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The bidomain model is considered to be the gold standard for numerical simulation

of the electrophysiology of cardiac tissue. The model provides important insights into

the conduction properties of the electrochemical wave traversing the cardiac muscle in

every heartbeat. However, in normal resolution, the model represents the average over a

large number of cardiomyocytes, and more accurate models based on representations

of all individual cells have therefore been introduced in order to gain insight into the

conduction properties close to the myocytes. The more accurate model considered here

is referred to as the EMI model since both the extracellular space (E), the cell membrane

(M) and the intracellular space (I) are explicitly represented in the model. Here, we show

that the bidomain model can be derived from the cell-based EMI model and we thus

reveal the close relation between the two models, and obtain an indication of the error

introduced in the approximation. Also, we present numerical simulations comparing the

results of the two models and thereby highlight both similarities and differences between

the models. We observe that the deviations between the solutions of the models become

larger for larger cell sizes. Furthermore, we observe that the bidomain model provides

solutions that are very similar to the EMI model when conductive properties of the tissue

are in the normal range, but large deviations are present when the resistance between

cardiomyocytes is increased.

Keywords: bidomain model, EMI model, cell-based model, cardiac electrophysiology, cardiac conduction, cardiac

tissue models, numerical simulation

1. INTRODUCTION

Mathematical models are indispensable for understanding the complex processes underlying
cardiac electrophysiology. A wide variety of models have been developed for the key processes
going on across the membrane of cardiomyocytes (see, e.g., Rudy and Silva, 2006; Rudy, 2012; Qu
et al., 2014; Amuzescu et al., 2021), where the latter paper presents a comprehensive overview of
the evolution of these models. The models of the membrane dynamics have also been extended to
yield descriptions of the electrophysiological properties of cardiac tissue, commonly represented
by the bidomain model or the somewhat simpler monodomain model (see Tung, 1978; Neu
and Krassowska, 1993; Sundnes et al., 2007; Clayton and Panfilov, 2008; Vigmond et al., 2008;
Linge et al., 2009; Niederer et al., 2011a; Franzone et al., 2014). The use of mathematical models
for understanding the properties of the cardiac action potential (AP) across the membrane of
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cardiomyocytes is very widespread, and so is the use of the
bidomain/monodomainmodels for understanding the properties
of the excitation wave traversing cardiac tissue during each
heartbeat. However, the spatial bidomain/monodomain models
have two inherent limitations. The main limitation is that the
extracellular space, the membrane of the myocyte, and the
intracellular space are all assumed to be present everywhere. This
assumption is indeed courageous but has provided surprisingly
accurate results and presently underpins the understanding of
cardiac conduction. The second limitation is that convergence
is obtained using a relatively coarse mesh (1x ∼ 0.25 mm,
see Xie et al., 2004; Clayton and Panfilov, 2008; Niederer et al.,
2011b) and thus a typical mesh block contains several hundred
cardiomyocytes (see, e.g., Jæger et al., 2021a,b). Therefore,
understanding of the conduction properties (see, e.g., Henriquez,
2014; Veeraraghavan et al., 2014) close to the myocytes cannot be
achieved using these models (see, e.g., Jæger et al., 2021a).

These limitations of the homogenized
(bidomain/monodomain) models are well known and several
authors have developed alternatives where all individual cells
are explicitly represented in the models (see, e.g., Spach et al.,
2007; Jacquemet and Henriquez, 2009; Hubbard and Henriquez,
2014; Lin and Keener, 2014; Tveito et al., 2017a; Weinberg,
2017; Jæger et al., 2019, 2021a; Domínguez et al., 2021; Jæger
and Tveito, 2021). Here, we will apply the EMI model where
both the extracellular space (E), the cell membrane (M) and the
intracellular space (I) are explicitly represented in the model
(see, e.g., Tveito et al., 2017a,b; Jæger and Tveito, 2021), and
compare properties with the homogenized bidomain model.
First, we will show how the bidomain model can be derived
from the more accurate EMI model. Earlier derivations of
the bidomain equations (see, e.g., Neu and Krassowska, 1993;
Franzone et al., 2014; Henriquez and Ying, 2021) relies on
homogenization of cardiac tissue, whereas the derivation given
here follows directly from the EMI model. As part of this
derivation, we can identify the main sources of deviations
between the models.

Next, we will compare the properties of the bidomain model
and the EMI model using numerical simulations. We first show
that the deviations between the results obtained by the bidomain
model and the EMI model become small as the cell size is
reduced. This property is consistent with the error introduced in
the derivation of the bidomain model. Secondly, we demonstrate
that, for conduction properties providing a normal excitation
wave with a conduction velocity of about 50 cm/s, the solutions
of the EMI model and the bidomain model are very similar.
However, as the resistance between the myocytes (through the
gap junctions) is increased, the deviation between the solutions
increases considerably.

It should be noted that the representation of all individual
cardiomyocytes implies a significant increase in the computation
load since the mesh resolution needs to be reduced from about
1x ∼ 0.25 mm for a finite difference method (FDM) of the
bidomainmodel to about δx ∼ 10µm for a finite elementmethod
(FEM) code solving the EMImodel (see Jæger et al., 2021a,b). The
number of mesh blocks is 1x3/δx3 = 15, 600 times larger for
the EMI model than for the bidomain model, and, therefore, the

computational load increases significantly when every myocyte
in the tissue is resolved.

The choice of using either an averaged model like the
bidomain model or a cell-based model like the EMI model,
depends on the application under consideration. The bidomain
model is very useful for simulating large scale problems, whereas
EMI is better suited when the dynamics close to individual
myocytes, or even inside individual myocytes, are of importance.

2. METHODS

In this section wewill derive the bidomainmodel commonly used
to model the electrical activity of the heart from a more detailed
model where each cell is represented. This cell-based model is
referred to as the EMI model and is derived from Maxwell’s
equations of electromagnetism in Agudelo-Toro (2012) and
Jæger and Tveito (2021). We will start by introducing the
equations of the EMI model before we describe the derivation
of the bidomain model from these equations. Finally, we discuss
how the bidomain model parameters can be defined using the
parameter values and tissue geometry of the EMI model.

2.1. The EMI Model
Consider a domain consisting of a single cell, �i, surrounded by
an extracellular space, �e, with a cell membrane, Ŵ, separating
the two spaces �i and �e. For such a domain, the electrical
activity may be modeled by the EMI model (see, e.g., Roberts
et al., 2008; Stinstra et al., 2010; Tveito et al., 2017a; Jæger et al.,
2019), given by the equations

∇ · σi∇ui = 0, in�i (1)

∇ · σe∇ue = 0, in�e (2)

ne · σe∇ue = −ni · σi∇ui ≡ Im, atŴ, (3)

ui − ue = v atŴ, (4)

Im = Cm
∂v

∂t
+ Iion atŴ, (5)

ue = 0 at ∂�D
e , (6)

∂ue

∂ne
= 0 at ∂�N

e . (7)

Here, ui, ue, and v are the intracellular, extracellular and
membrane potentials (in mV) defined in �i, �e and at Ŵ,
respectively, ni and ne are the outward pointing normal vectors
of the intracellular and extracellular spaces, respectively, Cm is
the specific membrane capacitance (in µF/cm2), Iion is the ionic
current density across the membrane (in µA/cm2), Im the sum
of the capacitive and ionic current densities (in µA/cm2), and
σi and σe are the intracellular and extracellular conductivities,
respectively (in mS/cm). The Equations (6) and (7) are Dirichlet
and Neumann boundary conditions, respectively, for the outer
boundary of the extracellular space.

2.1.1. Extension to Cells Connected by Gap Junctions
To model collections of connected cardiac cells, e.g., like
illustrated in Figure 1A, the EMI model for a single cell may be
extended to include a model for the currents through the gap
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FIGURE 1 | (A) Illustration of an EMI model domain for four connected cells. The intracellular space (orange) is denoted by �i and the extracellular space (red) is

denoted by �e. The cell membrane is defined as the interface between the intracellular and extracellular spaces and is denoted by Ŵ. Similarly, the intercalated discs

(purple) are denoted by Ŵg and are defined as the interface between neighboring cells. Each cell is shaped as a cylinder with a diameter increasing slightly toward the

center of the cell. (B) Illustration of the finite element mesh used to represent a single cell in the EMI model simulations.

junctions connecting neighboring cells (see, e.g., Tveito et al.,
2017a; Jæger and Tveito, 2021; Jæger et al., 2021c). For example,
for two connected cells 1 and 2, the EMI model can be extended
to include equations of the form

n2i · σi∇u2i = −n1i · σi∇u1i ≡ I1,2, atŴg , (8)

u1i − u2i = w, atŴg , (9)

I1,2 = Cg
∂w

∂t
+ Igap, atŴg , (10)

where Ŵg is the interface between the two cells (i.e., the
intercalated disc). Furthermore, u1i and u2i are the intracellular
potentials of the two cells, w is the potential difference between
the two cells, and n1i , and n2i are the outward pointing normal
vectors of the cells. In addition, Cg is the specific capacitance
of the intercalated discs (in µF/cm2), Igap is the current density
through the gap junction proteins located at the intercalated discs
(in µA/cm2), and I1,2 is the sum of the capacitive current density
over the intercalated discs and the current density through the
gap junction proteins connecting the two cells. The current
density through the gap junction proteins, Igap, is commonly
modeled using the simple passive model

Igap =
1

Rg
w = Ggw, (11)

whereRg is the specific resistance of the gap junctions (in k�cm2)
andGg is the corresponding specific conductance (in mS/cm2). A
further explanation of the coupling between two adjacent cells is
given in section 1.2.4 of Jæger and Tveito (2021).

2.2. Derivation of the Bidomain Model
From the EMI Model
Instead of using the detailed model (Equations 1–11), modeling
of the electrical activity of cardiac tissue is usually performed

using the homogenized bidomain and monodomain models.
In these models, the detailed geometry of the individual
cells and intercalated discs do not have to be represented in
the computational mesh because the intracellular space, the
extracellular space and the cell membrane are all assumed to
exist everywhere in the tissue. We will now describe a possible
derivation of the homogenized bidomain model from the EMI
model equations described above. Note, however, that more
rigorous versions of this derivation, using mathematical two-
scale homogenization, have also been presented (see, e.g., Neu
and Krassowska, 1993; Franzone et al., 2014; Henriquez and Ying,
2021).

2.2.1. Starting Point of the Derivation
Assume that we have a relatively large collection of cells, and
consider a small volume, 1, in this cell collection, as illustrated
in Figure 2A. We assume that this volume contains a number of
cells with an associated surrounding extracellular space, and that
the EMImodel equations apply in the extracellular domain, in the
intracellular domain, at the cell membrane and at the intercalated
discs in this small block of tissue.

Step 1: Approximating the Intracellular Conductivity
As a first step in the derivation, we wish to approximate the
intracellular conductivity to take both the purely intracellular
space and the gap junctions between neighboring cells into
account. In other words, we wish to reformulate the full EMI
model (Equations 1–11) to a system of the form

∇ · σ̄i∇ui = 0, in�i (12)

∇ · σe∇ue = 0, in�e (13)

ne · σe∇ue = −ni · σ̄i∇ui ≡ Im, atŴ, (14)

ui − ue = v atŴ, (15)

Im = Cm
∂v

∂t
+ Iion atŴ, (16)
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FIGURE 2 | Illustration of a tissue block, 1, containing a number of cells (orange) and a surrounding extracellular space (red). In Step 1 of the derivation we

approximate the discontinuous intracellular space (A) consisting of individual cells connected by gap junctions by a continuous intracellular space (B).

ue = 0 at ∂�D
e , (17)

∂ue

∂ne
= 0 at ∂�N

e , (18)

where σ̄i is the average conductivity of the intracellular
space including gap junctions. We wish to express σ̄i
such that the total intracellular resistance of a tissue
block is close to the total intracellular resistance of the
tissue block when the full EMI model (Equations 1–11)
applies. Such an expression for σ̄i is derived below in
section 2.3.3.

In the remaining part of the derivation we will treat the
intracellular domain as a continuous domain (see Figure 2B),
and assume that the simplified EMI system (Equations 12–18)
applies.

Step 2: Applying the Divergence Theorem
In the next step of the derivation, we consider the purely
intracellular part of the tissue block 1 and apply the divergence
theorem for σ̄i∇ui to obtain,

∫

∂�1
i

ni · σ̄i∇ui dS =

∫

�1
i

∇ · σ̄i∇ui dV , (19)

where �1
i is the intracellular space contained in the tissue block

and ∂�1
i is the boundary of the intracellular space contained

in the tissue block. This boundary can be separated into the
boundary between the intracellular space and the extracellular
space contained in the tissue block, i.e. the cell membrane,
and the intracellular part of the outer boundary of the tissue
block in each spatial direction. Rewriting the surface integral, we
obtain

∫

Ax,+
i

ni · σ̄i∇ui dS+

∫

Ax,−
i

ni · σ̄i∇ui dS

+

∫

A
y,+
i

ni · σ̄i∇ui dS+

∫

A
y,−
i

ni · σ̄i∇ui dS (20)

+

∫

Az,+
i

ni · σ̄i∇ui dS+

∫

Az,−
i

ni · σ̄i∇ui dS

+

∫

Ŵ1

ni · σ̄i∇ui dS =

∫

�1
i

∇ · σ̄i∇ui dV ,

where Ax,+
i is the intracellular part of the boundary of

the tissue block in the positive x-direction, Ax,−
i is the

intracellular part of the boundary of the tissue block in the

negative x-direction, and the surfaces A
y,+
i , A

y,−
i , Az,+

i , and

Az,−
i are defined similarly for the intracellular part of the

boundaries of the tissue block in the y- and z-directions.
Furthermore, Ŵ1 is the membrane contained in the tissue
block.

By applying the divergence theorem and similar definitions for
the extracellular space, we likewise obtain

∫

Ax,+
e

ne · σe∇ue dS+

∫

Ax,−
e

ne · σe∇ue dS

+

∫

A
y,+
e

ne · σe∇ue dS+

∫

A
y,−
e

ne · σe∇ue dS (21)

+

∫

Az,+
e

ne · σe∇ue dS+

∫

Az,−
e

ne · σe∇ue dS

+

∫

Ŵ1

ne · σe∇ue dS =

∫

�1
e

∇ · σe∇ue dV .
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Step 3: Applying the EMI Model Equations (12–(14)
By inserting Equations (12) and (13) into Equations (20) and
(21), we find that the right hand sides of Equations (20) and (21)
are zero. Moreover, by inserting Equation (14), we get

∫

Ax,+
i

ni · σ̄i∇ui dS+

∫

Ax,−
i

ni · σ̄i∇ui dS

+

∫

A
y,+
i

ni · σ̄i∇ui dS+

∫

A
y,−
i

ni · σ̄i∇ui dS (22)

+

∫

Az,+
i

ni · σ̄i∇ui dS+

∫

Az,−
i

ni · σ̄i∇ui dS−

∫

Ŵ1

Im dS = 0

for the intracellular part, and

∫

Ax,+
e

ne · σe∇ue dS+

∫

Ax,−
e

ne · σe∇ue dS

+

∫

A
y,+
e

ne · σe∇ue dS+

∫

A
y,−
e

ne · σe∇ue dS (23)

+

∫

Az,+
e

ne · σe∇ue dS+

∫

Az,−
e

ne · σe∇ue dS+

∫

Ŵ1

Im dS = 0

for the extracellular part.

Step 4: Extending the Variables and Parameters to Be

Defined Everywhere
In order to avoid having to represent the detailed geometry of
the cell tissue, we now define some new variables Ui, Ue, and
V that each are defined in the entire domain � = �i ∪ �e,
and thus also in the entire tissue block, 1. We want these
variables to fulfill the integral conditions specified in Equations
(22) and (23). In addition, we assume that the definitions of
the membrane potential and Im specified in Equations (15)
and (16) apply in the entire domain. In other words, in an
arbitrary tissue block, 1, of �, we seek solutions Ui, Ue, and
V such that

∫

Ax,+
i

n · σ̄i∇Ui dS+

∫

Ax,−
i

n · σ̄i∇Ui dS

+

∫

A
y,+
i

n · σ̄i∇Ui dS+

∫

A
y,−
i

n · σ̄i∇Ui dS (24)

+

∫

Az,+
i

n · σ̄i∇Ui dS+

∫

Az,−
i

n · σ̄i∇Ui dS−

∫

Ŵ1

Im dS = 0,

∫

Ax,+
e

n · σe∇Ue dS+

∫

Ax,−
e

n · σe∇Ue dS

+

∫

A
y,+
e

n · σe∇Ue dS+

∫

A
y,−
e

n · σe∇Ue dS (25)

+

∫

Az,+
e

n · σe∇Ue dS+

∫

Az,−
e

n · σe∇Ue dS+

∫

Ŵ1

Im dS = 0,

V = Ui − Ue, (26)

Im = CmVt + Iion. (27)

Here, n is the outward pointing normal vector of the tissue block,
and σ̄i, σe, Cm, Im and Iion have been extended to be defined in
the entire domain.

Step 5: Approximate the Surface Integrals
Since Im is now defined in the entire tissue block, and not just
on the membrane, the surface integral over the membrane can be
approximated by

∫

Ŵ1

Im dS ≈

∫

1

χIm dV , (28)

where 1 is the entire tissue block and χ is the membrane surface
to volume ratio, i.e., the surface area of the membrane contained
in 1 divided by the volume of 1.

In addition, the integrals in Equations (24) and (25) over
the outer boundary of the tissue block is separated into the
intracellular and extracellular parts of the tissue block, and in this
step of the derivation, we wish to approximate these integrals to
be defined over the entire tissue block boundaries. In order to do
this, we apply the approximation

∫

Ax,+
i

n · σ̄i∇Ui dS ≈ Āx
i

∫

Ax,+
n · σ̄i∇Ui dS, (29)

and similar approximations for the remaining surfaces. Here,
Āx
i is the average fraction of the cross-sectional area of the

tissue block perpendicular to the x-direction that is occupied by
the intracellular space and Ax,+ is the entire boundary of the
tissue block in the positive x-direction. Inserting this type of
approximation in all the integrals over the outer boundaries of
the tissue block, Equations (24) and (25) can be approximated as

∫

Ax,+
n · Āx

i σ̄i∇Ui dS+

∫

Ax,−
n · Āx

i σ̄i∇Ui dS

+

∫

Ay,+
n · Ā

y
i σ̄i∇Ui dS+

∫

Ay,−
n · Ā

y
i σ̄i∇Ui dS (30)

+

∫

Az,+
n · Āz

i σ̄i∇Ui dS+

∫

Az,−
n · Āz

i σ̄i∇Ui dS−

∫

1

χIm dV = 0,

∫

Ax,+
n · Āx

eσe∇Ue dS+

∫

Ax,−
n · Āx

eσe∇Ue dS

+

∫

Ay,+
n · Ā

y
eσe∇Ue dS+

∫

Ay,−
n · Ā

y
eσe∇Ue dS (31)

+

∫

Az,+
n · Āz

eσe∇Ue dS+

∫

Az,−
n · Āz

eσe∇Ue dS+

∫

1

χIm dV = 0.

Furthermore, we may define a set of scaled bidomain
conductivities,

σ̃ x
i = Āx

i σ̄
x
i , σ̃

y
i = Ā

y
i σ̄

y
i , σ̃ z

i = Āz
i σ̄

z
i , (32)

σ̃ x
e = Āx

eσ
x
e , σ̃

y
e = Ā

y
eσ

y
e , σ̃ z

e = Āz
eσ

z
e , (33)
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where σ̄ x
i , σ̄

y
i and σ̄ z

i and σ x
e , σ

y
e and σ z

e refer to the possible
directional dependence of σ̄i and σe. We also define the associated
bidomain conductivity tensors,

Mi =





σ̃ x
i 0 0

0 σ̃
y
i 0

0 0 σ̃ z
i



 , Me =





σ̃ x
e 0 0

0 σ̃
y
e 0

0 0 σ̃ z
e



 . (34)

By introducing these tensors, Equations (30) and (31) can be
rewritten as

∫

∂1

n · (Mi∇Ui) dS−

∫

1

χIm dV = 0, (35)

∫

∂1

n · (Me∇Ue) dS+

∫

1

χIm dV = 0, (36)

where ∂1 represents the entire outer surface of the tissue block.

Step 6: Reapply the Divergence Theorem for the New

Variables
We may now reapply the divergence theorem for the newly
defined variablesUi andUe defined in the entire tissue block. This
yields

∫

1

∇ · (Mi∇Ui) dV −

∫

1

χIm dV = 0, (37)

∫

1

∇ · (Me∇Ue) dV +

∫

1

χIm dV = 0. (38)

We also note that the volume1was chosen arbitrarily. Therefore,
the more general relation

∇ · (Mi∇Ui)− χIm = 0, (39)

∇ · (Me∇Ue)+ χIm = 0, (40)

holds.

Step 7: Rearranging the Terms and Inserting Equations (26)

and (27)
By rearranging Equation (39) and adding Equations (39) and
(40), these equations may be rewritten as

∇ · (Mi∇Ui) = χIm, (41)

∇ · (Mi∇Ui) + ∇ · (Me∇Ue) = 0. (42)

Finally, by inserting Equations (26) and (27), we obtain the
bidomain model equations

∇ · (Mi∇V) + ∇ · (Mi∇Ue) = χ

(

Cm
∂V

∂t
+ Iion

)

,

(43)

∇ · (Mi∇V) + ∇ ·
(

(Mi +Me)∇Ue

)

= 0, (44)

where we recall thatMi andMe are intracellular and extracellular
conductivity tensors (in mS/cm) defined in Equations (32)–(34),
χ is the membrane surface to volume ratio (in cm−1), Cm

is the specific membrane capacitance (in µF/cm2), Iion is the

current density through ion channels, pumps and exchangers
on the cell membrane (in µA/cm2) and V and Ue (in mV)
are the bidomain model membrane and extracellular potentials,
respectively, defined in the entire domain. Furthermore, the
intracellular potential (in mV) may be computed by

Ui = V + Ue. (45)

In addition, the boundary conditions

Ue = 0 at ∂�D, (46)

∂Ue

∂n
= 0 at ∂�N , (47)

are assumed to hold at the boundary of the domain where �D

coincides with the EMI model boundary �D
e , and �N coincides

with the EMI model boundary �N
e .

2.3. Expressions for the Bidomain Model
Parameters
The bidomain model as derived above introduces a set of new
parameters, namely the conductivity tensors, Mi and Me, and
the surface to volume ratio, χ . Considering their definitions,
values for these parameters may be derived from the geometry
and parameters of the EMI model. In this subsection, we suggest
an approach for making these definitions by considering an
EMI model mesh of a volume �, containing an intracellular
volume, �i, and extracellular volume, �e, a surface for the cell
membranes, Ŵ, and a collection of surfaces for the intercalated
discs, Ŵg . For simplicity, we assume that the value of all the
EMI model parameters and the tissue geometry do not vary
in different parts of the domain, so that the bidomain model
parameters can be treated as constants throughout the domain.
In addition, we assume that the total domain � = �i ∪ �e

is shaped as a rectangular cuboid with lengths Lx, Ly and Ly in
the x-, y- and z-directions, respectively. An alternative approach
for setting up the bidomain model conductivities from the EMI
model parameters and a simplified tissue geometry is presented
in Henriquez and Ying (2021).

2.3.1. Surface to Volume Ratio, χ

In order to compute the surface to volume ratio from an EMI
model mesh, we may simply compute

AŴ,� =

∫

Ŵ

1 dS, (48)

V� =

∫

�

1 dS, (49)

where AŴ,� represents the total membrane area in the domain
and V� represents the volume of the domain. Assuming an
even distribution of cells throughout the domain, the surface to
volume ratio can then be defined as

χ =
AŴ,�

V�

. (50)
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2.3.2. Average Cross-Sectional Area Fractions
We first consider the average intracellular fraction of the cross-
sectional area perpendicular to the x-axis, Āx

i . Let A
x(x) be the

cross-sectional area of � perpendicular to the x-axis, and let
Ax
i (x) be the fraction belonging to �i. Then

V�i =

∫ Lx

0
Ax
i (x)A

x(x) dx = Āx
i

∫ Lx

0
Ax(x) dx = Āx

i V�. (51)

Hence,

Āx
i =

V�i

V�

. (52)

Similar arguments yield

Āx
i = Ā

y
i = Āz

i =
V�i

V�

, (53)

Āx
e = Ā

y
e = Āz

e =
V�e

V�

=

(

1−
V�i

V�

)

. (54)

Here, V�i can be computed from the EMI model mesh as

V�i =

∫

�i

1 dS. (55)

2.3.3. Average Intracellular Conductivity
As described above, we wish to define an average conductivity
σ̄i such that the simplified EMI model (Equations 12–18) is a
good approximation of the full EMI model (Equations 1–11). In
particular, we wish to find a σ̄i such that the total intracellular
resistance of the simplified model is close to the total intracellular
resistance of the full model. To simplify this argument, we assume
that there is no capacitive current across the intercalated discs, i.e.
that the current between two cells is given by Igap (see Equation
11).

We start by considering the total resistance in the x-direction
of the domain. In the full EMI model (Equations 1–11) with
the capacitive current set to zero, this is given by the sum of
the resistance over the purely intracellular space (Rxc ) and the
resistance over the gap junctions (Rxj ) (Shaw and Rudy, 1997):

Rxi = Rxc + Rxj . (56)

The total resistance in the purely intracellular space is given by
(Plonsey and Barr, 2007)

Rxc =
Lx

σiĀ
x
i LyLz

, (57)

where Āx
i LyLz is the average intracellular cross-sectional area of

the domain perpendicular to the x-direction. Assuming that the
cells are organized as a regular grid in the x-, y- and z-directions,
the total resistance through gap junctions in the x-direction is
given by

Rxj =
(Nx − 1)Rg

NyNzA
x
j

, (58)

where Rg is the specific gap junction resistance (in k�cm2), as
it appears in the full EMI model, Ax

j is the area of a single

intercalated disc perpendicular to the x-direction and Nx, Ny,
and Nz are the number of cells in the x-, y-, and z-directions,
respectively. Thus, Nx − 1 is the number of intercalated disc
collections along the length of the domain in the x-direction,
NyNz is the number of intercalated disc for each such collection,
and NyNzA

x
j is the total cross-sectional area of each of the

intercalated disc collections.
In the simplified model (Equations 12–18), the total resistance

is given by (Plonsey and Barr, 2007)

Rxi =
Lx

σ̄ x
i Ā

x
i LyLz

. (59)

Therefore, in order for the total resistance to be the same in the
two formulations, we wish σ̄ x

i to satisfy

Lx

σ̄ x
i Ā

x
i LyLz

=
Lx

σiĀ
x
i LyLz

+
(Nx − 1)Rg

NyNzA
x
j

, (60)

which yields

σ̄i
x
=

σi

1+
σiRg (Nx−1)Āx

i LyLz
LxNyNzA

x
j

. (61)

From the EMI model mesh, we may compute

Ax
j,� =

∫

Ŵx
g

1 dS, (62)

as the total area of all intercalated discs perpendicular to the
x-direction, Ŵx

g . Since Ax
j is defined as the area of a single

intercalated disc perpendicular to the x-direction, we note that

Ax
j =

Ax
j,�

(Nx − 1)NyNz
, (63)

where (Nx − 1)NyNz is the total number of intercalated discs
in the x-direction. Inserting Equations (63) into Equation (61)
yields

σ̄ x
i =

σi

1+
(Nx−1)2Āx

i LyLzσiRg
LxA

x
j,�

. (64)

We also note that from Equation (52), we have that

Āx
i =

V�i

V�

=
V�i

LxLyLz
⇒ Āx

i LyLz =
V�i

Lx
, (65)

and inserting this into Equation (64), we obtain

σ̄ x
i =

σi

1+
σiRgV�i

δ2xA
x
j,�

. (66)
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where δx = Lx/(Nx − 1). Similar arguments for the y- and
z-directions result in

σ̄
y
i =

σi

1+
σiRgV�i

δ2yA
y
j,�

, (67)

σ̄ z
i =

σi

1+
σiRgV�i

δ2zA
z
j,�

. (68)

Since

σ̄ x
i

σ̄
y
i

=

1+
σiRgV�i

δ2yA
y
j,�

1+
σiRgV�i

δ2xA
x
j,�

, (69)

the anisotropy is governed by the difference between δ2xA
x
j,� and

δ2yA
y
j,�, and similar for the other combination of axes.

2.3.4. Intracellular Conductivity Tensor
Inserting Equations (52) and (66)–(68) into Equation (32), we get

σ̃ x
i = Āx

i σ̄
x
i =

V�i

V�

σi

1+
σi(Nx−1)2RgV�i

L2xA
x
j,�

, (70)

σ̃
y
i = Ā

y
i σ̄

y
i =

V�i

V�

σi

1+
σi(Ny−1)2RgV�i

L2yA
y
j,�

, (71)

σ̃ z
i = Āz

i σ̄
z
i =

V�i

V�

σi

1+
σi(Nz−1)2RgV�i

L2zA
z
j,�

. (72)

2.3.5. Extracellular Conductivity Tensor
The extracellular conductivity tensor can be found directly from
the cross-sectional area fractions and we get

σ̃ x
e = σ̃

y
e = σ̃ z

e =
V�e

V�

σe =

(

1−
V�i

V�

)

σe. (73)

3. RESULTS

In order to compare the EMI model with the homogenized
bidomain model, we set up a few example applications and
perform numerical simulations of the two models. Note here that
all EMI model simulations are performed in three dimensions
(3D), whereas the bidomain model simulations are performed in
two dimensions (2D) or one dimension (1D).

3.1. Simulation Set-Up
In our numerical simulations of the EMI model, we consider
collections of cells shaped as cylinders with a slightly varying
diameter. In all simulations, except for the ones where the cell
length is varied and is explicitly specified, each cell is 120µm long
(in the x-direction) and has a radius varying from 6µm at the cell
ends to 7 µm at the center of the cell (see Figure 1). We let the
distance from the boundary of the extracellular space to the cell
collection be 2 µm in all spatial directions. The parameter values
used in the simulations are specified in Table 1. The parameters

TABLE 1 | Default parameter values used in the simulations.

Parameter Value Parameter Value

σi 4 mS/cm σe 20 mS/cm

Cm 1 µF/cm2 Cg 0.5 µF/cm2

Rg 0.0015 k�cm2

The bidomain model parameters Mi , Me and χ are computed from the EMI model

parameters and mesh as described in section 2.3.

used in the bidomain model are computed from the EMI model
parameters and mesh as described in section 2.3.

All EMI model simulations are performed in 3D. However,
for our example test cases with a 1D strand of cells and a 2D
grid of cells, we use 1D and 2D versions, respectively, of the
bidomain model. In the simulations of a 1D strand of cells,
we apply homogenous Neumann boundary conditions on the
outer boundary of the extracellular domain in the y- and z-
directions and homogenous Dirichlet boundary conditions in
the x-direction. In the simulations of a 2D grid of cells, we
apply homogenous Neumann boundary conditions on the outer
boundary of the extracellular domain in the z-direction and
homogenous Dirichlet boundary conditions in the x- and y-
directions.

3.2. Numerical Methods
The EMI model simulations are performed using the operator
splitting procedure described in Jæger et al. (2021c,d), the
numerical methods applied to (Jæger et al., 2021d) and the
MFEM C++ finite element method library (Anderson et al.,
2020; MFEM, 2021). For details on the numerical methods
applied to solve the EMI model, we refer to Jæger et al.
(2021a,c,d). The bidomain model simulations are performed in
Matlab using a first-order temporal operator splitting procedure
as described in Sundnes et al. (2006), where the ordinary
differential part of the equations is solved using forward Euler
and the partial differential part of the equations is solved using
an implicit finite difference scheme. Unless otherwise specified,
we use a time step of 1t = 0.001 ms in the simulations of
both models. In the bidomain model simulations, we use a spatial
discretization of 1x = 1y = 10 µm, roughly matching the
typical edge length in the applied EMImodel finite elementmesh.

3.3. 1D Strand of Cells With a Passive
Membrane Model
We first consider an example with a 1D strand of cells connected
in the longitudinal direction (x-direction). The total length of the
cell strand is 2 mm and we consider a number of different choices
for the length of a single cell (and the associated total number of
cells). In addition, we vary the value of the specific gap junction
resistance, Rg . The membrane dynamics, Iion, is modeled by a
simple passive membrane model

Iion =
1

Rm
(v− v0), (74)

where Rm = 5 k�cm2 is the specific membrane resistance and
v0 = −80 mV is the resting membrane potential. We stimulate
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FIGURE 3 | Intracellular potential, ui , at time t = 20 ms in EMI model and bidomain model simulations using a passive membrane model (Equation 74) and the default

parameter values specified in Table 1, except that the value of Rg is increased by the factor indicated by the column titles. In addition, the cell length (Lcell ) is varied as

described for each row of plots.

the first (leftmost) 400 µm of membrane in the x-direction
by a constant stimulus current of size −10 µA/cm2. Figure 3
shows the intracellular potential at time t = 20 ms along a
line in the x-direction in the center of the domain for the EMI
model and the associated solution of the bidomain model for
a few combinations of cell length and Rg values. We observe
that for small cells (lower panels), the solution of the bidomain
model is in very good agreement with the results of the EMI
model. However, if the cell size is increased, and the gap junction
resistance is increased, there is a significant difference between
the results of the EMI model and the bidomain model.

3.4. 1D Strand of Cells With an Active
Membrane Model
Next, we consider an example with a 1D strand of 20 cells of
length 120 µm with an active membrane model, modeled by the
human left atrial basemodel from Jæger et al. (2021b).We initiate

a traveling wave by stimulating the first 360µmof cell membrane
in the x-direction (corresponding to three cardiomyocytes) by
a 1 ms long constant stimulus current of size −40 µA/cm2.
We measure the conduction velocity as the distance between a
point a in the center of the domain in the x-direction and a
point b located at 4/5 of the total domain length, divided by
the difference in time between when the membrane potential
in these two points reach a value above −20 mV. Using the
default parameter values specified inTable 1, we get a conduction
velocity of 50.8 cm/s in the bidomain model simulation. This is
close to the value found in the EMI model simulation, which is
53.3 cm/s.

In Figure 4, we further investigate the relationship between
the conduction velocity found in the bidomain and EMI model
simulations when Rg is increased, representing reduced cell
coupling. We consider two different discretization resolutions,
the default resolution of 1t = 0.001 ms and 1x ∼ 10 µm
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FIGURE 4 | Conduction velocity as Rg is increased in EMI model and bidomain model simulations of a strand of 20 connected cells with an active membrane model

(Jæger et al., 2021b). The values on the x-axis represent the factor with which the default Rg value in Table 1 is multiplied. The remaining parameter values are as

specified in Table 1. Note that the plot is separated into three panels in order to improve the visibility of the data. Note also that we consider two different discretization

resolutions in the simulations of each model. In the default case, 1t = 0.001 ms and 1x in the bidomain model and the typical edge length in the EMI model is 10 µm,

whereas in the refined case (dashed lines), both the spatial and temporal discretization steps are reduced to half of the default values.

and a refined resolution of 1t = 0.0005 ms and 1x ∼

5 µm. We observe that for values of Rg relatively close to the
default value, the conduction velocities found in simulations
of the bidomain and EMI models are very similar. However,
when Rg is considerably increased, the difference between the
two model formulations appears to be more significant and the
conduction velocity is considerably higher in the bidomainmodel
simulations than in the corresponding EMI model simulations.
Furthermore, we observe that for the EMI model, conduction
is blocked when Rg is increased by a factor larger than about
2,000, whereas for the bidomain model, Rg can be increased
by a factor of about 20,000 before conduction is blocked for
the default resolution and conduction is not blocked for the
considered values of Rg for the refined resolution. In addition,
we note that the simulations of refined resolution appears to give
very similar conduction velocities as for the default resolution in
the EMImodel simulations. For the bidomainmodel simulations,
the two resolutions give very similar results for the first range of
Rg values, but as the Rg value is severely increased, we can observe
a difference between the two resolutions.

3.5. 2D Grid of Cells With an Active
Membrane Model
Next, we consider a case of a grid of 25×25 connected
cells with the same active membrane model as for the 1D
strand simulations. We stimulate the membrane of an area
corresponding to the 5×5 cells in the lower left corner by the
same stimulation current as in the 1D case. Figure 5 shows
the membrane potential, v, and the extracellular potential, ue,
from the EMI model and bidomain model simulations using the
default parameter values specified in Table 1 at time t = 5 ms.
The solution of the two models appears to be very similar.
However, in Figure 6, we have performed a similar simulation
where Rg is increased by a factor of 200. We consider the solution
at t = 20 ms and observe that the traveling excitation wave has
clearly traveled faster and reached further in the bidomain model

simulation than in the EMImodel simulation, consistent with the
results of Figure 4.

4. DISCUSSION

The bidomain model continues to provide essential insights into
cardiac conduction and how the electrochemical dynamics of the
heart is affected by blocking ion channels (see, e.g., Zemzemi
et al., 2013; Sharifi, 2017), increasing gap junction resistance
(see, e.g., Roth, 1988; Bruce et al., 2014), introducing ischemia
(see, e.g., Stinstra et al., 2004, 2005; Heidenreich et al., 2012)
or performing defibrillation (see, e.g., Skouibine et al., 2000;
Trayanova et al., 2006, 2011; Quarteroni et al., 2017). However,
as almost any model, its utility is limited by the inherent
resolution of the model. It is useful for understanding cardiac
conduction at the tissue level, but it cannot be applied for analyses
of conduction close to individual cardiomyocytes. Therefore,
detailed models representing individual myocytes have been
developed.

Here, we show that the bidomain model can be derived
directly from the cell-based EMImodel. Classically, the bidomain
model is derived using elegant homogenization techniques (see
Neu and Krassowska, 1993; Henriquez and Ying, 2021). In the
derivation presented here, the deviation between the properties
of the bidomain model and the EMI model is seen directly as
part of the derivation. In short, the advantage of the present
derivation is that it is more straightforward to follow and that
it gives indications of where the deviations in the results between
the two models stem from.

4.1. Source of Difference Between EMI and
Bidomain Solutions
There are essentially three steps in the derivation of the
bidomain model where approximations are introduced and thus,
most likely, are responsible for the difference in the solutions
of the two models. First; the resistance of the intracellular
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FIGURE 5 | Membrane potential, v, and extracellular potential, ue, at time t = 5 ms in EMI model and bidomain model simulations using the default parameter values

specified in Table 1 and an active membrane model (Jæger et al., 2021b). This simulation required a CPU time of 132 min for the EMI model and 2 min for the

bidomain model.

FIGURE 6 | Membrane potential, v, and extracellular potential, ue, at time t = 20 ms in EMI model and bidomain model simulations using and active membrane

model (Jæger et al., 2021b) and the default parameter values specified in Table 1, except that the value of Rg is increased by a factor of 200.
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space and the gap junctions are combined into one common
and averaged resistance. Second, the average of a function
over a volume is approximated by the average of the same
function over the surface of the volume. Third, the average
of a function on a surface is approximated by the average of
the same function on an extended surface. It is beyond the
scope of this paper to perform a detailed analysis of these
deviations, but based on these observations, it comes as no
surprice that the error becomes smaller when the cell size is
reduced.

4.2. Differences and Similarities
The EMI model and the bidomain model provide remarkably
similar results when the parameters of importance for the
conduction velocity are in the normal range. It is safe to claim
that the bidomain model represents normal cardiac conduction
very well if the scale of interest contains many cells. Certainly,
the bidomain model cannot be used to study conduction in the
vicinity of individual cells, and it also runs into difficulties for
large cells combined with high values of resistance across the gap
junctions. It is observed that the bidomain model consistently
overestimates the conduction velocity. For normal parameters,

the difference is small, but for strongly increased resistance
across the gap junctions, the bidomain model significantly
overestimates the conduction velocity.
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