Immunofluorescence
Staining
The prepared cell coverslips were warmed at room temperature
for 15 min. The cells were fixed with paraformaldehyde for
30 min and then washed with PBS. The cells were treated with
blocking buffer (5% BSA with 1% Triton X-100 in PBS) for
1 h at 37◦C (or 2h at RT), then incubated with IRF5 (1:100,
ab181553, Abcam) and HSP60 (1:100, EC0334, Elabscience)
primary antibodies overnight at 4◦C. Then, the sections were
incubated with fluorescein-labeled secondary antibodies at 37◦C
for 40 min. Antifade mounting medium containing DAPI was
used to cover the sections, which were observed with a laser
scanning confocal microscope.

Western Blot Analysis
Proteins from ischemic penumbral tissues and HAPI cells were
used for Western blot analysis. SDS-PAGE was performed,
and the resolved proteins were transferred onto polyvinylidene
fluoride (PVDF) membranes by electroblotting. The membranes
were blocked at Tris–buffered saline (TBST) containing 5%
non-fat milk powder for 2 h and then incubated with the
following primary antibodies overnight at 4◦C: Arg1 (1:500,
GTX109242, GeneTex), CD163 (1:500, WH112776, ABclonal),
iNOS (1:500, GTX130246, GeneTex), CD86 (1:500, WH141312,
ABclonal), P62 (1:200, WH146703, ABclonal), IRF5 (1:1000,
ab181553, Abcam), TRAF6 (1:200, sc-8409, Santa Cruz), IKKαβ

(1:200, BM4499, Boster), IL-10 (1:200, 20850-1-AP, Proteintech),
IL-4 (1:500, 66142-1-lg, Proteintech), TNF-α (1:200, YT4689,
ImmunoWay), and IL-1β (1:500, DF6251, Affinity). After
being washed with TBST 3 times, the membranes were
incubated with horseradish peroxidase (HRP)-conjugated goat
anti-rabbit/mouse secondary antibodies for 2 h at RT. β-actin was
used as a loading control. Immunoreactive bands were detected
by an enhanced chemiluminescence (ECL) detection system. The
gray values of the protein bands were quantified by Image Lab.

Coimmunoprecipitation Assay
For every Coimmunoprecipitation (Co-IP), the appropriate
amount of animal protein and cell lysates were mixed with
protein A/G beads (MedChemExpress, HY-K0202, United States)
in an ice box with gentle rotation for 4 h and then incubated
with TRAF6 antibody (1:200, Santa Cruz, sc-8409, United States)
overnight at 4◦C. After being washed 4 times with PBST,
the immunoprecipitates were separated using SDS-PAGE. The
products were transferred to PVDF membranes and subjected to
Western blot analysis with P62 antibody (1:50, ABclonal, A7758,
China) and ECL reagents.

Statistical Analysis
All data presented are representative of three independent
experiments, and statistical analysis was analyzed by GraphPad
Prism 8 and one-way analysis of variance (ANOVA) followed by
Tukey’s test for multigroup comparisons. A value of P < 0.05
indicated statistical significance.

RESULTS

DJ-1 Affects the Expression of
Microglial/Macrophage Polarization
Markers and Inflammatory Factors After
MCAO in Rats
To examine whether DJ-1 affects microglial/macrophage
polarization and participates in the inflammatory response,
we used ND13 (DJ-1 based peptide) (Glat et al., 2016; Molcho
et al., 2018; Miguel et al., 2020) and DJ-1 siRNA to produce an
effect on DJ-1 expression. Then, we measured the expression
of microglial cell marker proteins (pro-inflammatory markers:
iNOS and CD86; anti-inflammatory markers: Arg1 and CD163)
and the expression of inflammatory mediators by Western
blotting. The results showed that the expression levels of all
microglial/macrophage marker proteins (Arg1, CD163, iNOS,
and CD86) were significantly increased in the MCAO group
compared with the sham group (Figure 2A). After DJ-1 siRNA
treatment, the downregulation of DJ-1 resulted in increasing
of iNOS and CD86, compared with those of the MCAO group
(Figures 2A,E,F). However, the expression levels of Arg1 and
CD163 were significantly decreased (Figures 2A,C,D). After
treatment with ND13, the expression levels of iNOS and CD86
were decreased (Figures 2A,E,F), while the expression levels of
Arg1 and CD163 were increased compared with those in the
MCAO group (Figures 2A,C,D).

Moreover, we found that inflammatory factor expression
was significantly upregulated in the cerebral I/R injury group
compared with the sham group (Figure 2B). The production of
TNF-α and IL-1β (pro-inflammatory) in the DJ-1 siRNA group
was significantly increased (Figures 2I,J), while the levels of
IL-10 and IL-4 (anti-inflammatory) were significantly decreased
compared with those in the MCAO group (Figures 2G,H). After
ND13 treatment, the expression levels of TNF-α and IL-1β were
significantly lower (Figures 2I,J), while the expression levels
of IL-10 and IL-4 were higher (Figures 2G,H) than those of
the MCAO group. Inhibiting DJ-1 function led to increased
expression of pro-inflammatory microglia cells, and promoted
the secretion of pro-inflammatory cytokines as TNF-α and IL-
1β. But promoting DJ-1 function led to increased expression of
anti-inflammatory microglia cells, and enhanced the secretion of
anti-inflammatory cytokines as IL-4 and IL-10.

The Correlation Between DJ-1 and the
P62-TRAF6/IRF5 Pathway After Cerebral
I/R in Rats
DJ-1 exerts a neuroprotective effect (Vasseur et al., 2009; Glat
et al., 2016). We examined whether DJ-1 regulates the expression
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FIGURE 2 | DJ-1 regulates the expression of microglial polarization markers and inflammatory factors. (A,C–F) Western blot analysis of the expression of the
microglial markers Arg1, CD163, iNOS, and CD86. (B,G–J) Western blot analysis of the cytokines IL-10, IL-4, TNF-α, and IL-1β. *p < 0.05, **p < 0.01,
***p < 0.001, ****p < 0.0001; n = 6 per group.

of P62, TRAF6, IRF5, and IKKαβ after cerebral I/R. The level
of P62 were significantly decreased after DJ-1 siRNA treatment
but increased after ND13-treated, compared with the MCAO
group (Figures 3A,C,D). The interaction between TRAF6 and
P62 was enhanced after MCAO, but weakened after ND13
treatment (Figures 3B,E. Data in vitro was unshown.). Compared
with those of the sham group, the expression levels of TRAF6,

IRF5 and IKKαβ (Figures 3F–I) were significantly increased
after MCAO. Interestingly, P62, TRAF6, and IRF5 levels were
further increased after DJ-1 siRNA treatment; the changes in the
expression of these proteins in the ND13 group showed a marked
decline compared with those of the MCAO group. However,
compared with that of the MCAO group, the level of IKKαβ was
decreased in the DJ-1 siRNA group and upregulated after ND13
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FIGURE 3 | The correlation between DJ-1 and the P62-TRAF6/IRF5 pathway after cerebral I/R. (A,C,D) Western blot analysis of DJ-1 and P62 expression in rats.
(B) DJ-1 affects the interaction between P62 and TRAF6 after cerebral I/R in rats. (E) Quantification of (B) P62 Co–IP intensity normalized to TRAF6 IP (compared to
sham). (F–I) Western blot analysis of TRAF6, IRF5, and IKKαβ expression in rats. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001; n = 6 per group.

treatment (Figures 3F,I). Based on these results, we hypothesized
that DJ-1 regulated the TRAF6-IRF5 pathway.

To verify whether DJ-1 plays a protective role in I/R
through P62, we injected the P62-specific inhibitor XRK3F2. In
Figure 4C, the neurological deficit scores of rats treated with
ND13 were decreased, compared with those of the MCAO group.

This was further improved with XRK3F2. Then, we examined
the differences in cerebral infarcts between each group by TTC
staining and analyzed the morphological changes by HE and Nissl
staining. As shown in Figures 4A,B, after I/R, the infarcted area
increased significantly. After treatment with XRK3F2, the infarct
volume was significantly decreased compared with that of the

Frontiers in Cell and Developmental Biology | www.frontiersin.org 7 December 2020 | Volume 8 | Article 593890

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-08-593890 December 11, 2020 Time: 21:1 # 8

Wang et al. DJ-1 Regulates Microglial Polarization

ND13 group. HE staining (Figure 4D) showed that compared
with the sham group, the MCAO group exhibited obvious
edema and looser tissue space. The neurons in the infarcted
area were dense, and the perinuclear mass was concentrated and
stained deeply. After treatment with ND13, the lesions described
earlier were alleviated. When P62 was inhibited by XRK3F2,
the injuries showed further improvements. The Nissl staining
results (Figure 4D) were similar to those of HE staining. In the
sham group, the neurons were neatly arranged and dense, the
cell bodies were large and blue-stained, and Nissl bodies were
abundant; after MCAO, the neuronal arrangement was disrupted,
the nucleolus disappeared, the vacuoles changed, and the number
of Nissl bodies decreased significantly. After treatment with
ND13, the vacuole-like changes and nuclear shrinkage were
reduced. XRK3F2 further attenuated brain damage after MCAO.

DJ-1 Affects Microglial/Macrophage
Polarization and the Expression of
Cytokines Through P62 After Cerebral
I/R
P62 is a multifunctional protein that has recently been shown to
be involved in neurological disease. To determine whether DJ-
1 regulates microglia/macrophage polarization through P62, we
used the P62-specific inhibitor XRK3F2 to inhibit the function of
P62. As shown in Figures 5, 6, ND13 increased the expression
of Arg1 and CD163 and reduced the expression of iNOS and
CD86. Compared with ND13 treatment, P62 inhibitor treatment
further increased the expression of CD163 and Arg1 and further
decreased the expression of iNOS and CD86 in vivo (Figures 5A–
D) and in vitro (Figures 6A–D). We then evaluated whether
DJ-1 affects the expression level of cytokines after stroke through
P62. ND13 increased the expression levels of IL-10 and IL-4 and
decreased the expression levels of TNF-α and IL-1β (Figures 5E–
H, 6E–H). After combined treatment with XRK3F2 and ND13,
the expression levels of IL-10 and IL-4 were higher and the
expression levels of TNF-α and IL-1β were lower than those of the
ND13 group in vivo (Figures 5E–H) and in vitro (Figures 6E–H).
These results suggest that DJ-1 regulates microglia/macrophage
polarization and the inflammatory response after cerebral
I/R through P62.

DJ-1 Regulates the TRAF6/IRF5 Pathway
Through P62 After Cerebral I/R
We investigated whether DJ-1 regulates the TRAF6-IRF5
molecular pathway through P62. P62 inhibitors XRK3F2 further
weakened the association of P62 and TRAF6 after I/R both in vivo
(Figures7A,B) and in vitro (Figures 8A,B). ND13 enhanced the
ability of DJ-1 to remove P62 and inhibited the expression of
TRAF6 and IRF5 compared with those of the MCAO group
(Figures7C–F). After treatment with XRK3F2, P62 decreased
significantly. P62 inhibition decreased TRAF6 and IRF5 levels.
After ND13 treatment, the IKKαβ level was significantly higher
than that in the MCAO group, but after treatment with the
P62 inhibitor, the expression of IKKαβ decreased significantly
compared with that in the ND13 group. We observed similar
results in vitro (Figures 8C–F).

We assessed IRF5 expression by double-labeling
immunofluorescence analysis. IRF5 was expressed in the
cytoplasm of HAPI cells, and a small amount was expressed
in mitochondria (Figure 8G). After OGD/R, the number of
IRF5-positive cells and the intensity of the positive signal
increased significantly, and colocalization with the nucleus
(DAPI) increased. This finding indicated that IRF5 expression
increased after cerebral I/R. Enhanced DJ-1 activity by ND13
administration decreased the expression of IRF5. After treatment
with XRK3F2, the number of IRF5-positive cells continued to
decrease, as did the intensity of the positive signal. DJ-1 reversed
the effect of IRF5 nuclear transport. Specific inhibition of P62
further enhanced this effect.

DISCUSSION

In the present study, we demonstrate that DJ-1 plays a
protective role in the brain by regulating microglial/macrophage
polarization and the inflammatory response after stroke. DJ-1
promoted microglial anti-inflammatory (M2) polarization and
inhibited pro-inflammatory (M1) polarization. DJ-1 promotes
the secretion of anti-inflammatory cytokines (IL-4 and IL-10) and
inhibits the secretion of pro-inflammatory cytokines (IL-1β and
TNF-α). The DJ-1-based polypeptide ND13 robustly reduced P62
levels. ND13 weakened the interaction between P62 and TRAF6,
and inhibited IRF5 expression and nuclear translocation. These
effects were enhanced by P62 inhibition. Therefore, DJ-1 plays
an anti-inflammatory and neuroprotective role in promoting
anti-inflammatory (M2) microglial/macrophage polarization in
cerebral I/R injury, possibly by mediating the TRAF6-IRF5
pathway via P62 (Figure 9).

ND13 is a newly discovered polypeptide that consists of 13
DJ-1-derived amino acids and 7 TAT-derived amino acids (Glat
et al., 2016; Molcho et al., 2018; Miguel et al., 2020). ND13
has been reported to alleviate dopaminergic system dysfunction
in a Parkinson’s disease model (Longa et al., 1989). ND13
significantly improved motor function in mice in a stroke model
(Molcho et al., 2018), protected cells from oxidative stress,
improved survival, and exerted a neuroprotective effect against
SIN-1-induced neurotoxicity (Miguel et al., 2020). However,
whether ND13 has a similar effect in cerebral I/R model has
not been reported. In this study, to evaluate the role of DJ-1
in ischemic reperfusion injury, we measured the differences in
microglial/macrophage polarization and cytokines’ levels. ND13
increased the expression of the M2 markers Arg1 and CD163,
and the levels of the anti-inflammatory cytokines IL-4 and IL-
10. In comparison, siRNA-induced DJ-1 knockdown increased
the expression of the M1 markers iNOS and CD86 and the
levels of IL-1β and TNF-α. It is worth mentioning that IL-
10 inhibits the production of proinflammatory cytokines in
microglia, protects against excessive inflammation (Ledeboer
et al., 2002; Orihuela et al., 2016) and is an important mediator
that regulates the interactions between microglia, astrocytes and
neurons (Lobo-Silva et al., 2016). IL-4 promotes neurological
recovery by activating selectively microglia (Ransohoff, 2016).
IL-4 can induce downstream processes with anti-inflammatory

Frontiers in Cell and Developmental Biology | www.frontiersin.org 8 December 2020 | Volume 8 | Article 593890

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-08-593890 December 11, 2020 Time: 21:1 # 9

Wang et al. DJ-1 Regulates Microglial Polarization

FIGURE 4 | DJ-1 may protect against cerebral I/R injury through P62. (A,B) TTC staining and infarct volume in the brain. n = 6 per group. (C) Neurological scores.
*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001; n = 9 per group. (D) HE staining and Nissl staining.

effects, such as Arg-1 upregulation (Lee et al., 2016; Liu et al.,
2016; Lively et al., 2016; Pepe et al., 2017). The release of
anti-inflammatory cytokines is beneficial for repairing neuronal
damage. In brief, the level of DJ-1 is important for changes in

microglial/macrophage polarization and leads to the reversal of
the inflammatory response after stroke.

DJ-1 regulates binding of the molecular chaperone HSPA5
to P62 through the ZZ domain, resulting in conformational
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FIGURE 5 | DJ-1 affects microglial polarization and the expression of cytokines after cerebral I/R in rats through P62. (A–D) Western blot analysis of microglial
markers in rats. (E–H) Western blot analysis of cytokine levels in rats. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001; n = 6 per group.
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FIGURE 6 | DJ-1 affects microglial polarization and the expression of cytokines after cerebral I/R in HAPI cells through P62. (A–D) Western blot analysis of microglial
markers in HAPI cells. (E–H) Western blot analysis of cytokine levels in HAPI cells. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001; n = 6 per group.
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FIGURE 7 | DJ-1 regulates the TRAF6-IRF5 pathway through P62 after cerebral I/R in rats. (A) DJ-1 affects the interaction between P62 and TRAF6 after cerebral
I/R in rats. (B) Quantification of (A) P62 Co–IP intensity normalized to TRAF6 IP (compared to sham). (C–F) Western blot analysis of P62, TRAF6, IRF5, and IKKαβ

levels in rats. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001; n = 6 per group.

changes and activation of P62 (Lee et al., 2018). In MN9D
cells with DJ-1 overexpression, the sizes of the P62-positive
puncta decreased. This finding indicates that DJ-1 inhibited the
expression of P62 (Lev et al., 2015b). P62 is an N-terminal binding
protein that binds to type 1 and type 2 N-terminal degraders (N-
degrons), including arginine (NT-Arg). Both types of N-degrons
bind to their ZZ domains. The structural characteristics of the
ZZ domain include the C2H2 zinc finger motif, which induces

conformational changes (Cha-Molstad et al., 2017; Kwon et al.,
2018). The ZZ zinc finger domain of P62 is known to be the
binding site for the RING finger protein TRAF6 (Sanz et al.,
2000; Islam et al., 2018). In our study, we used XRK3F2, an
inhibitor of the P62-ZZ domain, to inhibit P62. The expression
of DJ-1 was not affected, while the interaction between P62 and
TRAF6 was weakened after blocking P62. This effect may be due
to the inability of TRAF6 to effectively bind to P62. P62 interacts
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FIGURE 8 | DJ-1 regulates the TRAF6-IRF5 pathway through P62 after cerebral I/R in HAPI cells. (A) DJ-1 affects the interaction between P62 and TRAF6 after
cerebral I/R in HAPI cells. (B) Quantification of (A) P62 Co–IP intensity normalized to TRAF6 IP (compared to control). (C–F) Western blot analysis of P62, TRAF6,
IRF5, and IKKαβ levels in HAPI cells. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001; n = 6 per group. (G) DJ-1 regulates IRF5 nuclear translocation after
cerebral I/R. Immunofluorescence was used to measure IRF5 expression in HAPI cells, and HSP60-labeled mitochondria were used as a reference. Original
magnification, ×400. IRF5 expression was observed by confocal fluorescence microscopy and is shown by green fluorescence. HSP60 expression is shown by red
fluorescence. The cell nuclei were stained with DAPI. The arrow indicates IRF5 nuclear translocation.
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FIGURE 9 | Mechanisms of DJ-1 regulating microglial/macrophage
polarization. DJ-1 regulates microglial polarization in cerebral I/R. DJ-1 inhibits
the expression of P62 and affects the interaction of P62-TRAF6. DJ-1
regulates the TRAF6/IRF5 signaling pathway through P62.

with TRAF6 and activates nerve growth factor-induced NF-κB
(Wooten et al., 2005; Nakamura et al., 2010; Schimmack et al.,
2017). Our results showed that DJ-1 blocked the expression of
the proinflammatory cytokines TNF-α and IL-1β by affecting the
binding of P62 to TRAF6. However, it is not clear that P62 and
TRAF6 undergo conformational changes and docking through
their structural domains, which is a point we will study later.

IRF5 plays a central role in regulating microglia/macrophage
phenotypes (Krausgruber et al., 2011; Almuttaqi and Udalova,
2019) and is activated by interacting with MyD88 and TRAF6
(Balkhi et al., 2010; Hedl et al., 2016). In M1 macrophages,
IRF5 interacts with TRAF6 and is necessary to activate IRF5
transcriptional activity, thereby facilitating the transcription
of many proinflammatory mediators. IRF5 phosphorylation
requires IKKβ and TRAF6. IKKβ is an IRF5 kinase that activates
IRF5 in vitro and in cells. Serine phosphorylation of IRF5 requires
IKKβ (Ren et al., 2014). IKKβ and IRF5 may crossregulate

the phosphorylation of each other (Ren et al., 2014). We
observed that in the cerebral I/R model, DJ-1 inhibited the
expression of TRAF6 and IRF5 and IRF5 nuclear translocation.
Microglia/macrophage that lacked IRF5 was significantly biased
toward anti-inflammatory (M2) polarization. Proinflammatory
cytokine production in pro-inflammatory (M1) macrophages
were blocked. DJ-1 facilitated anti-inflammatory (M2) microglial
polarization by regulating TRAF6-IRF5.

In our study, we found that the level of IKKαβ was
decreased by interfering DJ-1 effect, and upregulated after
ND13 treatment, compared with that of the MCAO group.
But after treatment with the P62 inhibitor, the expression
of IKKαβ decreased significantly compared with that in the
ND13 group. It was different from our expectation. It was
reported that in the cerebral hemorrhage model in rats, both
DJ-1 and p-IKK peaked 24 h after intracerebral hemorrhage
(ICH). After selective knockout of DJ-1, the levels of DJ-1
and its downstream target p-IKK decreased (Xu et al., 2019).
The activation of NF-κB depends on two pathways: the classic
pathway through IKKβ and the alternative pathway through
IKKα. The two activation pathways may overlap and crossover
(Duran et al., 2008; Hinz and Scheidereit, 2014). When P62
is inhibited, TRAF6 ubiquitination, IκB phosphorylation, and
ubiquitination regulation are disordered, which may cause
activation of other signal transduction pathways. IKKα, IKKβ,
and IKKγ (known as the regulatory subunit NEMO) together
form the IKK complex. The three subunits crosstalk with each
other in structure and function to enrich their abilities to regulate
biological functions (Hinz and Scheidereit, 2014). However, the
IKK used in our research includes the IKKα + IKKβ complex.
We will further examine how DJ-1 regulates IKKα, IKKβ, and
IKKγ specifically.

In summary, our findings further confirm that DJ-1 modulates
microglial/macrophage polarization against the inflammatory
response after stroke. DJ-1 is beneficial for blocking P62
and inhibiting the TRAF6-IRF5 pathway. Although there
are controversial understandings on microglia/macrophage
polarization state (Miron et al., 2013; Ransohoff, 2016), the
neuroprotective mechanism of DJ-1 in cerebral I/R needs
to be further investigated. Our results suggest that polarized
microglia/macrophage need to be evaluated carefully for their
potential use as anti-inflammatory targets in stroke therapy.

CONCLUSION

DJ-1 regulates microglial polarization through P62 to play
a neuroprotective role in cerebral I/R. DJ-1 blocks the
P62-TRAF6 interaction to negatively affect the TRAF6/IRF5
signaling pathway. DJ-1 may be a therapeutic target for
cerebral injury repair.
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