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Cetuximab-modified mesoporous 
silica nano-medicine specifically 
targets EGFR-mutant lung cancer 
and overcomes drug resistance
Yuetong Wang1,2,3, Hsin-Yi Huang1,2,3, Liu Yang1,2,3, Zhanxia Zhang1,2,3 & Hongbin Ji1,2,3,4

Drug resistance to tyrosine kinase inhibitor (TKI) is the main obstacle for efficient treatment of 
epidermal growth factor receptor (EGFR)-mutant lung cancer patients. Here we design a cetuximab-
capped mesoporous silica nanoparticle (MP-SiO2 NP) as the drug carrier to specifically target EGFR-
mutant lung cancer cells and efficiently release loaded drugs including doxorubicin and gefitinib. 
This innovative nano-medicine can specifically target lung cancer cells with high EGFR expression 
rather than those with low EGFR level. Treatment of a gefitinib-resistant cell line derived from PC9 cell 
(PC9-DR) with the gefitinib-loaded cetuximab-capped MP-SiO2 NP showed a significant inhibition of cell 
growth. Moreover, this nano-medicine successfully suppressed the progression of PC9-DR xenograft 
tumors. This tumor suppression was due to the endocytosis of large amount of nano-medicine and the 
effective gefitinib release induced by high glutathione (GSH) level in PC9-DR cells. Collectively, our 
study provides a novel approach to overcome EGFR-TKI resistance using cetuximab modified MP-SiO2 
NP, which holds strong potential for effective management of EGFR-mutant lung cancer.

Lung cancer is the leading cause of cancer-related death worldwide1. Extensive studies have identified a number 
of oncogenic driver mutations which can serve as therapeutic targets. One of the most successful examples is 
the kinase domain mutants of epidermal growth factor receptor (EGFR)2. Previous reports demonstrated that 
deregulation of EGFR was frequently associated with non-small cell lung cancer (NSCLC)3,4. There are mainly 
two categories of targeted drugs for EGFR. One is EGFR-targeted tyrosine kinase inhibitors (TKIs), including 
gefitinib (GEF) and erlotinib. The other is the anti-EGFR monoclonal antibody, such as cetuximab (CET) and 
panitumumab5,6. However, drug resistance to these therapeutic reagents is the main obstacle to the successful 
targeted therapy in clinic7,8.

In recent years, the mesoporous SiO2 nanoparticle (MP-SiO2 NP) attracts substantial interest due to its unique 
properties, such as high drug-loading capability from their large surface area and pore volume, facile tuning of 
the particle size over a broad range, specific targeting through modifying or bioconjugating the particle sur-
face, and high biochemical and physicochemical stability9. These properties of MP-SiO2 NP were implemented 
to develop new drug delivery systems10,11, catalysts12,13 and imaging materials14,15. Specifically, the capping of 
the pores which include entrapped substrates with stimuli-sensitive units enables the gating of the pores by the 
signal-triggered “unlocking”, and the controlled-release of the entrapped substrates. Different stimulus, such as 
pH16,17, redox reagents18–20, photonic signals21,22, and enzymes23,24 were established as the triggers to unlock the 
functional gates. Recently, the stimuli like glutathione (GSH), was implemented to unlock the pores via cleaving 
the disulfide bonds25. For example, cyclodextrin-gated, polyethylene glycol-coated MP-SiO2 NP exhibited an 
efficient GSH-mediated doxorubicin (DOX) release in cancer cells26. Moreover, it was also reported that the cap-
ping with the EGFR antibody CET resulted in specific targeting to cancer cells with high EGFR level27. Similarly, 
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another report showed gold nanoparticle coated with CET can target to pancreatic adenocarcinoma with EGFR 
overexpression28.

Here, we developed the cetuximab-capped MP-SiO2 NP as the drug carrier to specifically target EGFR-mutant 
lung cancer cells and efficiently release loaded drugs including doxorubicin and gefitinib. Our data showed that 
this modified nano-medicine can overcome EGFR-TKI resistance and holds therapeutic implication for effective 
management of EGFR-mutant lung cancer.

Results and Discussion
First, we synthesized the MP-SiO2 NP according to previous report29. To trace the intracellular MP-SiO2 NP, we 
labeled these nano-particles with fluorescein isothiocyanate (FITC). The surface of the MP-SiO2 NP was function-
alized with 3-mercaptopropyltriethoxysilane (MPTES) to introduce the mercapto-groups (Fig. 1a). High resolu-
tion transmitting electronic microscopy (HRTEM) image showed that the size of spherical MP-SiO2 NP was about 
100 nm, and the channels of the MP-SiO2 NP were well-organized (Fig. 1b). Nitrogen adsorption-desorption iso-
therms indicated that the MP-SiO2 NP possessed relatively high specific surface area (887.9 m2/g), well-defined 
pore size (2.5 nm), and appropriate pore volume (0.92 cm3/g) (Fig. 1c).

To assess the potential application of MP-SiO2 NP, the toxicity of MP-SiO2 NP was examined in Beas2B  
(an immortalized human normal lung epithelial cell line) and PC9 (a human EGFR-mutant lung cancer cell line) 
cells. As depicted in Fig. 2a, MP-SiO2 NP showed toxicity to Beas2B and PC9 cells only in a concentration higher 
than 0.5 mg/ml. Therefore, we used the MP-SiO2 NP at a concentration lower than 0.5 mg/ml for further studies. 
We characterized the efficacy of MP-SiO2 NP’s endocytosis in both cell lines. As shown in Fig. 2b, the fluorescence 
of FITC (from MP-SiO2 NP) were observed in the cytoplasm of both Beas2B and PC9 cells, demonstrating that 
the MP-SiO2 NP had the capability to enter cells through endocytosis. We then loaded the chemotherapeutic 
agent DOX, which had intrinsic red fluorescence, to MP-SiO2 NP. We observed red fluorescence in the nucleus 
of both cells treated with DOX-loaded MP-SiO2 NP through microscope. Through flow cytometry analyses, we 
detected stronger signal for the red fluorescence in cells treated with DOX-loaded MP-SiO2 NP in contrast to free 
DOX (Fig. 2c).

We further investigated the viability of Beas2B and PC9 cells treated with free DOX or DOX-loaded MP-SiO2 
NP. Treatment of DOX-loaded MP-SiO2 NP resulted in a significantly higher inhibition of both Beas2B and PC9 
cell proliferation than free DOX, despite of comparable DOX concentration (Fig. 2d,e). These results suggested 
that the MP-SiO2 NP had a higher drug delivery capability and DOX-loaded MP-SiO2 NP possessed the better 
therapeutic effect. This might be due to the different ways for these reagents to enter cells, e.g., MP-SiO2 NP 
entered cells via endocytosis whereas free DOX through diffusion. In this aspect, endocytosis seemed more effi-
cient for carrying high amount of DOX in contrast to simple diffusion through cell membrane30,31. Together, these 
data demonstrated that the MP-SiO2 NP is a safe and efficient drug-carrier for treatment.

Figure 1. Synthesis and characterization of spherical mesoporous SiO2 nanoparticles (MP-SiO2 NP).  
(a) Synthesis process of fluorescein isothiocyanate (FITC)-labeled and mercapto-functionalized MP-SiO2 NP. 
(b) Transmission electron microscopy (TEM) image of synthesized MP-SiO2 NP. The diameter is about 100 nm, 
scale bar: 50 nm. (c) N2 adsorption-desorption isotherms of MP-SiO2 NP. The specific surface area (BET 
analysis) is 887.9 m2/g. The pore size (BJH analysis) is 2.5 nm.
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Based on this, we further designed a nano-medicine using the GSH to mediate the drug release (Fig. 3). 
We first loaded mercapto-functionalized MP-SiO2 NP with the therapeutic reagents including DOX and GEF. 
We then capped the channels of MP-SiO2 NP with the EGFR antibody CET as targeting agent NP through the 
cross-linking of disulfide bond. We estimated that the amount of assembled CET was approximate 1.6 mg/ml. 
Through the binding of CET to EGFR on cell surface, MP-SiO2 NP could be endocytosed and the capped drugs 
could be released through the cleavage of disulfide bond via the interaction with high GSH level in cytoplasm of 
cancer cells.

Indeed, our data showed that the release of DOX from the pores of MP-SiO2 NP could be controlled by GSH 
(Fig. 4a). As the concentration of GSH increased, the absorbance spectra of the released DOX were intensified 
(Fig. 4a). In the presence of 1 mM GSH, the absorbance intensity increased with time, and reached saturation 

Figure 2. Biocompatibility and drug delivery of MP-SiO2 NP. (a) Toxicity testing. Relative cell survival of 
Beas2B and PC9 cells with and without MP-SiO2 NP treatments. Bars represent mean ±  SEM (n =  4).  
(b) Microscopic images of Beas2B and PC9 cells incubated with 0.01 mg/ml of DOX-loaded MP-SiO2 NP for 
4 hours (blue: DAPI; green: FITC; red: DOX). Scale bar: 50 μ m. (c) FACS analyses of DOX uptake in Beas2B 
and PC9 cells with indicated treatments. (d) Relative cell survival of Beas2B cells treated with either free DOX 
or DOX-loaded MP-SiO2 NP. Bars represent mean ±  SEM (n =  4). (e) Relative cell survival of PC9 cells treated 
with free DOX or DOX-loaded MP-SiO2 NP. Bars represent mean ±  SEM (n =  4).
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point after about 30 minutes (Fig. 4b). From the saturated absorbance intensity observed from the GSH-triggered 
release of DOX and the extinction coefficience of DOX (14700 L·mol−1·cm−1), we estimated that the amount of 
released DOX was about 34.7 μ M. However, in the absence of GSH, a small amount of DOX was released from 
the MP-SiO2 NP (Fig. 4a,b). This might be resulted from the leakage of DOX from imperfectly-blocked channels 
of MP-SiO2 NP. Similar results were observed when DTT was used as the stimuli to unlock the pores of MP-SiO2 
NP (Figure S1a,b). Moreover, when cells were pre-treated with glutathione reduced ethyl ester (GSH OEt) which 
could increase the GSH level in cells26, the DOX release significantly increased (Figure S1c). Conversely, the DOX 
release decreased when cells were pre-treated with diethyl maleate (DM) which scavenged endogenous GSH32 
(Figure S1c). Without CET capping, the DOX release showed no response to the changes of GSH levels (Figure 
S1d). These results demonstrated that the redox triggers, such as GSH or DTT, can stimulate the release of thera-
peutic reagents from the channels of nano-medicine.

We then detected the GSH level and EGFR expression in Beas2B and PC9 cells. As shown in Fig. 5a, the GSH 
concentration of PC9 was significantly higher (550 μ M) than that of Beas2B (150 μ M). Also, PC9 cells had a 
much higher EGFR expression than Beas2B cells (Fig. 5b). In order to verify the specific targeting mediated by 
CET, both MP-SiO2 NP and CET-capped MP-SiO2 NP were co-incubated with Beas2B and PC9 cells at different 
time intervals for endocytosis analyses. A significant difference of FITC fluorescence between these two particles 
was only observed in PC9 cells but not Beas2B cells, e.g., PC9 cells showed higher FITC fluorescence when with 
CET-capped MP-SiO2 NP in comparison with MP-SiO2 NP (Fig. 5c). Flow cytometry analyses demonstrated that 
treatment of CET-capped MP-SiO2 NP resulted in a higher endocytosis than MP-SiO2 NP in PC9 cells, whereas 
in Beas2B cells with low EGFR surface expression no endocytosis difference was observed (Fig. 5d).

We further evaluated the growth inhibition of these nano-medicines in Beas2B and PC9 cells. We found no 
difference between CET-capped MP-SiO2 NP and MP-SiO2 NP in inhibiting Beas2B cell proliferation (Fig. 5e,f), 
indicating that CET had no targeting effect in cells with low EGFR expression. CET-capped MP-SiO2 NP was 
even less efficient than MP-SiO2 NP in inhibiting Beas2B cell growth. This might be due to the quick release of 
DOX from the pores of MP-SiO2 NP whereas the cap of CET might sustain the release of therapeutic agent. In 
PC9 cells, the CET-capped MP-SiO2 NP treatment showed a significantly higher growth inhibition than MP-SiO2 
NP, indicating the nano-medicine with the modification of CET had a great potential and specificity for targeting 
cancer cells with high EGFR expression.

DOX, acting as a cancer-chemotherapeutic agent, has no specificity to EGFR-mutant lung cancer cells and 
frequently displays toxicity. GEF, one of EGFR-TKIs, attracts more attention due to its good clinical efficacy in 
EGFR-mutant lung cancer patients. However, patients frequently develop drug resistance and eventually relapse 
after 6 to 12 months of TKI treatments. We then studied whether the nano-medicine, GEF-loaded CET-capped 
MP-SiO2 NP, had a potential to overcome TKI resistance. For this, we generated the drug-resistant PC9 (PC9-DR) 
cells through continuous treatment of GEF for about 3 months. As shown in Figure S2a,b, PC9-DR cells were 
resistant to GEF in vitro and in vivo. Further study illustrated that PC9-DR cells expressed comparable EGFR 
level to parental PC9 cells (Figure S2c). Although PC9-DR cells showed significant resistance to GEF treatment, 

Figure 3. Synthesis of drug-loaded CET-capped MP-SiO2 NP. Schemetic illustration of the synthesis of the 
DOX- or GEF-loaded, MP-SiO2 NP with CET capping.

Figure 4. GSH stimulated the drug release from DOX-loaded CET-capped MP-SiO2 NP. (a) Absorbance 
spectra corresponding to the released DOX from CET-capped MP-SiO2 NP treated with different 
concentrations of GSH for 1 hr. (b) Time-dependent absorbance changes observed upon the DOX release from 
CET-capped MP-SiO2 NP without and with 1 mM GSH. Bars represent mean ±  SEM (n =  3).
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Figure 5. Drug delivery of DOX-loaded CET-capped MP-SiO2 NP in vitro. (a) The cellular GSH levels in 
Beas2B and PC9 cells. Bars represent mean ±  SEM (n =  3). ***p <  0.001. (b) Western blot analysis of EGFR 
expression in Beas2B and PC9 cells. ACTIN served as an internal control. (c) Microscopic images of Beas2B 
and PC9 cells treated with 0.01 mg/ml MP-SiO2 NP or CET-capped MP-SiO2 NP (blue: DAPI; green: FITC). 
Scale bar: 50 μ m. (d) FACS analyses of DOX release in Beas2B and PC9 cells with indicated treatments. (e) 
Relative survival of Beas2B cells treated with MP-SiO2 NP, CET-modified MP-SiO2 NP, DOX-loaded MP-SiO2 
NP or DOX-loaded CET-capped MP-SiO2 NP for 24 hours. Bars represent mean ±  SEM (n =  4). *p <  0.05. (f) 
Relative survival of PC9 cells treated with 0.01 mg/ml of indicated nanoparticles for 24 hours. Bars represent 
mean ±  SEM (n =  4). ***p <  0.001.
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knockdown of EGFR in these cells resulted in a significant inhibition of cell proliferation and survival (Figure 
S2d–f). We further found that the PC9-DR cells had a higher GSH level than parental PC9 cells, which indicated 
high GEF release from the GEF-loaded CET-capped MP-SiO2 NP in PC9-DR cells (Figure S2g). The CET mod-
ification clearly improved the endocytosis of MP-SiO2 NP in cells with high EGFR expression (Figure S3a). We 
further examined the viability of PC9-DR cells after treatments with different MP-SiO2 NP. As shown in Fig. 6a, 
GEF-loaded CET-capped nano-medicine showed the most significant inhibition of the PC9-DR cell growth.

We further explored the potential application of this nano-medicine in PC9-DR tumor treatment in vivo. 
PC9-DR cells were injected subcutaneously into nude mice, and different nano-medicines were then given to mice 
via in situ injection. As shown in Fig. 6b–d, only GEF-loaded CET-capped MP-SiO2 NP showed a significant effect 
upon inhibiting PC9-DR xenograft tumor growth. No obvious loss of body weights was observed (Figure S3b).  
The immunohistochemical staining of Ki-67 and caspase-3 showed the impressive therapeutic effects of the 
GEF-loaded CET-capped MP-SiO2 NP on PC9-DR xenograft tumors (Fig. 6e,f).

Conclusion
In this study, we develop a novel mesoporous silica nano-medicine with specific EGFR targeting for overcoming 
TKI resistance. We synthesize the MP-SiO2 NP as an efficient drug carrier which enters cells through endocyto-
sis. We further modify the MP-SiO2 NP through loading of either chemotherapeutic agent DOX. We find that 
DOX-loaded MP-SiO2 NP has a higher drug delivery capability and possesses a better therapeutic effect in cancer 
cells. Based on the modulation of cellular redox level, we design a smart nano-medicine which controls the release 
of therapeutic reagents from the channels of the MP-SiO2 NP through GSH stimulation. Through the specific tar-
geting using the EGFR antibody CET to the channels of MP-SiO2 NP, we have established a nano-medicine spe-
cifically targeting cancer cells with high EGFR expression. Our data show that the CET-capped MP-SiO2 NP has 
a high affinity for PC9 cells and facilitates its endocytosis. Compared with MP-SiO2 NP or MP-SiO2 NP loaded 
with EGFR targeting small compound GEF or MP-SiO2 NP capped with CET, the nano-medicine CET-capped 
GEF-loaded MP-SiO2 NP shows the best inhibitory efficacy in treatment of GEF-resistant PC9 cells in vitro and 
in vivo. Together, our findings show that GEF-loaded CET-capped nano-medicine is very efficient in overcoming 
the TKI resistance. Our design might serve as good method to specifically and effectively deliver the EGFR-TKIs 
and overcome drug resistance.

Materials and Methods
Synthesis of mesoporous SiO2 nanoparticles (MP-SiO2 NP). For the synthesis of fluorescein-labeled 
MP-SiO2 NP, fluorescein isothiocyanate (FITC, 10 mg) was firstly reacted with 6 μ l of (3-aminopropyl) triethox-
ysilane (APTES) in 1 ml ethanol overnight in the dark. Then, hexadecyltrimethylammonium bromide (CTAB, 
0.80 g) was dissolved in 384 ml of double distilled water; sodium hydroxide (NaOH, 1 M, 5.6 ml) was added to 
CTAB solution, followed by adjusting the solution temperature to 80 °C. Subsequently, tetraethyl orthosilicate 
(TEOS, 4 mL) and dye-labeled APTES solution (400 μ l) were added by dropwise during while stirring continued. 
The mixture was allowed to stir for 2 hours to give rise to white precipitates. Finally, the surfactant template, 
CTAB, was removed by refluxing in acidic ethanol solution (80 ml of ethanol and 1 ml of HCl) for 16 hours, and 
dried to give FITC-labeled MP-SiO2 NP. For the synthesis of mercapto-functionalized MP-SiO2 NP, the resulting 
MP-SiO2 NP (500 mg) was functionalized in the ethanol (50 ml) solution with 1 ml of 3-mercaptopropyltrimeth-
oxysilane overnight. The particles were separated by centrifugation (8000 rpm, 10 minutes), washed several times 
with absolute ethanol, then with double distilled water, and dried in an oven at 65 °C overnight.

FITC was purchased from Tokyo Chemical Industry (TCI, Japan). (3-Aminopropyl) triethoxysilane (APTES), 
hexadecyltrimethy ammonium bromide (CTAB) and tetraethoxysilane (TEOS) were obtained from Sinopharm 
Chemical Reagent Co., Ltd. (Shanghai, China). 3-Mercaptopropyltriethoxysilane (MPTES) was purchased 
from Aladain (Shanghai, China). Sodium hydroxide (NaOH, 1 M) solution was obtained from Acros Organics 
(Belgium).

Transmission electron microscopy (TEM) and N2 adsorption-desorption characterization.  
Transmission electron microscopy (TEM) image of the prepared MP-SiO2 NP was recorded using a JEM-1400 
(JEOL, Japan) high resolution transmission electron microscope operating at 120 kV. N2 adsorption-desorption 
isotherms were performed on a Quadrasorb SI/MP (Quantachrome, America) automated sorption analyzer, 
the surface area and pore size distribution were determined using the Brunauer-Emmett-Teller (BET) and 
Barrett-Joyner-Halenda (BJH) analyses, respectively.

Loading of mesoporous silica nano-medicine. A mixture consisting of monodispersed mercapto- 
functionalized MP-SiO2 NP solution was prepared by placing 10 mg MP-SiO2 NP in 1 ml of penicillin-streptomycin  
solution (5× ) followed by the sonication of the mixture for 1 hour. The particles were collected by centrifugation 
(6000 rpm, 3 minutes), dissolved in 500 μ l of DOX or GEF solution (2 mM) after the supernatant was removed, 
the suspension was stirred overnight at room temperature. Subsequently, 400 μ l of CET (2.5 mg/ml), 110 μ l of 
H2O2 (0.3%) and 50 μ l of NaI (0.03 mg/ml) in HEPES buffer (20 mM, pH 7.0, containing 3 M NaCl) were added 
into the resulting solution and reacted for 2 hours24,33. Finally the mixture was washed at least six times with 
HEPES buffer (20 mM, pH 7.0) until no background color was observed.

Doxorubicin hydrochloride (DOX), hydrogen peroxide (H2O2), and sodium iodide (NaI) were purchased 
from Aladain (Shanghai, China). Gefitinib (GEF) was obtained from Sigma-Aldrich (America). CET was sup-
ported by Merck (Germany). BCA protein assay kit was obtained from Beyotime Biotechnology (Hunan, China). 
Three samples, (1) MP-SiO2 NP, (2) MP-SiO2 NP and CET, (3) MP-SiO2 NP and CET in the presence of 10 mM 
of H2O2 and 0.1 mM of NaI in HEPES buffer (20 mM, pH 7.0, containing 300 mM NaCl) were reacted for 2 hours. 
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The particles were dispersed in 1 ml of HEPES buffer (20 mM, pH 7.0) after fully washed. Then the content of CET 
was determined using BCA protein assay kit. The modification of CET on the MP-SiO2 NP was estimated to be: 
(1) 0.5 μ g/μ l, (2) 1.1 μ g/μ l, and (3) 2.1 μ g/μ l. So the modification of CET is estimated to be 1.6 μ g/μ l.

Figure 6. GEF-loaded CET-capped MP-SiO2 NP overcame drug resistance in vitro and in vivo. (a) Relative 
cell survival of PC9-DR cells treated with 0.01 mg/ml of indicated nanoparticles for 24 hours. (b) Relative 
PC9-DR tumor growth of nude mice treated with 50 μ l (10 mg/ml) of indicated nanoparticles daily. Bars 
represent mean ±  SD (n =  6). ***p <  0.001. (c) Photograph and (d) Weights of xenograft tumors from different 
treatment groups. Bars represent mean ±  SD (n =  6). *p <  0.05. (e) Ki-67 and caspase-3 immunohistochemical 
images of PC9-DR tumors after the treatment with indicated nanoparticles. Scale bar: 50 μ m. (f) Statistic 
analyses of the percentage of cells positive for Ki-67 and caspase-3 staining. Bars represent mean ±  SD (n =  6). 
***p <  0.001.
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Release of mesoporous silica nano-medicine. The release of DOX from DOX-loaded MP-SiO2 NP 
capped with CET using the stimuli of GSH or DTT was described as follow. DOX-loaded MP-SiO2 NP, 10 mg, 
were introduced into 900 μ l HEPES buffer (20 mM, pH 7.0), and the mixture was divided into five samples. 
Subsequently, 20 μ l of aqueous solution of different concentrations of GSH or DTT were added to the samples 
that were allowed to react for a fixed time interval of 1 hour. The resulting mixtures were centrifuged, and the 
MP-SiO2 NP was separated. The absorbance spectra of the supernatant clear solutions were then recorded. For 
the time-dependent release of DOX from the system, a similar procedure was applied while subjecting the NP, for 
different time-intervals, at a fixed concentration of GSH or DTT (1 mM). The concentration of DOX in the release 
solution was evaluated by ultraviolet-visible spectra using an extinction coefficient of DOX (14700 L·mol−1·cm−1). 
The release amount of DOX in the system was estimated to 34.7 μ M or 25.2 μ M when using 1 mM GSH or 1 mM 
DTT as stimuli, respectively.

For using glutathione reduced ethyl ester (GSH-OEt) and diethyl maleate (DM) to regulate the concentration 
of GSH in cells, cells were plated on circular slides under the indicated conditions for 24 hours, subsequently 
5 mM of GSH-OEt or 1 mM of DM were added to medium for 2 hours and washed once to remove the excess 
regulators. Then different concentrations of DOX-loaded nano-medicine without or with CET modification were 
incubated with cells for 24 hours, cells were crashed into suspension using cell disrupter after removing the unab-
sorbed nano-medicines. Finally, the absorbance spectrums of DOX were recorded on a ultraviolet-visible spectro-
photometer at 490 nm. GSH-OEt and DM were purchased from Sigma and Aldrich, respectively.

Ultraviolet-visible spectra. Ultraviolet-visible spectra were recorded on a Cary series ultraviolet-visible 
spectrophotometer (Agilent Technologies, America). The absorbance of DOX was measured at 490 nm. 
According to the definition of absorbance, we obtained the extinction coefficient of DOX is 14700L·mol−1·cm−1 
using a calibration curve. Knowing the content of DOX present in the solution after the primary NP precipitation 
process, and knowing the amounts of DOX eliminated by the washing procedure, the loading amount of DOX is 
estimated to be about 650 μ M.

Cell culture. Beas2B and PC9 cells were bought from ATCC and cultured in Dulbecco’s modified Eagle’s 
medium (Hyclone, Thermo Scientific, USA) supplemented with 8% fetal bovine serum (FBS; Biochrom AG, 
Germany). PC9-DR cells were drug resistant cells derived from PC9 cells with continued GEF treatment. The cells 
were maintained at 37 °C in a humidified atmosphere with 5% CO2 and passaged every 2 days.

Glutathione concentrition Test. The intracellular level of glutathione (GSH) was determined in 96 well 
black plate with a Synergy NEO multifunctional microplate reader (Bioteck, America) using a glutathione fluoro-
metric assay kit (BioVision, America) as described in the instruction.

Fluorescence scanning. Cells were plated on circular slides under the indicated conditions and the various 
indicated nanoparticles were added to medium 24 hours later. Cells were fixed with 4% polytetrafluoro ethylene 
for 10 min at room temperature and then counterstained with DAPI (Sigma) for 1 min. After mounted with 
anti-fade medium (Thermo Electron Corporation), the cells were imaged for FITC, DOX and DAPI with a fluo-
rescence microscope (Nikon).

MTT assay. To assess the effect of the modified nanoparticles, cells were plated in quadruplicate under 
the indicated conditions. After 24 hours, the various indicated nanoparticles were added to culture medium 
for 72 hours. Then the nanoparticles were withdrawn after 24 hours. Cells were stained with 3-(4,5-dimethyl-
2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) for 4 hours and assessed with Epoch multi-volume 
spectrophotometer system (570 nm/630 nm) on the fourth day.

Western blot. Cells lysates were prepared and subjected to western blot analysis as previously reported34 with 
following primary antibodies: EGFR (A2909, ABclonal) and ACTIN (AB136452, Abcam).

Immunohistochemical stainings. Tumors were fixed with 1 ml 4% paraformaldehyde (PFA) overnight, 
dehydrated in ethanol, embedded in paraffin and sectioned (5 μ m). Slides were then deparaffinized in xylene and 
ethanol, and rehydrated in water. Antigen retrieval was performed by heating in a microwave for 30 minutes in 
sodium citrate buffer (pH 6.0). Slides were quenched in hydrogen peroxide (3%) to block endogenous peroxidase 
activity and then washed in TBST buffer. The primary antibodies were incubated at 4 °C overnight followed by 
using the SuperPicture™  Polymer Detection kit (Life Technologies) according to the manufacturer’s instructions 
as described34. Antibodies against the Ki67 (NCL-Ki67p, Leica Biosystems) and cleaved caspase 3 (9664, Cell 
Signaling) were used.

In Vivo Treatment Studies. 5 weeks male nude mice were injected subcutaneously with 5 ×  106 cells in the 
left and right flank, respectively. The mice were then randomly separated into different groups (in each group 
n >  6). When the cells form palpable tumors, animals were treated by intraperitoneal injection with free drugs 
dissolved in 5% Tween 80, 5% PEG 400, 90% water daily and treated by in situ injection with 50 μ l modified 
MP-SiO2 NP daily (10 mg/ml). Tumor volume was calculated as follows: tumor size (mm3) =  (longer measure-
ment ×  shorter measurement2)/2. Tumor sizes were recorded every other day over the course of the studies. Mice 
were housed in a specific pathogen-free environment at the Shanghai Institute of Biochemistry and Cell Biology 
and treated in strict accordance with protocols approved by the Institutional Animal Care and Use Committee of 
the Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences.
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Fluorescence activated Cell Sorting (FACS). PC9 and Beas2B cells for FACS analyses were plated in 
triplicate. And 24 hours later, cells were treated with the indicated agents for 2 hours. Then, cells were collected 
and performed in the BD LSRII flow cytometry. For each test, at least 10000 cells were counted. The data were 
analyzed using FlowJo (Tree Star).

Statistical Analysis. Statistical analyses were carried out using GraphPad Prism 5 software. Unless indi-
cated, differences were compared using two-tailed Student’s t test.
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