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Abstract: Laser surface treatment of the titanium alloy was locally oxidized on the metal surface
to improve the joint strength of laser transmission welding of high borosilicate glass with titanium
alloy. The results find that the welding strength was increased 5 times. The welding mechanism was
investigated by the morphology of the welded parts, the tensile-fracture failure mode, the diffusion
of the interface elements, and the surface free energy. The results show that there are many adherents
between the titanium alloy and high borosilicate glass after tensile fracture, the welding strength
was higher when the laser voltage was 460 V, and the tensile–fracture failure mode is mainly ductile
fracture. Element-line scanning analysis revealed that elemental diffusion occurred in the two
materials, which is an important reason for the high welding strength. Surface free-energy analysis
shows that laser surface treatment improves the surface free energy of titanium alloy, promotes the
wettability and compatibility, and increases the welding strength of titanium alloy with glass.

Keywords: laser transmission welding; laser surface treatment; titanium alloy; high borosilicate glass;
surface free energy; elemental diffusion

1. Introduction

Glass to metal seals are widely employed in lighting and electronic devices, automotive,
and medical fields [1]. The glass to metal seal is traditional a fusion technique with the glass melted
in contact with metal parts to be sealed to. Matched thermal expansion seals, unmatched expansion
seals, soldered seals, and mechanical joints are the four major sealing methods of glass to metal [2].
Recently, high-frequency induction heating is used to seal the glass to the Kovar in solar receiver tubes
and developed a highly automated process [3]. Due to the nonlinear absorption characteristics of
ultrashort-pulsed lasers, ultrashort lasers have attracted significant attention for their application in
the fields of cutting [4] and surface mechanical characterization [5]. Laser welding is considered to
be a highly-flexible technique with potential for joining glasses and metals. Carter et al. reported
systematic analysis and comparison of picosecond laser microwelding of industry relevant Al6082 parts
to SiO2 and BK7 [6]. Volpe et al. reported on femtosecond laser microwelding of two transparent layers
of polymethyl methacrylate (PMMA) based on nonlinear absorption and localized heat accumulation
at high repetition rates [7]. For laser transmission welding of glass and metals [8], the laser transmission
welding of copper substrates with borosilicate glass was achieved using a femtosecond laser by Itoh
et al. Although the melting point and thermal-expansion coefficient of these two materials are quite
different, a relatively reliable connection was formed between the two materials [9]. Utsumi reported a
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direct welding of copper balls with borosilicate glass using a short-pulsed laser [10]. Quintino et al.
used a femtosecond laser with a pulse width of 35 fs for laser transmission welding of glass flakes with
NiTi alloy flakes. It has been shown that the NiTi particles were formed and splashed in a direction
perpendicular to the laser propagation after the laser pulses impacted on the surface. A dimple
structure was observed at the weld, indicating a good connection between the two materials [11].
Flury successfully prepared metal lattices on a glass substrate using a glass surface coating to induce
reverse transfer by a femtosecond laser [12]. Ciuca et al. used a picosecond laser to achieve transmission
welding between quartz glass and aluminum, and found that the nanocrystalline silicon, γ-Al2O3, and
δ-Al2O3 were formed in the weld zone [13]. Carter et al. used a picosecond laser to weld a variety of
metals such as aluminum, copper, and stainless steel with glass, and found that cracks existed at the
interface between metal and glass [14].

The high price of ultrashort-pulsed lasers makes them impractical for application in laser
transmission welding technology for welding between metal and glass. Lin et al. used a relatively
inexpensive long-pulsed fiber laser to achieve the welding of quartz and anodized aluminum [15].
Wetting is very important to enhance the thermo-mechanical properties in the manufacture of metal
matrix composite materials, and reactive infiltration. Narciso et al. enhanced interfacial thermal
conductivity in Al/Diamond composites by diamond surface modification [16], and studied the
porosity effect on thermal properties of Al-12 wt % Si/Graphite composties [17]. In addition, to
improve the strength and hermeticity of the joints, the pre-oxidation was used to form an oxide film
on the metal surface. Chern et al. improved the wettability and tightness of 7056 glass on a Kovar
surface by pre-oxidizing the surface of Kovar alloy using a furnace thermal treatment [18]. Zhang et al.
improved the wettability and diffusivity of borosilicate glass on the surface of Kovar alloy by laser
melting oxidation of metal surfaces [19]. Li et al. improved the joint strength of PS and titanium using
the two pretreatment methods (laser oxidization treatment and oxygen plasma surface treatment) [20].
Moreover, the laser surface treatment does not require pre-oxidation, and heat preservation of the
entire part and the local oxidation of the metal surface can be quickly achieved with good selectivity
and repeatability.

The welding of titanium alloy with high borosilicate glass was investigated in this study; it was
found that the welding strength of high borosilicate glass with titanium alloy without surface oxidation
was very low. To improve the joint strength, the surface of the titanium alloy was first locally oxidized
using a semiconductor laser, and transmission welding of titanium alloy with borosilicate glass was
then conducted using a long-pulsed Nd:YAG laser. The influence of laser surface treatment on the
welding strength of laser transmission welding and the welding mechanism of titanium alloy with
high borosilicate glass were studied by analyzing the microstructure, the tensile-fracture failure mode
of the weld, the interface elemental diffusion, and the surface free energy.

2. Materials and Methods

The main properties of the used materials are shown in Tables 1–3. The size of the titanium
alloy and the high borosilicate glass samples used in this study was 50 mm × 20 mm × 2 mm.
Before beginning the experiment, the samples were cleaned with alcohol in an ultrasonic cleaner and
dried in a dry box for 12 h to remove impurities from the material’s surface.

Table 1. Main properties of titanium alloy and high borosilicate glass.

Property Titanium Alloy High Borosilicate Glass

Density (g/cm3) 4.5 2.23
Specific heat J/(kg K) 520 98

Thermal conductivity (W/mK) 7.95 1.2
Melting temperature, Tm (◦C) 1660 1680
Ultimate tensile stress (MPa) 895 40–100
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Table 2. Content of elements in TC4 titanium alloy.

Chemical Composition Mass Percentag

Ti Bal
Fe ≤ 0.3%
C ≤ 0.1%
N ≤ 0.05%
O ≤ 0.015%
H ≤ 0.2%
V 5.5~6.8%
Al 3.5~4.5%

Table 3. Compositions of high borosilicate glass 3.3.

Chemical Composition Mass Percentag

SiO2 80.4%
B2O3 12.7%
Al2O3 2.4%

Na2O & K2O 4.2%
Others 0.3%

The purpose of laser surface treatment is to form an oxide film on the metal surface. The degree of
peroxidation directly influences the strength and hermeticity of the joint. The principle of laser surface
treatment is to scan the surface of titanium alloy with a laser under atmospheric conditions, and then
the metal is oxygenated by heating to produce a certain thickness of oxide film. A semiconductor
laser (Compact 130/140, DILAS Diodenlaser GmbH, Mainz, Germany) was used for laser surface
oxidation with an output wavelength of 980 ± 10 nm, a minimum spot diameter of 700–800 µm with a
circular shape, a maximum output power of 130 W, and a working temperature kept between 15–25 ◦C.
The process parameters and limits for laser surface treatment are shown in Table 4.

Table 4. Process parameters and limits for laser surface treatment.

Parameter Limits

Laser power for surface treatment (W) 40 50 60
Laser scanning speed (mm/s) 5 5 5

Number of scans (n) 8 8 8
Spot diameter (mm) 2 2 2

For the laser transmission welding, a long-pulsed Nd:YAG laser (StarWeld 250, Rofin-Sinar Laser
GmbH, Hamburg, Germany) with an output wavelength of 1064 nm was applied. Figure 1 presents a
schematic of the principle of laser transmission welding, and the experiment was performed in the
form of the lap-joint configuration [21]. The upper-layer material was made of high borosilicate glass
with excellent light transmittance, and the lower layer was made of surface-oxidized titanium alloy as
the light-absorbing material. In addition, the K9 glass was used as the upper and lower clamping layer
and a certain clamping pressure of 0.5 MPa was applied. When the laser was irradiated onto the surface
of the titanium alloy transmission through the upper high borosilicate glass, the surface of the titanium
alloy absorbed energy, so that the temperature at the interface increased sharply, and makes local
melting titanium alloy at high temperature. Under the impact of the pulsed laser, the high-temperature
titanium alloy droplets were sprayed around, which caused melting and micro-cracking of the glass
surface, forming a small-sized interlocking effect. The welding of the titanium alloy with the glass was
thus achieved. The process parameters and limits for laser transmission welding are shown in Table 5.
Three replicates were performed for each test condition.
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Figure 1. Laser transmission welding schematic.

Table 5. Process parameters and limits for laser transmission welding.

Parameter Limits

Laser voltage for transmission welding (W) 450 460 470 480
Laser welding speed (mm/s) 3 3 3 3

Laser frequency (Hz) 10 10 10 10
Laser pulse width (ms) 2.5 2.5 2.5 2.5
Stand-off distance (mm) 0 0 0 0

A universal tensile machine (UTM4104, Shenzhen Suns Technology Co., Ltd., Shenzhen, China)
was used for testing the joint strength, with v = 2 mm/min. The lap shearing test finally broke the
joints through loading tension at both ends of the joints. In this paper, the joint strength is measured
by shear stress, and the shear stress is calculated as Formula (1):

σ =
F

W × L
(1)

An ultra-depth optical microscopy (VHX-1000, Keyence Corporation, Osaka, Japan) was used to
observe the micromorphology of the joint. The interface elemental diffusion analysis was performed
using a scanning electron microscope (S-3400N, Hitachi Corporation, Tokyo, Japan).

The contact angle was measured using a contact-angle measurement (OCA40, Dataphysics
Instruments GmbH, Stuttgart, Germany). The surface free energy of the material was calculated using
the method of Ownes [22]. The surface free energy (γ) is taken into account the polar components
(γP) and dispersive components (γD), and needs to use two test liquids. In this study, pure water and
ethylene glycol were used as test liquids. The relevant formulas are shown below [23]:

γ = γD + γP (2)

γl1(1 + cos θ1) = 2[(γD
l1γD

s )
0.5

+ γP
l1γP

s )
0.5
] (3)

γl2(1 + cos θ2) = 2[(γD
l2γD

s )
0.5

+ γP
l2γP

s )
0.5
] (4)

where γl1 is the surface tension of pure water (γl1 = 75 mN/m); γl2 is the surface tension of ethylene
glycol (γl2 = 48 mN/m); θ1 represents the surface contact angle of pure water; θ2 represents the surface
contact angle of ethylene glycol; γD

l1 and γD
l2 are the dispersive components of the surface tension of

pure water and ethylene glycol, respectively (γD
l1 = 21.6 mN/m, γD

l2 = 29 mN/m); and γP
l1 and γP

l2
represent the polar components of the surface tension of pure water and ethylene glycol, respectively
(γP

l1 = 53.4 mN/m, γP
l2 = 19 mN/m).
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3. Results and Discussion

3.1. Effect of Laser Surface Treatment on Welding Strength

Figure 2 shows the surface morphology of the titanium alloy after laser oxidation treatment with
a spot diameter of 2 mm, a scanning speed of 5 mm/s, a number of scans of 8, and laser surface
treatment powers of 40, 50, and 60 W. When the laser surface treatment power was 50 W, the surface
treatment was achieved with no obvious occurrence of melt, and the oxide layer was also formed.
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Figure 2. Surface morphology of titanium alloy after treatment by surface treatment power (a) 40,
(b) 50, and (c) 60 W.

The laser transmission welding of titanium alloy without laser surface treatment with glass was
carried out first. It was found that the welding strength was only 1.31 MPa when the welding speed
was 3 mm/s with a laser voltage of 460 V, a laser frequency of 10 Hz, a laser pulse width of 2.5 ms, and
a defocusing amount of 0 mm. Figure 3 shows the effect of laser surface treatment power (45, 50, and
55 W) on welding strength.
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Figure 3. Effect of laser surface treatment power on welding strength.

As shown in the Figure 4, when the laser surface treatment power was 50 W, the laser voltage for
transmission welding was 460 V, the welding speed was 3 mm/s, the laser frequency was 10 Hz, the
laser pulse width was 2.5 ms, and the defocusing amount was 0 mm, the welding strength was the
highest (6.49 MPa), which was 5 times that of the welding strength without laser surface treatment.
Figure 4 shows the sample of laser transmission welding between titanium alloy and high borosilicate
glass. It was found that the oxide film formed on the surface of the titanium alloy had a tendency
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to adhere to the high borosilicate glass [24], which is favorable for the improvement of the laser
transmission welding strength.
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Figure 4. Welding between titanium alloy and high borosilicate glass.

3.2. Micromorphology of Welding Seam and Tensile Failure Analysis

An ultra-depth optical microscopy was used to observe the micromorphology of welding seam
after tensile test. Figure 5 shows the micrographs of titanium alloy and high borosilicate glass welds
after tensile test with 100×. Under high temperature, the laser treated titanium alloy chemically
reacted with SiO2 in the glass and formed black adherents. These black adherents differed from the
initial glass form and were relatively firmly attached to the glass, forming a small-size interlock effect.
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Figure 5. Micrographs of titanium alloy and high-borate borosilicate glass welds after tensile test:
(a) glass and (b) titanium alloy.

When the laser surface treatment power was 50 W, the welding speed was 3 mm/s, the laser
frequency was 10 Hz, the pulse width was 2.5 ms, the defocusing amount was 0 mm, and the laser
voltages for transmission welding were 440, 460, and 480 V; the welding strengths obtained were 5.52,
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6.49, and 5.62 MPa, respectively. The morphologies of the welds after tensile fracture are presented in
Figures 6–8.
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welding of 460 V: (a) glass and (b) titanium alloy.

It can be seen from Figure 6 that when the laser voltage for transmission welding was 440 V,
no adherent was formed at the welding seam. This is because the laser voltage was small and the
energy input was insufficient. Although droplets were splashed on the surface of the titanium alloy,
they did not have a sufficient chemical reaction with the glass. A row of concave structures were only
formed on the surface of the titanium alloy, resulting in un-ideal welding.

The welding seam of the titanium alloy and the glass was uniform and aesthetic when the laser
voltage for transmission welding was 460 V, as shown in Figure 7. When magnified 500×, a dimple
structure at the welding interface between the titanium alloy and the glass was observed [25] and
indicating that a good weld existed between the titanium alloy and the glass, as shown in Figure 9.
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It can be seen from Figure 8 that when the laser voltage for transmission welding was 480 V,
there were slight breakages and obvious cracks at the glass weld, and ablation occurred at the weld of
the titanium alloy. The heat and impact generated by the pulsed laser resulted in a brittle failure on
the glass, which seriously affects the weld and the welding strength.

Figure 10 shows the changes of tensile load as a function of time in a tensile test recorded by a
UTM4104 universal testing machine. It can be seen from Figure 10a that when the laser voltage for
transmission was 440 V, uniform relative movement occurred to the titanium alloy and glass with the
testing machine, which had a uniform linear motion, until the breaking force reached the maximum
value, at which time the relative displacements of the titanium alloy and glass were small. Since the
fracture of the weld is flush and bright, and perpendicular to the direction of the normal stress, the
fracture failure mode is mainly brittle fracture.
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460 V.

It can be seen from Figure 10b that when the laser voltage for transmission welding was 460
V, the maximum value of the breaking force was reached after a certain displacement between the
titanium alloy and the glass was formed, when they moved with the testing machine, which has a
uniform linear motion. The adherents after fracture were observed at the weld fracture, which indicates
that a good weld was achieved between the titanium alloy and the glass, and the failure form is mainly
ductile fracture.

3.3. Diffusion of Elements at the Joint Interface

In order to further explore the mechanism for the formation of welded joints between titanium
alloy with high-borate borosilicate glass during laser transmission welding, the cross-section
morphology of the sample was observed by an S-3400N scanning electron microscope. The joint
interface of the weld was investigated with an X-ray energy spectrometer for elemental-line scanning
analysis to obtain the chemical composition in the weld (Figure 11).
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Figure 11. Scanning-electron-microscope (a) micrographs of cross-section and (b) element distribution
along scan line.

The green and blue lines in Figure 11 represent the changes in the content of Si and Ti, respectively.
There was a weak inter-diffusion between elemental Si and Ti at the joint interface. The thickness of
the diffusion transition layer was approximately 4 µm. Under laser pulses impact, obvious elemental
diffusion phenomenon occurred between the glass and titanium alloy, which is an important reason
for the formation of high-strength welded joints.
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3.4. Contact Angle and Surface Energy

The surface contact angle is the angle between the tangent of the droplet profile and the solid
surface it contacts, and it is an important indicator of the wettability of solid surfaces [26]. If θ < 90◦,
the solid surface is hydrophilic, and the smaller the contact angle, the better the wettability. If θ > 90◦,
the solid surface is hydrophobic, and the liquid does not wet the solid easily, but will move on the
surface easily.

The surface contact angles of the titanium alloy with and without laser surface treatment were
separately measured by a CA040 surface contact angle measurement, and are shown in Figures 12
and 13, respectively.
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Figure 13. Ethylene glycol contact angle of titanium alloy (a) with and (b) without laser treatment.

As can be seen from Figures 12 and 13, the surface contact angle of the titanium alloy after laser
surface treatment decreased and the wettability improved. The surface free energy of the titanium
alloy before and after laser surface treatment was calculated using Equations (3) and (4); the results
are shown in Table 6. The surface energy of the titanium alloy increased after laser surface treatment,
which promoted the compatibility between the titanium alloy and the glass, thus improving the
welding strength during laser transmission welding.

Table 6. Surface free energies of titanium alloy.

Material Type γ (mN/m) γD (mN/m) γP (mN/m)

Titanium alloy 19.31 16.45 2.86
Laser-treated 23.60 22.01 1.6
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Other researchers have also shown that the surface free energy of materials is an important factor
affecting the welding strength when they were studying laser transmission welding. For example,
Liu et al. investigated the laser transmission welding of PA66 with PVC [27]. It was found that the
surface free energy of PA66 after surface magnetron sputtering of a layer of Al increased, so that PA66
and PVC, which could not be welded originally, were welded, forming a reliable connector through
laser transmission welding by using Al atoms as a transition layer. This indicates that the increase of
the material’s surface free energy is beneficial to improving the strength of the joint.

4. Conclusions

The laser transmission welding of high borosilicate glass with titanium alloy was conducted.
It was found that the welding strength could be improved by laser surface treatment of the titanium
alloy. The joining mechanism was studied by the morphology, tensile-fracture mode, the elements
diffusion, the surface free energy, and the following conclusions were drawn.

(1) A large number of black adherents were observed at the weld between the laser-surface-treated
titanium alloy and the high borosilicate glass. A small-size interlock effect may be formed,
resulting in a strong joining effect;

(2) The welding strength was the higher when the laser voltage for transmission welding was
460 V, and the tensile-fracture failure mode was mainly ductile fracture. When the voltage for
transmission welding was high, the titanium alloy was ablated due to excessive energy input,
and the glass was cracked, thus reducing the welding strength;

(3) It was found that there was elemental diffusion at the weld interface between the titanium alloy
and the glass, which is an important reason for the formation of high-strength welded joints;

(4) The measurement of the surface contact angles of the titanium alloy shows that the laser
surface treatment of the titanium alloy increased the surface energy and promoted the
compatibility between the titanium alloy and the glass, thus improving the welding strength of
the two materials.
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