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Abstract

Nesting by three species of marine turtles persists in the Dominican Republic, despite historic threats and long-term
population decline. We conducted a genetic survey of marine turtles in the Dominican Republic in order to link them with
other rookeries around the Caribbean. We sequenced a 740bp fragment of the control region of the mitochondrial DNA of
92 samples from three marine turtle species [hawksbill (n = 48), green (n = 2) and leatherback (n = 42)], and incorporated
published data from other nesting populations and foraging grounds. The leatherback turtle (Dermochelys coriacea) in the
Dominican Republic appeared to be isolated from Awala-Yalimapo, Cayenne, Trinidad and St. Croix but connected with
other Caribbean populations. Two distinct nesting populations of hawksbill turtles (Eremochelys imbricata) were detected in
the Dominican Republic and exhibited interesting patterns of connectivity with other nesting sites and juvenile and adult
male foraging aggregations. The green sea turtle (Chelonia mydas) has almost been extirpated from the Dominican Republic
and limited inference could be made from our samples. Finally, results were compared with Lagrangian drifting buoys and
published Lagrangian virtual particles that travelled through the Dominican Republic and Caribbean waters. Conservation
implications of sink-source effects or genetic isolation derived from these complex inter-connections are discussed for each
species and population.
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Introduction

Many marine vertebrates have complex life cycles requiring the

use of different habitats that are often spread over wide spatio-

temporal scales and usually result in a network of connections

among different populations and between populations and distant

feeding grounds [1–7]. This complex structure is especially

relevant to endangered species, in which threat may be highly

localized, yet have a potentially profound effect on distant areas.

Thus, the knowledge of migratory pathways, population structure

and connectivity of the most threatened populations in comparison

to other populations and feeding grounds is crucial for an effective

application of conservation actions. Marine turtles are one of the

best examples of this complex structuring [8–9] and highly

migratory behaviour [10], and have been subject to increasing

focus for molecular research and conservation over the last few

decades. This is especially relevant for management, as all marine

turtle species are of conservation concern, and action plans often

need to be international in scope [11]. As the Caribbean hosts

numerous populations of several marine turtle species [12], gaps in

information may lead to undiagnosed population sinks to

otherwise protected stocks [11,13].

The Dominican Republic has, for many years, presented a gap

of knowledge in marine turtle biology and conservation. Although

it has been suggested as an important nesting area for several

marine turtle species [14–15] there has been a paucity of

monitoring data. Furthermore, there is clear evidence of a long

history of harvesting and exploitation of marine turtle meat, eggs

and shell as an important resource for local communities [14–18].

In addition to these threats, turtles are also incidentally captured at

sea [19–20]. Although marine turtles have been legally protected

by law since 1966 in the Dominican Republic [21–22] it was

estimated that there was an annual capture of between 1000 and

2000 green (Chelonia mydas), loggerhead (Caretta caretta) and

leatherback (Dermochelys coriacea) turtles during the 1980s [19]. In

addition, a total of 4366 kg of hawksbill (Eretmochelys imbricata) shell

was exported to Japan between 1970 and 1986 [23]. Turtle shell

exploitation was also detected more recently [17–18,24–25]. The

country also receives four million tourists annually that result in a

significant degradation of coastal habitats [26–27].

The consequences of the accumulation of these threats to the

Dominican Republic nesting populations were not properly

addressed until a recent study [22], which suggested that the

Dominican Republic is an important nesting area for the hawksbill
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and leatherback turtle and includes some sporadic nesting by

green turtles. However, the persistence of threats appears to have

led to population reduction and a significant contraction of nesting

habitats, with nesting largely restricted to protected areas [14–15].

Genetic markers have been widely used to establish links

between populations and feeding grounds and to infer relative

exposure to threats [8–9,28]. Maternally inherited mitochondrial

DNA (mtDNA) is particularly well suited to assess such links as

nesting female turtles exhibit marked site fidelity [8–9] permitting

the definition of isolated Management Units (MUs) [29]. Juvenile

turtles, however, may be widely dispersed and occupy foraging

areas comprised of turtles of differing provenance [28,30–31]. For

some species it has been shown that this mixing still remains after

sexual maturity and could lead to male mediated gene flow

between populations [32–33] although not in all cases [34]. For

this reason, the concept of Regional Management Units (RMUs)

has been proposed [13]. These would function as higher level

conservation units that include all isolated populations (MUs)

linked by the use of common feeding grounds, since mortality

occurring in shared feeding areas will affect contributing nesting

populations [13]. Mixed Stock Analysis (MSA) has provided the

tool with which to link feeding grounds with nesting habitats and

hence establish relationships at the RMU level for many sea turtle

species testing what proportion of turtles from a feeding ground

come from each nesting population from a mixed stock point of view

[30,35–42]. The recent development of the ‘many to many’

analysis [43] allowed the testing of how many individuals from a

nesting population use each feeding ground from a nesting population

point of view [44–45].

Other approaches have involved the study of ocean currents,

and have demonstrated that they may play a crucial role in

defining hatchling and juvenile marine turtle dispersion [30,41,46–

48]. To understand population connectivity, therefore, empirical

data describing sea surface currents may be informative [49]. For

example, data describing the tracks of Lagrangian drifting buoys

[44,50], or biophysical modelling of oceanic dispersal [51–53]

could be used to simulate the movements of a passively drifting

hatchling turtle to complement the tagging of individuals [51,54–

56]. Thus, a multidisciplinary approach has been recommended to

assess both the connectivity among populations [57] and the

definition of RMUs [13].

Figure 1. Marine turtle nesting sites and feeding grounds considered in this study. Leatherback nesting sites are represented by black
circles labelled in italics. AY: Awala-Yalimapo; CA: Cayenne; CR Costa Rica (Atlantic); FL: Florida; FW: French West Indies; SC: Saint Croix; SF: Suriname/
FG; TR: Trinidad; DR: Dominican Republic. Hawksbill nesting sites are represented by white triangles labelled in bold. ANT: Antigua; BLE: Barbados
Leeward; BWI: Barbados Windward; BLZ: Belize; CRI: Costa Rica; CUB: Cuba; GUA: Guadeloupe; MEX: Mexico; NIC: Nicaragua; PRV: Puerto Rico [35]; PRB:
Puerto Rico [64]; USV: US Virgin Islands; VNZ: Venezuela; DRJ: Dominican Republic-Jaragua; DRS: Dominican Republic-Saona. The hawksbill population
of BRZ: Brazil and the leatherback populations of BZ: Brazil and SA: South Africa are not included in the map. Hawksbill feeding grounds are
represented by numbered grey squares. 1. Texas; 2. Bahamas; 3. Cuba D; 4. Cuba B; 5. Cuba A; 6. Turk and Caicos; 7. Caiman Islands; 8. Dominican
Republic; 9. Puerto Rico residents; 10. Puerto Rico recruits; 11. Puerto Rico pooled; 12. US Virgin Islands. Sampling sites of the present study were the
Jaragua National Park (DRJ or DR) and Saona Island (DRS). Map created using MAPTOOL [106].
doi:10.1371/journal.pone.0066037.g001
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Here we combine genetic data from the Dominican Republic

turtle nesting population with published genetic data from other

nesting populations and feeding grounds, as well as tracks of

passive drifter buoys and satellite tracking of adult turtles to: 1)

determine if Dominican Republic turtle nesting populations are

isolated from others in the region; 2) determine if mtDNA

sequences reflect population size reductions; and 3) determine

which feeding grounds are used by Dominican Republic marine

turtles.

Materials and Methods

During the 2007 and 2008 nesting seasons (from March to

October), samples from three nesting marine turtle species were

collected within an extensive monitoring project to assess nesting

marine turtle abundance and distribution in the Dominican

Republic [22] (Figure 1, Table 1). Samples from green turtles

(n = 2; DRS), hawksbill turtles (n = 48; DRS n = 33, DRJ n = 15)

and leatherback turtles (n = 42; DRJ) were collected from the

Jaragua National Park (DRJ/DR) and Saona Island (DRS), with

the permission and support of the office of Protected Areas of the

Ministry of Environment and Natural Resources of the Dominican

Republic Government. Muscle and skin samples were collected

from dead hatchlings found in nests after emergence, so sampling

had no impact on living animals and thus the study did not require

the approbation of any ethical animal committee. Only one

hatchling per nest and female was sampled in order to ensure

independence of samples. Due to the lack of resources in the study

area and the low density of nesting events in some places and

species, it was not possible to identify and tag all females while

nesting. However, a filtering method applied in other marine turtle

species that combine remigration interval, sample location and

haplotype found [58] was applied in order to avoid the risk of

pseudoreplication. Samples were stored in 95% ethanol (n = 1

hatchling sample per nest). Finally, samples were transported for

analysis following international CITES regulations.

DNA was extracted using the QIAamp extraction kit (QIA-

GENH) following the manufacturer’s instructions. We amplified a

,740bp fragment of the mtDNA control region using the primers

LCM15382 (59-GCTTAACCCTAAAGCATTGG-39) and H950

(59GTCTCGGATTTAGGGGTTT-39) [59]. This fragment in-

cludes the region historically surveyed for several marine turtle

species in previous studies having lengths of 496bp (leatherback sea

turtle), 491bp (green sea turtle) or 384bp/480bp (hawksbill sea

turtle). Our 25 mL polymerase chain reaction (PCR) included the

following: genomic DNA, 16 PCR Buffer, 2 mM MgCl2,

0.12 mM dNTP, 0.2, mm of each primer and 0.04 U/mL of Taq

polymerase. After an initial 5 min denaturing step (94uC), our

PCR protocol consisted of 35 cycles of the following temperature

regime: 1 min at 94uC (denaturing), 1 min at 52uC (annealing)

and 90 s at 72uC (extension). In addition, we included a final

extension step of 10 min at 72uC. Following PCR, we removed

single-stranded DNA by digesting 5 mL of PCR product with 2 mL

of a combined Exonuclease I and Shrimp Alkaline Phosphatase

solution (ExoSAP-ITH). The reaction mixture was incubated for

15 min at 37uC, followed by other 15 min incubation at 80uC to

inactivate the two enzymes. We sequenced both forward and

reverse strands using the BigDyeTM Primer Cycle Sequencing Kit

(Applied Biosystems) run on an automated DNA sequencer (ABI

PRISM 3100). For each sequencing reaction, we used 2 mL of our

PCR product in a 10 mL reaction mix under the following

conditions: 1 m denaturing step at 96a followed by 25 cycles

consisting of an initial denaturing of 10 s at 96uC, 5 s at 50uC
(annealing) and 4 m at 60uC (extension). Products were purified by

ethanol precipitation before enter the sequencer.

Sequences were aligned by eye using the program BioEdit 5.0.9

[60] and compared with the short (,500bp) haplotypes previously

described for the leatherback turtle [61–63] and the hawksbill

turtle [35,38,40,64–67]. Additionally, the whole fragment was

compared to known long (.500bp) haplotypes described in those

manuscripts that used the same or similar primers in the

leatherback turtle [62–63] and the hawksbill turtle [35,40–

42,67]. Green turtle sequences were compared with the haplotypes

found in the database maintained by the Archie Carr Center for

Sea Turtle Research (http://accstr.ufl.edu/) that includes all

published haplotypes. Posterior statistical analyses were carried out

with short, long sequences or both depending on the data found in

the published literature.

Population Structure
Differences in haplotype frequencies of samples from the same

species at different locations within Dominican Republic were

assessed using a Chi-square test. Values were compared to the

Table 1. Haplotype frequencies found in Dominican Republic marine turtle populations.

Hawksbill (E. imbricata) Leatherback (D. coriacea) Green (C. mydas)

Haplotype GAN DRJ DRS Haplotype GAN DR Haplotype GAN DRS

Ei-A01 (A/CU1) EF210779 1 3 Dc_A1 (A) EF513272 38 CM-A5 Z50127 2

Ei-A09 (F/c) EF210783 2 – Dc_C (C) EF513272 4

Ei-A11 (F/PR1) EF210784 3 22

Ei-A18 (L/PR3) EF210786 – 2

Ei-A20 (N/PR2) EF210788 – 6

Ei-A23 (Q/MX1) EF210791 4 –

Ei-A43 (Q/MX2) EF210794 4 –

Ei-A47 (L/PR3) EF210787 1 –

TOTAL 9 30 42 2

Hawksbill frequencies are given for 740bp haplotypes and the equivalences for 380bp and 480bp haplotypes are given in brackets respectively (380bp/480bp). Leatherback
frequencies are given for 711bp haplotypes and the equivalences for 496bp are given in brackets. DRJ/DR: Jaragua National Park; DRS: Saona Island. GAN: GenBank
Accession Number of each haplotype. Hawksbill haplotypes defined in [35]. Leatherback haplotypes defined in [62]. Green haplotype described in [84] and compiled in
http://accstr.ufl.edu/.
doi:10.1371/journal.pone.0066037.t001

Dominican Republic Marine Turtle Populations

PLOS ONE | www.plosone.org 3 June 2013 | Volume 8 | Issue 6 | e66037



Dominican Republic Marine Turtle Populations

PLOS ONE | www.plosone.org 4 June 2013 | Volume 8 | Issue 6 | e66037



distributions observed by randomizing individuals among popu-

lations using Monte-Carlo resampling [68] as implemented in the

program CHIRXC [69]. Additionally we computed the exact test

based on haplotypes frequencies [70] in Arlequin 3.0. Both

analyses were used to test if samples from different locations could

be grouped or should be considered separately.

In order to assess the genetic diversity compared to the other

Atlantic populations we calculated haplotype diversity (h) and

nucleotide diversity (p) [71] of each population and species using

the program Arlequin 3.0 [72]. Fu’s Fs neutrality test for the

detection of population growth [73] was undertaken with the

DnaSP 5.0 software package [74] for each nesting population of

the Dominican Republic. Fs tends to be negative under an excess

of recent mutations and a significant negative value was taken as

evidence of recent population expansion. Differentiation among

population pairs was assessed considering frequency based genetic

distances (Wst) using Arlequin 3.0 [72]. Significance of differenti-

ation was tested using a Chi-square test and computing the exact

test based on haplotypes frequencies as explained above. Genetic

distances were used to perform a Principal Coordinate Analysis

(PCA) with the package GenAlEX 6.2 [75] in order to distribute,

in a two-dimension space, the genetic variability found. A

sequential Bonferroni correction was not applied for multiple

pair-wise comparisons, since they dramatically increase the

probability for type II error (b: assume no differentiation when it

does exist), an effect that becomes worse as many P-values are

discarded [76–77]. In substitution, we applied the False Discov-

ered Rate (FDR) correction that calculates the most appropriate

threshold for the P-value significance considering the multiple

comparisons involved in the analysis under an expected original

threshold of P,0.05 [78].

Hawksbill Juvenile and Male Dispersion
Considering our samples and published information available, a

mixed stock analysis was performed in order to test the dispersion

of hawksbill juveniles originating in Dominican Republic nesting

areas. We used the rookery centred approach of the ‘many-to-many’

analysis [43] to test how juveniles hatched in the Dominican

Republic disperse to all known Caribbean feeding grounds and a

mixed stock centred approach to test the relative importance of

Dominican Republic to the individual feeding grounds. For the

nesting population baseline we used the haplotype frequencies

previously described in the literature [35,40,67] but incorporating

the frequencies of the Dominican Republic Jaragua and Saona

(present study) (Table S1). Additionally, we tested the contribution of

the Caribbean nesting populations to the juvenile feeding ground

located south-west of the Dominican Republic [38]. All ‘many to

many’ mixed stock analyses were conducted using only the short

(380bp) haplotype frequencies, as this analysis requires detailed

information of haplotype frequencies of nesting populations and

feeding areas and the dataset regarding putative feeding grounds

available in the literature is most extensive for this fragment (Table

S2). Nesting populations and feeding grounds located in the

eastern Atlantic [79–80] were not included in the analysis as they

have been shown to be highly isolated from all Caribbean

populations and their contribution to Caribbean feeding grounds

has been shown to be negligible [79]. Finally, a ‘one-to-many’

analysis was conducted to test the possible contribution of

Dominican Republic turtles to the adult male aggregation found

Figure 2. PCA including Atlantic leatherback and hawksbill populations using Wst. The percentage of the variability explained by each
coordinate is shown in brackets. For the leatherback turtle(A) PCA was done using the 496bp fragment. For the hawksbill turtles PCA was done either
considering the 380bp fragment (B) and the 720bp fragment (C). Leatherback nesting populations: AY: Awala-Yalimapo; BZ: Brazil; CA: Cayenne; CR
Costa Rica (Atlanic); FL: Florida; FW: French West Indies; SA: South Africa; SC: St. Croix; SF: Suriname/FG; TR: Trinidad; DR: Dominican Republic.
Hawksbill nesting populations: ANT: Antigua; BLE: Barbados Leeward; BWI: Barbados Windward; BLZ: Belize; BRZ: Brazil; CRI: Costa Rica; CUB: Cuba;
GUA: Guadeloupe; MEX: Mexico; NIC: Nicaragua; PRV: Puerto Rico [35]; PRB: Puerto Rico [64]; USV: US Virgin Islands; VNZ: Venezuela; DRJ: Dominican
Republic-Jaragua; DRS: Dominican Republic-Saona. Dashed circles represent the groups detected in previous studies [40] indicating the haplotype
found at higher frequency.
doi:10.1371/journal.pone.0066037.g002

Table 2. Genetic distances (Wst) between Atlantic/Indic leatherback nesting populations.

AY BZ CA CR FL FW SA SC SF TR DR Reference

AY – 0.168* 0.037* N N 0.108* N N N N 0.277* [63]

BZ 0.184* – 0.193 N N 20.019 N N N N 20.061 [62]

CA 0.065* 0.202 – N N 0.095 N N N N 0.285* [63]

CR 0.301* 20.065 0.306* – N N N N N N N [61]

FL 0.299* 20.009 0.331 20.019 – N N N N N N [61]

FW 0.126* 20.018 0.097 0.040 0.090 – N N N N 0.022 [63]

SA 0.268 20.032 0.308 20.035 0.000 0.072 – N N N N [61]

SC 0.251* 0.057 0.265* 0.108* 0.113 0.095* 0.093 – N N N [61]

SF 0.406* 0.058 0.415* 0.020 0.000 0.145 0.000 0.180* – N N [61]

TR 0.061* 0.152 20.038 0.243* 0.274 0.057 0.253 0.222* 0.346* – N [61]

DR 0.292* 20.061 0.289* 20.027 0.001 0.022 20.014 0.106* 0.037 0.226* – PS

Genetic distances based on 496bp and 711bp sequences. Significant values given by the exact test and after FDR correction are marked with (*) for the exact text and in
bold for the Chi-square test (for a P,0.05 FDR496bp = 0.0109). AY: Awala-Yalimapo; BZ: Brazil; CA: Cayenne; CR Costa Rica (Atlanic); FL: Florida; FW: French West Indies; SA:
South Africa; SC: St. Croix; SF: Suriname/FG; TR: Trinidad; DR: Dominican Republic. Pacific populations [61] were included in the analysis but have not been included in
the table as all were significantly different from all Atlantic/Indic populations. N: pairwise comparison not possible as 711bp sequences were not available for some of
the populations. PS: Present Study.
doi:10.1371/journal.pone.0066037.t002
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in Puerto Rico [35]. This analysis was conducted using either short

(Table S1) or long sequences (Table S3). As we compared the

nesting population haplotype frequencies to a single foraging area,

the haplotype frequencies of other feeding grounds were not

needed. All mixed stock analysis included population size as a

weighting factor as several studies have proved that the inclusion

of this factor improved the accuracy of results [41,81]. Source

population sizes (as mean number of nesting females) were taken

from the literature [22,67,82] (Tables S1 and S3).

Lagrangian Buoys Dispersion
In order to simulate hatchling turtle dispersal, data describing

the tracks of satellite-tracked surface drifter buoys were obtained

from the Global Drifter Program of the National Oceanic and

Atmospheric Administration (NOAA, USA). These Lagrangian

buoys are periodically released throughout the year at varying

locations and are tracked by satellite (RAMS, Argos, EOLE),

providing several positional fixes per day (accuracy 0.1–2.0 km;

http://www.aoml.noaa.gov/). An initial query within the locations

database was undertaken in order to select all locations plotted

near (,50 km) either the Jaragua National Park (DRJ/DR) or

Saona Island (DRS) nesting populations. Then, all buoys with at

least one location obtained near one of these Dominican Republic

nesting areas were selected as an evidence of passive arrival or

departure from the area.

Results

The two green turtle samples were collected in Saona Island

(DRS) and exhibited the haplotype CM-A5 (Table 1) which is

found at high frequency in Suriname [83], Aves Island and

Venezuela [84] but is also present at very low frequencies in other

nesting populations of the Atlantic, including Mexico [83], Costa

Rica [85], and Sâo Tomé and Prı́ncipe [86]. Due to this low

sample size, no further statistical analyses were performed for this

species.

Leatherback Population Structure
Two haplotypes were found among leatherback samples when

considering either the 496bp fragment or the 711bp fragment

(Table 1). Genetic variability of the Dominican Republic nesting

population was similar or higher than the other Atlantic

populations [DR: h (SD) = 0.176 (0.074), p (SD) = 0.0014

(0.0012)] with the exceptions of some populations outside the

Caribbean like Awala-Yalimapo [AY: h (SD) = 0.780 (0.061), p
(SD) = 0.0051 (0.0033)], Cayenne [CA: h (SD) = 0.519 (0.030), p
(SD) = 0.0042 (0.0027)], French West Indies [FW: h (SD) = 0.340

(0.090), p (SD) = 0.0027 (0.0020)], Saint Croix [SC: h (SD) = 0.589

(0.067), p (SD) = 0.0024 (0.0018)] and Trinidad [TR: h

(SD) = 0.501 (0.043), p (SD) = 0.0040 (0.0026)]. No recent

expansion was suggested for Dominican Republic leatherback

population, independently of the length of the marker used (Fu’s

Fs neutrality test: 496bp: Fs = 2.664, P = 0.198; 711bp: Fs = 3.307,

P = 0.134). As previous studies with the 496bp fragment indicated

[61], pairwise population analysis showed very deep differentiation

between all Atlantic/Indic and all Pacific populations (data not

shown) so the latter group of populations were not considered for

future analysis. The Dominican Republic nesting population

exhibited moderate levels of differentiation with other Atlantic/

Indian ocean nesting populations (Table 2) being significantly

different from Awala-Yalimapo, Cayenne, Saint Croix and

Trinidad. The separation of these four populations from the

others was corroborated by the PCA analysis, with their two

principal coordinates explaining an accumulated 86.9% of the

genetic variability found in all populations (Figure 2A). The

comparisons using the 711bp fragment yielded similar results

(Table 2).

Table 3. Genetic distances (Wst) between Caribbean hawksbill nesting populations.

ANT BLE BWI BLZ BRZ CRI CUB GUA MEX NIC PRV PRB USV VNZ DRJ DRS Reference

ANT – 0.373* 0.407* N 0.381* 0.203* 0.206* 0.563* 0.514* 0.284* 0.495* N 0.414* N 0.345* 0.418* [67]

BLE 0.372* – 0.913* N 0.076* 0.661* 0.076 0.951* 0.978* 0.678* 0.854* N 0.849* N 0.912* 0.902* [40]

BWI 0.460* 0.925* – N 0.896* 0.070* 0.740* 0.287* 0.679* 0.032* 0.041* N 20.012 N 0.132* 0.014* [40]

BLZ 0.381* 0.916* 20.027 – N N N N N N N N N N N N [107]

BRZ 0.380* 0.099* 0.906* 0.892* – 0.667* 0.085* 0.936* 0.942* 0.684* 0.851* N 0.843* N 0.886* 0.888* [67]

CRI 0.231* 0.644* 0.085* 0.025 0.651* – 0.517* 0.279* 0.412* 0.010* 0.134* N 0.070* N 0.064* 0.078* [67]

CUB 0.210* 0.078 0.762* 0.716* 0.090* 0.511* – 0.824* 0.758* 0.568* 0.755* N 0.720* N 0.688* 0.740* [67]

GUA 0.599* 0.950* 0.008 0.070 0.937* 0.203* 0.839* – 0.811* 0.240* 0.347* N 0.308* N 0.415* 0.405* [67]

MEX 0.618* 0.997* 0.636* 0.629* 0.973* 0.311* 0.850* 0.723* – 0.420 0.649 N 0.613 N 0.438 0.661* [35,67]

NIC 0.329* 0.707* 0.048* 0.012* 0.711* 0.005* 0.594* 0.136* 0.270* – 0.085* N 0.030* N 0.055* 0.040* [67]

PRV 0.519* 0.840* 0.045* 0.048* 0.838* 0.138* 0.749* 0.081* 0.443* 0.111* – N 0.025* N 0.194* 20.012 [35]

PRB 0.316* 0.848* 0.212* 0.111* 0.828* 0.043* 0.625* 0.428* 0.536* 0.093* 0.167* – N N N N [48]

USV 0.453* 0.852* 20.019 20.023 0.846* 0.078* 0.730* 0.035* 0.466* 0.044* 0.036* 0.182* – N 0.132* 20.004 [67]

VNZ 0.231 0.000 0.838* 0.753* 20.003 0.495* 20.017 0.923* 0.994* 0.612* 0.786* 0.611* 0.773* – N N [38]

DRJ 0.433* 0.948* 0.165* 0.102* 0.919* 0.079* 0.742* 0.343* 0.281* 0.053* 0.157* 0.114* 0.127* 0.842* – 0.136* PS

DRS 0.461* 0.901* 0.010 0.005 0.887* 0.085* 0.750* 0.068* 0.552* 0.064* 20.014 0.131* 0.002 0.800* 0.123* – PS

Below the diagonal distances based on 380bp traditional sequence, above diagonal distances based on the 720bp sequence. Significant values given by the exact test
and after FDR correction are marked with (*) for the exact text and in bold for the Chi-square test (for a P,0.05 FDR380bp = 0.0093; FDR740bp = 0.0101). ANT: Antigua; BLE:
Barbados Leeward; BWI: Barbados Windward; BLZ: Belize; BRZ: Brazil; CRI: Costa Rica; CUB: Cuba; GUA: Guadeloupe; MEX: Mexico; NIC: Nicaragua; PRV: Puerto Rico [35];
PRB: Puerto Rico [64]; USV: US Virgin Islands; VNZ: Venezuela; DRJ: Dominican Republic-Jaragua; DRS: Dominican Republic-Saona. N: pairwise comparison not possible as
720bp sequences were not available for some of the populations. PS: Present Study.
doi:10.1371/journal.pone.0066037.t003
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Figure 3. Mixed Stock analysis. Relative contribution and 95% confidence interval of each hawksbill turtle nesting area to the male aggregation
of Mona Island (Puerto Rico) using A) the short (380bp) mtDNA fragment, B) the long (720bp) mtDNA fragment and C) to the SW Dominican Republic
feeding ground using the short (380bp) mtDNA fragment. ANT: Antigua; BLE: Barbados Leeward; BWI: Barbados Windward; BLZ: Belize; BRZ: Brazil; CRI:
Costa Rica; CUB: Cuba; GUA: Guadeloupe; MEX: Mexico; NIC: Nicaragua; PRV: Puerto Rico [35]; PRB: Puerto Rico [64]; USV: US Virgin Islands; VNZ:
Venezuela; DRJ: Dominican Republic-Jaragua; DRS: Dominican Republic-Saona.
doi:10.1371/journal.pone.0066037.g003
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Hawksbill Population Structure
A total of 8 haplotypes were found in the Dominican

Republic hawksbill samples using the whole 720bp sequence

(Table 1). When we truncated the sequence for comparisons

with previous studies, we found 5 haplotypes considering the

380bp and 6 considering the 480bp fragment (Table 1). The two

sample sites in the Dominican Republic were genetically

different considering both short and long fragments (380bp

fragment: Wst = 0.123; 720bp fragment: Wst = 0.223; P,0.001 in

all cases, both for the Chi-square and exact test) and hence

were treated as two independent units for all posterior analysis.

Genetic variability of the two Dominican Republic populations

was similar or higher than other nesting populations [380bp:

DRJ: h (SD) = 0.638 (0.093), p (SD) = 0.0037 (0.0027); DRS: h

(SD) = 0.526 (0.089), p (SD) = 0.0044 (0.0029); 720bp: DRJ: h

(SD) = 0.848 (0.054), p (SD) = 0.0047 (0.0029); DRS: h

(SD) = 0.527 (0.089), p (SD) = 0.0035 (0.0021)]. No recent

expansion was suggested for either populations irrespective of

the length of the marker used (Fu’s Fs neutrality test: 380bp:

DRJ: Fs = 0.440, P = 0.269; DRS: Fs = 1.957, P = 0.167; 720bp:

DRJ: Fs = 0.286, P = 0.233; DRS: Fs = 3.581, P = 0.062). Anal-

ysis of genetic structuring of Dominican Republic nesting

beaches in relation to other populations in the Caribbean

showed deep levels of differentiation with the exceptions of the

DRS population that showed no significant differences to the

proximate nesting aggregation of Mona Island in Puerto Rico

(PRV), the populations of Belize (BLZ), Barbados Windward

(BWI) and U.S. Virgin Islands (USV) (Table 3). The similarity

between DRS and PRV, and between DRS and USV was

confirmed also for the 720bp fragment while BWI yielded

significant differentiation with DRS by means of the exact test,

but not for the Chi-square test (Table 3). The lack of

differentiation between DRS and BLZ was not confirmed as

no long sequences were available for the latter. The accumu-

lated first two coordinates of the PCA explained a high

percentage of the genetic variability found both for the 380bp

(83.9%; Figure 2B) and the 720bp (79.61%; Figure 2C)

fragments and confirmed the complete isolation of DRJ and

the relative proximity of DRS to PRV, USV and BWI

(Figure 2C).

Hawksbill Juvenile and Male Dispersion
The rookery centred ‘many-to-many’ mixed stock analysis for

Dominican Republic juveniles suggested that turtles originating

from the two nesting areas are likely to have been distributed in

foraging grounds across the Caribbean, although the 95%

confidence intervals were very high (Table 4). The mixed stock

centred analysis showed that the proportion of turtles in the

genotyped Caribbean juvenile feeding grounds coming from

Dominican Republic nesting populations is very low, being less

than 0.01 from Jaragua National Park and less than 0.06 from

Saona Island in all cases (Table 4). Despite these results, the mixed

stock analysis with the short fragment showed that both Jaragua

National Park (DRJ) and Saona Island (DRS) significantly

contributed to the adult male aggregation in Puerto Rico, along

with the breeding stocks from Puerto Rico itself, (DRJ: 0.30 (0.00–

0.58), DRS: 0.15 (0.00–0.74), Figure 3A). However, the contribu-

tion of Saona Island exceeded that for Jaragua National Park

when the new long fragment was considered (DRJ: 0.07 (0.00–

0.21), DRS: 0.62 (0.00–0.91), Figure 3B). The population of

Barbados leeward has the highest contribution of juveniles to the

SW Dominican Republic feeding aggregation (Figure 3B).

Lagrangian Buoys Dispersion
A total of 22 passive drifter buoys approached and/or left the

Jaragua National Park and Saona Island areas (DRJ: n = 10; DRS:

n = 11; both: n = 1) (Figure 4) between 1996 and 2010. All buoys

that arrived at the Dominican Republic did so from the south-east

of the island. They arrived year round, with 72.7% being recorded

during the sampling period and with 45.5% arriving during the

summer. However, buoys that left the Dominican Republic

travelled in different directions: all those from Jaragua travelled

south-west into the Caribbean (Figure 4A) while some of those

from Saona Island (25%) travelled north into the open Atlantic

Table 4. ‘Many to many’ mixed stock analysis results.

Rookery centred Mixed stock centred

Mixed stock DRJ DRS DRJ DRS Reference

1. Texas 6.9 (0.2–23.3) 2.9 (0.1–10.9) 0.8 (0.0–3.0) 2.2 (0.1–8.1) [38]

2. Bahamas 7.5 (0.2–25.8) 5.1 (0.2–18.7) 0.6 (0.0–2.3) 2.6 (0.1–8.9) [38]

3. Cuba D 8.8 (0.3–30.4) 9.4 (0.4–28.3) 0.7 (0.0–2.8) 5.2 (0.2–16.1) [65]

4. Cuba B 7.6 (0.2–26.7) 8.2 (0.3–26.3) 0.4 (0.0–1.4) 2.6 (0.1–9.4) [65]

5. Cuba A 7.6 (0.2–25.5) 6.3 (0.2–23.9) 0.3 (0.0–1.1) 1.5 (0.0–5.7) [65]

6. Turk and Caicos 7.4 (0.2–23.1) 6.7 (0.2–22.5) 0.5 (0.0–1.9) 2.8 (0.1–9.4) [42]

7. Cayman Islands 7.8 (0.2–26.7) 8.5 (0.2–27.8) 0.4 (0.0–1.7) 3.1 (0.1–10.0) [41]

8. Dominican Republic 8.0 (0.3–27.0) 7.2 (0.2–23.0) 0.5 (0.0–2.0) 3.0 (0.1–9.8) [38]

9. Puerto Rico residents 7.1 (0.2–25.2) 7.4 (0.2–26.5) 0.4 (0.0–1.7) 3.0 (0.1–11.2) [35]

10. Puerto Rico recruits 7.8 (0.2–27.2) 11.6 (0.4–33.5) 0.3 (0.0–1.3) 3.5 (0.1–12.4) [35]

11. Puerto Rico pooled 8.7 (0.2–27.8) 11.6 (0.4–31.9) 0.6 (0.0–2.1) 5.3 (0.2–15.3 [38,65]

12. US Virgin Islands 7.4 (0.2–25.2) 7.0 (0.2–24.7) 0.3 (0.0–1.2) 2.1 (0.1–7.9) [38]

13. Unknown 7.3 (0.2–26.0) 8.0 (0.3–28.2) NA NA

Rookery centred analysis includes the percentage of Dominican Republic juveniles that use a mixed stock and an esteem of juveniles that disperse to unknown juvenile
feeding grounds (last line). Mixed stock centred analysis includes the percentage of turtles from the mixed stock coming from Dominican Republic nesting populations.
95% confidence intervals are shown in brackets. NA: Not applicable.
doi:10.1371/journal.pone.0066037.t004
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(Figure 4B). These differences in the trajectories remained when

only tracks during the nesting season were considered (Figure 4).

Mean drifting time was 307 days but was highly variable between

buoys (7–941 days). Mean drifting time of the buoys following

departure from study area (Figure 4) was 265 days (10–883 days).

Discussion

Conservation planning for mobile species such as marine

turtles, depends on robust spatio-temporal information about the

RMU of interest [13]. Since the MUs [29], which compose a

RMU, may be sharing common reproductive or feeding areas

(even if they are genetically isolated), the lack of information

about many MUs may lead to poor or biased management

effort. Such information gaps are particularly pertinent where

threats vary among MUs [87–88].

Green Turtle
Green turtles in the Dominican Republic [22] declined from ca.

260 green turtles nesting per year in the 1980s [14] to near

extirpation at present [22], and precluded robust analysis of

population structuring or connectivity. However, they appear to

share a haplotype very common in Suriname and Aves Island,

hence suggesting that population recovery through immigration

could be possible in the future if these populations are still

connected.

Leatherback Turtle Population Structure
The leatherback turtle is thought to be the least philopatric of

the marine turtles [89–91], and consequently genetic markers in

the present study and others [61] have demonstrated high levels of

population connectivity. The nesting populations of Awala-

Yamalipo, Cayenne and Trinidad emerged as a distinct MU,

separated from St Croix MU. The Dominican Republic nesting

population from the present study was similar to the other

Caribbean nesting populations forming part of a third MU in the

region. The use of 711bp sequences did not change the number of

haplotypes in the Dominican Republic in contrast to previous

studies, where some 496bp haplotypes were subdivided into

multiple 711bp haplotypes [62–63]. Future work expanding the

use of 711bp sequences to other nesting and feeding areas is needed

in order to test if longer sequences improve resolution of

population structuring as they have for the loggerhead turtle [44].

The connection between the Dominican Republic leatherback

population with several larger populations within the Atlantic

would favour putative recovery through immigration [89–91].

However, unless ameliorated, the anthropogenic stressors that

have contributed to population decline would likely affect

immigrant turtles equally and hence our study site may act as a

sink. The Costa Rica nesting aggregation, for example, is one of

the largest populations in the Caribbean, but is thought to be

declining despite some of the most heavily resourced conservation

efforts in the world [90]. Sink areas like the Dominican Republic

may have been partially responsible for such a decline and is

worthy of future investigation. Finally, the genetic signature of

important nesting sites in Colombia-Panama [92] still remains

unknown, and hence their potential role as source populations

within the Caribbean remains to be elucidated.

Figure 4. Tracks of passive drifter buoys and satellite traked
turtles. (A, B) Tracks of passive drifter buoys on departure from the (A)
Jaragua National Park or (B) Saona Island (starting point indicated with
black circles). Red lines show tracks on departure during the nesting

season. Figure (C) shows the migrations of ten satellite tracked adult
female hawksbill turtles [102]. White crosses show deployment
locations for satellite tracked turtles in Jaragua and Saona Island. Pale
grey lines show the extent of the Exclusive Economic Zone for each
Caribbean country. Note part (C) is to a different scale.
doi:10.1371/journal.pone.0066037.g004
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Hawksbill Turtle Population Structure
Previous studies in the Caribbean have shown that the hawksbill

turtle exhibits a high degree of philopatry resulting in fine scale

population structure [38,65–66,93], sometimes at surprisingly

small geographic scales [40]. The present study offers striking

support for this, demonstrating that in the Dominican Republic,

the two hawksbill populations were genetically distinct despite

being separated by only 300 km straight-line distance. Hence, we

strongly recommend finer scale sampling efforts in order to detect

the genetic richness of a given territory as different MUs may be

separated by much smaller distances [40] than classically thought

[93].

Beyond the fine scale structuring detected within the Dominican

Republic, the two populations are clearly isolated from almost all

other Caribbean nesting populations with the exception of DRS

with Puerto Rico, US Virgin Islands and Belize in terms of

maternally inherited DNA (mtDNA). The nesting aggregation in

Mona Island, Puerto Rico [35,82] is only 68 km straight distance

from Saona Island, in the Dominican Republic, while the US

Virgin Islands are 410 km. The connection with Belize is more

difficult to explain but this population is located at the same

latitude as the Dominican Republic. A study of the loggerhead

marine turtles in Florida [94] noted that haplotype frequencies

were similar for nesting populations at similar magnetic fields, a

putative homing cue for nesting females. However, the statistical

significance between Belize and DRS disappeared only after FDR

correction for one of the tests (P = 0.042 for the exact test) and the

Belizean sample size was very small, and thus potentially

misleading. Future analyses of the Belizean nesting population

including more samples are needed to test if this connection is real

or an artefact of sample size. The populations of Puerto Rico, US

Virgin Islands and DRS exhibited some levels of connection with

Barbados (windward), depending on the length of the marker and

the statistical test used. This upper level of structuring was clearly

detected by the PCA analysis and supports the AMOVA analyses

conducted in previous studies [40]. In both cases, three clusters

were clearly defined and the haplotype composition suggests an

evolutionary origin for such structuring. The first group is

characterized by the high frequency of the Q (380bp)/EiA23

(720bp) haplotype, the second by the high frequency of the F

(380bp)/EiA11 (720bp) haplotype and the last by the high

frequency of the A (380bp)/EiA1 (720bp) haplotype (Figure 2B,

2C). Based on data gathered using multiple techniques, the whole

Caribbean has been proposed as a unique RMU for the hawksbill

sea turtle [13], comprised of several different isolated MUs defined

using genetic markers [35,38,40,93]. Here we highlight the

existence of an intermediate level of structuring associated with

haplotype composition, as detected in previous studies [40].

Whether this intermediate level corresponds to a RMU or not

needs to be tested in the future using other markers (such as

microsatellites or SNPs) and combining the results with all

available information of the species in the area.

The structuring of the Caribbean stocks has strong implications

for the conservation of the hawksbill nesting populations of the

Dominican Republic. The DRJ population is completely isolated,

suggesting it is unlikely to receive females by immigration. The

small population size [22] could favour the loss of the maternally

inherited genetic diversity through mechanisms such as genetic

drift or inbreeding. On the other hand, DRS population fate

would appear to be linked to other nesting populations, especially

Puerto Rico and US Virgin Islands (but also Barbados and

perhaps Belize). However, this also means that the threats to the

species detected in the area of Saona have potential impacts for

these linked nesting aggregations. Fortunately, populations of

hawksbill turtles nesting in Puerto Rico [82] and Barbados [82,95]

have increased recently. This increase may have a future positive

effect on DRS nesting population through immigration of non-

philopatric females from these two areas.

Regardless of female philopatry, hawksbill turtles appear to be

highly mobile during the juvenile developmental phase. Blu-

menthal et al. [41] modelled the passive dispersal of virtual

particles released in known hawksbill nesting areas during the

hatchling dispersal phase and compared it with genetic markers to

support the hypothesis that juvenile dispersion is highly dependent

on current patterns. For the Greater Antilles ecoregion, the model

predicted that the particles would divide in two well differentiated

branches when arriving the Dominican Republic, one heading

south-west and entering the Caribbean and the other heading

north and north-west and entering the open Atlantic. Lagrangian

particle modelling is an excellent approach to describe the general

pattern of passive dispersal as it easily provides a statistically robust

sample size, has a wide spatio-temporal coverage [49,96] and it is

possible to add behavioural components to the modelled particles

[53,97–98]. However, this approach is sensitive to model

resolution [96] and sometimes fails in the detection of small scale

current variations [49]. On the other hand, Lagrangian drifting

buoys reflect high resolution drifting trajectories, but usually have

a limited spatio-temporal coverage and sample sizes are much

lower than modelling, so biases can be also found [49]. For these

reasons it is desirable to contextualise findings with both

techniques to study the effect of passive drifting in dispersal

[49,96]. The Lagrangian drifting buoys that departed from the

Dominican Republic (present study) followed similar patterns than

described in the Lagrangian particles model of Blumenthal et al.

[41] but also showed that, depending on the release point, the

buoys may take only the southern branch into the Caribbean

(Jaragua National park, Figure 4A) or also enter the open Atlantic

(Saona Island, Figure 4B). This subtle small scale variation on the

current system may produce a differential dispersion of hatchlings

from both Dominican Republic nesting populations, as hatchlings

are known to be highly influenced by the dominant currents.

However, marine turtle hatchlings and juveniles are also known to

be able to contribute substantially to the net movement by weak

directed swimming thus escaping from cold or highly predated

areas [49,53,56,97–98]. Thus, directed swimming of hatchlings

from these areas could greatly affect the proportion of individuals

entering the open Atlantic or the inner Caribbean sea. Recent

papers proposed the ‘learned migration goal’ hypothesis (LMG)

[51,56] to explain how adult marine turtles can be influenced by

the currents system despite being able to swim against them.

Under the LMG theory, adult turtles would follow the preferred

route from those learned as hatchlings and juveniles and fixed in a

magnetic map [99–101]. Thus, the subtle oceanic differences

detected within the vicinity of Dominican Republic nesting

beaches would be reflected in females’ behaviour and could

explain the significant genetic differences observed between Saona

Island and Jaragua National Park nesting populations, irrespective

of their proximity to one another. A recent telemetry study [102]

showed that the nesting females that left the country (the majority

from Saona Island) took the southwestern route after the nesting

season, heading into the Caribbean towards the western Carib-

bean basin (Figure 4C). The only satellite tracked adult female to

head northwards was deployed from Saona Island, supporting the

idea that adult turtle migration may be still partially influenced by

the oceanographic currents that affected them as hatchlings and

juveniles [51,56].
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Hawksbill Juvenile and Male Dispersion
Consideringall theseresultsandtheputativedispersalmechanisms

of the species [41], one may expect that DRJ juveniles would disperse

mainly southwards towards inner Caribbean feeding grounds while

DRS juveniles may disperse north and eastwards into the open

Atlantic, Bahamas, Cuba (foraging ground D) or the Turks and

Caicos Islands. Surprisingly, the rookery centred mixed stock analysis,

did not support this hypothesis, as it predicted an homogeneous

distribution of juveniles originating in both Dominican Republic

nesting populations. Such mixed stock analysis usually yields wide

confidence intervals in marine turtles due to the existence of common

haplotypes and results may be taken with caution. Furthermore, the

population sizes of the two Dominican Republic nesting populations

[22]areoneortwoordersofmagnitude lowerthanthemostabundant

nesting areas [82] and hence the production of hatchlings is likely

much lower. As a consequence, the contribution of Dominican

Republic populations to all the juvenile feeding grounds would be

necessarily very low, as indicated by the mixed stock centred analysis. For

instance, the juvenile feeding ground located near DRJ [38,103]

receives turtles mainly from Barbados, [40] in agreement with the

particle dispersal model [41] and the drifter buoys that arrived in the

area (present study), but it also receives turtles from Cuba. This means

that any extreme mortality of this juvenile aggregation would have an

impact on these populations.

ThecontributionofbothDominicanRepublicnestingpopulations

to the Puerto Rico male aggregation is very clear. Satellite tracks of

adult males and females in Puerto Rico showed that adults move from

Puerto Rico and arrive to the vicinity of DRJ and DRS and remained

there, possibly to breed [104]. The present study has shown that adult

individuals from these three nesting aggregations share the same

foraging areas. Given that DRJ is clearly a different genetic unit, the

fact that adult males are using the same foraging areas may indicate

the existence of common mating areas and opens the possibility of

male mediated gene flow, as found for other sea turtle species [32–

33,105]. The use of biparentally inherited markers, such as

microsatellites or SNPs, is needed to test the existence of male

mediated gene flow in these areas.

Genetic Variability of Leatherback and Hawksbill Nesting
Populations

Historical measures of the genetic variability would be desirable in

order todetect a recent loss of the genetic variability in the Dominican

Republicnestingpopulationscausedbytherecentpopulationdecline

[22]. Unfortunately, only recent measures from other populations

can be obtained using current haplotype frequencies, and all

populations have been affected to some extent by human activities.

However, the conservation status and population sizes of marine

turtle populations within the Caribbean are highly variable, so a

comparison of the genetic variability among them would provide a

relative measure of the genetic health of the studied populations.

Thus, it is reasonable toconclude that theextremerecent reductionof

the leatherback and hawksbill Dominican Republic nesting popula-

tions has not yet been reflected in a substantial loss of genetic

variability, as they had values similar or higher to almost all other

populations in the same area that have high population sizes or are

increasing due to conservation efforts. The addition of measures of

variability obtained from biparentally inherited markers would

provide greater insight about how population reduction impacts in

the genetic variability.

Conclusions
One of the milestones in the conservation of endangered species is

the detection and quantification of threats affecting declining

populations. However, the contextualisation of these potential

conservation sinks inawider regional area is necessary whencomplex

life histories and complex populations structures are present, such as

in sea turtles [8–9]. The present study provides one such case study

and goes beyond the detection of the threats of the Dominican

Republic and the local decline [22]. The detection of fine scale

structuring within Dominican Republic hawksbill populations, the

isolated nature of the Jaragua National Park hawksbill nesting

population, the establishment of migratory pathways involving the

threatened Dominican Republic marine turtles and the use of

common feeding grounds at different life stages has been crucial in

understanding which populations might be affected by a local sink

and which healthy populations might act as a source of individuals to

help the recovery of threatened populations.
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