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The neuroimmune system plays a crucial role in the regulation of mood disorders.

Moreover, recent studies show that brain-derived neurotrophic factor (BDNF), a member

of the neurotrophin family, is a key regulator in the neuroimmune axis. However, the

potential mechanism of BDNF action in the neuroimmune axis’ regulation of mood

disorders remains unclear. Therefore, in this review, we focus on the recent progress of

BDNF in influencing mood disorders, by participating in alterations of the neuroimmune

axis. This may provide evidence for future studies in this field.
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INTRODUCTION

Mood disorders are one of the most common mental disorders in the world, especially in western
society. Epidemiological studies have found that there are approximately 350 million people
affected by depression in the world, and the number is increasing year on year (1, 2). According
to the results of the global burden of disease study, years lost to disability of depression ranks
first among the top 10 disabling diseases in the world (3). The main clinical features are marked
by consistent emotional upsurge or depression, often accompanied by corresponding changes in
thinking and behavior (4). The performance of mood disorders is highly variable. Lighter ones
may respond to certain negative life events, while heavier ones may become a seriously recurrent
or even chronic disabling disorder. Clinically, mood disorders can be divided into four types:
depressive episode, manic episode, bipolar disorder, and a persistent mood disorder. It not only
brings severe mental pain to patients but also leads to other diseases, such as heart disease and
cerebrovascular diseases. However, the pathogenesis of mood disorders is still unclear, so it is
difficult for patients to be cured. Although mood disorders can currently be treated with drugs,
psychotherapy or a combination thereof, the efficacy is limited and side effects may also occur
(5, 6). It is therefore necessary to explore the etiology and mechanism of mood disorders to treat
and prevent mood disorders.

There are many theories about the nosogenesis of depression disorder, such as monoamine
neurotransmitter hypothesis, hypothalamus-pituitary-adrenal (HPA) axis dysfunction,
neurotrophic hypothesis and cytokine hypothesis (7, 8). In recent years, more and more
studies have focused on the relationship between mood disorders and neuroimmune regulation
(9). Many neurotrophins are associated with the pathogenesis of mood disorders, such as the
nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) (10, 11). Several
studies have shown that BDNF may be indispensable to the neuroimmune regulation of mood
disorders. However, the potential mechanism for BDNF to affect mood disorders, by participating
in changes in the neural-immune axis, has not been elucidated. In this review, we summarize
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the latest progress in the role of BDNF in the neuroimmune axis
regulation of mood disorders. It may provide new ideas for the
research and treatment of mood disorders in the future.

BDNF AND MOOD DISORDERS

BDNF, an important member of the neurotrophic factor family,
is a protein synthesized in the brain and widely distributed in the
central nervous system (CNS), as well as the peripheral nervous
system (12). It can promote the survival, growth, differentiation,
and development of neurons and plays a crucial role in the
neural structure and functional plasticity (13, 14). A large number
of human and animal studies have implicated the close links
between BDNF and the occurrence and treatment of various
diseases, including schizophrenia (15), Alzheimer’s disease
(16, 17), mood disorders (18), and Parkinson’s disease (19).

Studies About BDNF in Depression
The neurotrophic hypothesis suggests that pathological changes
in brain areas associated with depression, are closely related
to BDNF expression and functional down-regulation (20).
Animal models of depression suggest the vital function of
BDNF in the pathophysiological mechanism of depression. In
animal experiments, chronic stress and depression conditions
decreased BDNF expression, increased apoptosis and decreased
regeneration of neurons in the hippocampus, and also decreased
BDNF expression in other parts of the brain (21, 22). However,
whether these speculations apply to humans still remain to
be tested in clinical studies. A large number of clinical
studies have found that various kinds of stress can reduce
the activity of the BDNF pathway in the hippocampus and
prefrontal cortex (23–25). The postmortem studies of Karege
et al. (26) reported that the analysis of brain tissue samples
from patients with depression after self-killing found that
BDNF and TrkB expression in the hippocampus decreased.
Moreover, in the hippocampus of patients who have received
antidepressant treatment before their death, BDNF and TrkB
expression increased (26). The vast majority of studies have
found abnormally lower serum BDNF levels in patients with
depression than that of people without depression (25, 27,
28). Ristevsk-Dimitrovska et al. found that the serum BDNF
level of depressed patients was lower than that of the control
group (29), while significantly higher BDNF levels were found
after antidepressant treatment (24). A meta-analysis showed
that the serum or plasma BDNF increased during treatment
in severe mental illness inpatients, but was not restored (18).
Treatment with an antidepressant, Agomelatine, could increase
the hippocampal BDNF level and BDNF positive neurons in
CUMS rats (30). Kreinin et al. found that the serum BDNF
level was positively correlated with depression in women with
severe MDD, which further supported the role of BDNF in the
pathogenesis and treatment of MDD (31). Moreover, increased
BDNF levels suggests that BDNF may serve as a marker for a
therapeutic response to ECT in MDD patients (32). Thus, it has
been speculated that BDNF may be a biomarker of depression.
But to understand the role of BDNF in depression, it is also
necessary to further clarify the regulatory factors affecting BDNF

expression, namely the upstream and downstream signaling
pathways of BDNF in the nervous system.

BDNF and Neurotransmitters in Depression
The monoaminergic hypothesis is also one of the most important
hypotheses to study in the pathogenesis of depression. It points
out that depression may be caused by low levels of monoamine
neurotransmitters in the brain (33). Meanwhile, the function of
BDNF is closely related to the plasticity of 5-HT, choline lipids,
DA neurons and the survival of central neurons. For example,
BDNF could promote the regeneration of 5-HT neurons in the
CNS, so the large consumption of 5-HT in the CNS reduces
the BDNF level, which leads to the atrophy and death of nerve
cells, affects neural plasticity, and thus aggravates depressive
symptoms (34). In addition, the regulatory effect of BDNF on the
5-HT2A receptor level is also an important mechanism of BDNF’s
role in affective disorder (35). A study suggested that BDNF
was implicated in the neuroprotective effects of the selective
5-HT1A receptor agonist, 8-OH-DPAT, against CA1 neurons
apoptotic death after transient global cerebral ischemia (36).
BDNF also plays an essential role in the mesolimbic DA pathway.
Studies have shown that the blockade of BDNF activity in the
ventral tegmental area-nucleus accumbens pathway exerts an
antidepressant-like activity in rodent models of stress (37–39).
BDNF controls the expression of the D3 receptor in part of the
brain, and induction of BDNF by antidepressant treatments is
associated with its behavioral activity (40).

Signaling Pathway of BDNF in Depression
Tyrosine receptor kinase B (TrkB), a member of the tyrosine
kinase family, can specifically bind to BDNF with a high
affinity (41). Comprehensive research has indicated that
BDNF is involved in the regulation of CNS, mainly by
binding to TrkB (Figure 1). BDNF activates intracellular
tyrosine kinase activity by binding to TrkB, causing the
autophosphorylation of TrkB, thereby activating the mitogen-
activated protein kinase (MAPK) pathway, the phospholipase
C-gamma (PLC-γ) pathway, the phosphatidylinositol 3-kinase
(PI3K) pathway, and other signaling pathways (42). Finally,
CREB is activated at the Ser133 site of the cAMP response
element binding protein (CREB). CREB promotes the survival
of nerve cells and increases synaptic plasticity and neurogenesis
by boosting the expression of the BDNF and BCL-2 genes
(43). BDNF-TrkB not only affects the survival, development,
and functions of neurons but also promotes the formation
of the dendritic spine, provides a structural basis for synapse
formation and improves the transmission efficiency of synapses.
BDNF/TrkB signaling has a major impact on the production
of antidepressant effects (44). Knock-out of the BDNF gene
or the reduction of the levels of BDNF in the forebrain
blocks the behavioral effects of antidepressants (45). In recent
years, more and more studies have found that antidepressants
might play an anti-depressant role by up-regulating brain
BDNF levels or activating TrkB receptors. Song et al. found
that silibinin mitigated the depression-like symptoms of Aβ1-
42-treated rats by decreasing the BDNF/TrkB expression,
suggesting the role of the BDNF/TrkB signaling pathway in the
activity of antidepressants (46). Likewise, sesquiterpenoids from
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FIGURE 1 | The role of BDNF in depression. Arrows indicate activation; T-shaped arrows indicate inhibition. Akt, serine/threonine protein kinase; BDNF, brain-derived

neurotrophic factor; CaM, calmodulin; CaMK, calcium-calmodulin-dependent protein kinase; CREB, cAMP response element-binding protein; DAG, diacylglycerol;

ERK, extracellular signal-regulated kinase; IP3, inositol 1,4,5-trisphosphate; MEK, mitogen-activated extracellular signal-regulated kinase; PKC, protein kinase C;

PI3K, PI-3 kinase; PLC-γ, phospholipase-Cγ; RSK, ribosomal S6 kinase; TrkB, tyrosine kinase B.

ginseng root treatment, ameliorate depression-like behaviors
induced by LPS by upregulating the BDNF/TrkB Pathway (47).
The BDNF-TrkB pathway in the nucleus accumbens of α7
nACHR knockout mice was demonstrated to be up-regulated,
which was considered to be involved in their depression-
like behavior (48). The antidepressant role of fisetin was
confirmed by Wang et al. which was achieved by activating
TrkB rather than regulating its overall level (49). All of
these studies suggest that BDNF and the mediated TrkB
signaling pathwaymay provide new approaches for the treatment
of depression.

The N-methyl-D-aspartic acid receptor (NMDA receptor)
is associated with depression. NMDA receptor antagonism
has a significant antidepressant effect. On the one hand, it
exerts its antidepressant effect by inhibiting NMDA receptors,

which not only promote the establishment of new synaptic
connections but also restore the synaptic connections caused

by stress damage. On the other hand, antagonizing the NMDA

receptor also activates the AMPA receptor, which provides a
fast antidepressant effect through its signaling pathway. This
provides a newmethod in the treatment of traditional depression
(50). BDNF may play a role through the NMDA receptor.
BDNF enhances the AMPA-dependent synaptic signaling in
the hippocampus through downstream pathways mediated by
NMDA receptors (51). Wang et al. enhanced the BDNF/TrkB
signaling pathway by means of transcranial magnetic stimulation
(TMS). At the same time, the activity of the NMDA receptor in
the cerebral cortex was strongly correlated with the degree of
TrkB activation (52). In cultured hippocampal neurons and rat
neocortical cells, the activation of TrkB or chronic administration

of BDNF can enhance the expression of the NMDA receptor
NR1 andNR2A/2B through transcriptional activation. BDNF can
also promote the release of glutamate through the presynaptic
receptor signal transduction pathway, and enhance the AMPA
receptor and NMDA through the postsynaptic receptor pathway
and then participate in and promote the formation of LTP
(53). Duncan et al. through a study of 30 depressive patients
treated with ketamine, found that the antidepressant effect of
ketamine might be due to the enhancement of inter-synaptic
communication by BDNF (54).

Effects of Antidepressants on BDNF
In recent years, the major clinical antidepressants are
monoamine oxidase inhibitors, tricyclic inhibitors, and
tetracyclic inhibitors (55, 56). Some clinical studies suggest
that antidepressant therapy for a period of time could reverse
the decrease of peripheral BDNF levels of depressed patients.
Serum BDNF levels of depressed patients taking SSRIs were
markedly higher than that of the control group and depressed
patients not taking SSRIs (57). Treatment with venlafaxine or
paroxetine also increased BDNF in patients with depression
(58). However, whether all antidepressants affect BDNF levels,
remains controversial. A meta-analysis showed that the level of
peripheral BDNF increased during antidepressant treatment of
SSRIs and SNRIs, among which sertraline could improve the
BDNF level after short-term treatment (59). Treatment with
fluoxetine (SSRI) was found to alter BDNF levels in patients with
depression, whereas venlafaxine did not (60). Freire et al. found
that neither the combined group, nor the pharmacological group
resulted in the increase of the serum BDNF level in patients with
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depression, although both significantly improved the depressive
symptoms of patients (61). These studies indicate that different
antidepressants may have different effects on the peripheral
BDNF during treatment.

NEURO-IMMUNE AXIS AND MOOD
DISORDERS

Neuro-Immune Axis
Nowadays, plenty of research has been conducted on the
interaction between the central nervous system and immune
system. It is neurogenic inflammation that determines whether
the immune response is caused by a local threat, through the
connection of nerve fibers to immune cells. In recent research, a
CNSwith complicated innate immune responses is demonstrated
to have high immunocompetence (62). Microglia, resident
immune cells within the brain parenchyma, can secrete some
soluble factors, such as chemokines, cytokines, and neurotrophic
factor, to adjust the CNS immune response and tissue repair
(63). In addition, astrocytes also play an essential role in central
immunity. They respond to an inflammatory environment not
only in an immunological way by changing their cell phenotype,
but also modulate the immune response of lymphocyte in the
brain by releasing associated protein molecules, like chemokines
and cytokines (64).

Some immune cells, such as non-specific leucocytes and
lymphocytes, produce neurotransmitters and neuropeptides.
Opioids may serve as an example. It is suggested that opioids are
secreted in inflammatory tissues and act to alleviate clinical pain
under stress by activating peripheral opioid receptors (65). There
are also some neurotrophins produced by activated lymphocytes,
such as BNDF and NGF (66, 67). In turn, non-specific leucocytes
and lymphocytes can also express classic neuronal receptors.
For example, the activated non-neuron A7 nicotinic cholinergic
receptor has anti-inflammatory and immunomodulatory effects
on multiple cell types, T cells, B cells, dendritic cells, and
mononuclear phagocytes included (68).

Cytokines, chemokines and their receptors were reported
to express on the central and peripheral nervous systems. For
instance, IFN-α not only affected CNS directly but also had an
indirect action through inflammatory cytokines of the central
and peripheral nervous systems (69). Previous studies found
that interleukin and chemokine receptors, which participated
in neuronal inflammation and CNS diseases, were expressed by
neurons (70). Cytokines like interleukin-1β (IL-1β), interleukin-
6 (IL-6) and tumor necrosis factor-α (TNF-α) could influence
the behavior, by directly functioning in the nervous system.
Cytokines are conducive to the growth and function of the brain
and regulate neural activity and neurotransmitter systems, which
result in behavioral changes. Chronic exposure to high levels
of inflammatory cytokines and constant alterations of central
neurotransmitters may contribute to psychiatric disorders like
schizophrenia and mood disorders (71, 72). Cytokines induce
behavioral effects by activating inflammatory signaling pathways
in the brain, leading to the reduction of growth factors such as
BDNF for instance (72).

Cytokines and Depression
In recent years, studies have found that immune dysfunction was
closely related to depression, and pro-inflammatory cytokines
produced by innate immune activation were especially closely
related to the occurrence and development of depression.
Therefore, the hypothesis of cytokine is gradually proposed. The
cytokine hypothesis suggests that depression is an inflammatory
disease caused by neuroimmune regulation disorders,
emphasizing that the body’s immune system plays an important
role in depression. Cytokines are intercellular information
transfer molecules, which mainly have immunomodulatory and
multiple effector functions. Different cytokines play different
roles in inflammation. Some have proinflammatory effects, while
others have anti-inflammatory effects. For instance, IL-1β, IL-6,
and tumor necrosis factor α (TNF-α) are relatively advanced
proinflammatory cytokines, while IL-4 and IL-10 is the main
area of research in anti-inflammatory cytokines. Clinical studies
have shown that patients with depression were often associated
with varying degrees of inflammatory activation or increased
inflammatory molecules, suggesting that the occurrence of
depression might be closely related to cytokines (73, 74).

Studies About Cytokines in Depression
This hypothesis has been supported by a large number of
clinical cases in recent years: patients with autoimmune diseases
and chronic viral infections often showed depressive symptoms
(75, 76). Autopsy studies have found that cytokines were
significantly increased, as well as the synthesis of carbon
monoxide synthase in macrophages, microglia, and astrocyte
(77). A number of studies have indicated that various cytokines,
such as IL-1β, IL-2, IL-6, TNF-α, and IFN-γ in serum or
plasma of patients with depression were significantly increased
(78). The results of the meta-analysis showed that the levels
of inflammatory factors in patients with depression, including
IL-1, IL-6, and TNF-α, were significantly higher than those of
healthy people and in positive relevance to the serious extent of
depressive symptoms (79–81), and antidepressants could lower
these cytokines in people with depression (82). According to
the study of the cytokine overview, Zou et al. found that the
expression of IL-1, IL-10 and TNF in MDD patients increased
significantly, while the expression of IL-8 decreased significantly.
Such aberrant changes in the levels of inflammatory cytokines
demonstrated that it is depression that activates the inflammatory
process (83). Animal studies have also shown that the levels of
IL-1β, IL-6, and TNF-α in the brain increased significantly after
lipopolysaccharide treatment, as well as depressive behaviors,
such as sleep disorders, loss of pleasure, and insufficiency of
power (84). Depressive behaviors of animals were blocked after
injecting IL-1 receptor antagonist IL-1rA into animals before
stress (85). The results suggested that inflammatory pathways
might be involved in the development of depression.

Actions of Cytokines in Depression
People realize that there is a two-way effect between immunity
and nerves. Both physiological and psychological stress can
activate the immune system and make the cytokines secreted,
and then influence the central nervous system, such as
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neurogenesis, neurotransmitter level, neuroendocrine function,
neuroplasticity, and behavior related neural pathways (86–88).
It leads to changes in the neurochemistry and endocrinology
associated with depression and influences the development
of depression. Cytokines can promote oxidative stress and
damage glial cells in emotionally related brain regions, such
as the prefrontal cortex and amygdala (89). In addition,
dysfunctions of glutamate-induced by cytokine can reduce
the generation of neurotrophic factors (88). Under stress,
the increase of proinflammatory cytokines in the human
body activates the indolamine 2,3- dioxygenase (IDO), an
enzyme that can directly act on the metabolism of tryptophan
(TRP). IDO can increase the level of kynurenine produced
by TRP metabolism, thereby reducing the level of 5-HT and
promoting the occurrence of depression (90). Cytokines are
also momentous to the dysfunction of the HPA axis. They
induce the hyperactivity of the HPA axis to increase the
glucocorticoid for a long time, and the abnormal glucocorticoid
signal can affect the production, maintenance, and development
of depressive behaviors (91). At the same time, these cytokines
and excess glucocorticoids also inhibit nerve regeneration in
the brain. Cytokine signaling pathways, for example NF-kB,
can disrupt the function and expression of glucocorticoid
receptors, leading to an unrestricted inflammatory response,
further exacerbating depressive symptoms (92). Additionally,
cytokines can also contribute to depression by influencing neural
plasticity. Ben et al. confirmed that IL-1 could inhibit neuronal
regeneration, and inflammatory cytokines—IL-6, as an example,
could disrupt neuronal function (93). Currently, though the
causal relationship between cytokines and depression is still
considered controversial, it is undeniable that the negative
regulation of neuroplasticity in the brain has a significant impact
on the developmental progress of depression. Furthermore, the
study also shows that abnormally changed levels of cytokines are
associated with an increased risk of delirium and suicide (94–96).

Immune Regulation and Antidepressant
Effects
Some anti-inflammatory drugs have antidepressant effects or
enhance antidepressant effects. Studies have shown that the
anti-inflammatory drug COX-2 inhibitors could directly or
indirectly affect the 5-HT system through the CNS and play
an antidepressant effect. Giving rats a dose of rofecoxib can
increase the level of 5-HT in the prefrontal and parietal cortex
(97). Celecoxib in depressed rats was found to decrease cytokine
levels and improve behavior in the hypothalamus (98). Through
the drug combinations of celecoxib with antidepressants, such
as reboxetine, fluoxetine, and sertraline, it was found that
the combined group was better than an antidepressant alone
in patients with depression (99–101). Etanercept, a kind of
tumor necrosis factor (TNF- α) antagonist, also has a strong
antidepressant effect, which can improve depression symptoms
and patient fatigue (102). Many other clinical cases show
that antidepressants can reduce proinflammatory cytokines
and other inflammatory markers in patients (103). Tricyclic
antidepressants, SSRI, SNRI, and other antidepressants have
been shown to increase anti-inflammatory immunomodulatory
cytokine levels by inhibiting inflammatory cytokines and th1-like

cytokines (such as IFN-γ). Réus et al. revealed that imipramine,
an antidepressant, could reduce the levels of TNF-α and IL-1β
in cerebrospinal fluid of maternally deprived adult rats (104).
Studies have shown that some non-pharmacological treatments
can also improve depressive symptoms by regulating immune
inflammatory pathways. Kim et al. believe that acupuncture
can reduce the levels of peripheral and central proinflammatory
factors (IL-1, IL-6, TNF- α) and proinflammatory neuropeptides,
and the results are better in the treatment of depression (105).
In addition, exercise can play a synergistic role by inhibiting the
immune and inflammatory pathways (106).

BDNF, NEUROIMMUNE AXIS, AND MOOD
DISORDERS

BDNF is a relatively mature neurotrophic factor, which can
promote the proliferation of neurons and glial cells in the
inflammation of the nervous system through various molecular
mechanisms (107, 108). Glial cells are innate immune cells
in the center. They not only synthesize and release multiple
inflammatory mediators but also express many inflammatory
mediator receptors on the cell surface. Microglia, the first line
of defense for the central immune response, exerts essential
influence on the inflammatory response in the brain (109).
Although there is no direct evidence that microglia are correlated
with the nosogenesis of depression, many studies have examined
if there is a significant increase in the amount of microglia
in the brain in patients with suicidal depression. A previous
study observed microgliosis in the dorsolateral prefrontal
cortex, anterior cingulate cortex, mediodorsal thalamus, and
hippocampus of suicidal patients (110). Torres-Platas et al.
also observed a relative increase of primed microglia in
depressed suicides (77). Microglia can regulate the release of
BDNF. Microglia may take effect on pathogenesis by reducing
BDNF expression as well as its high-affinity receptor TrkB.
Studies demonstrated that microglia was of extensive and
diverse importance for the formation of appropriate synaptic
connections during development and maturation, which were
frequently mediated by BDNF (111). In addition, high levels
of IL-6, IL-1β, and BDNF in LPS-stimulated normal human
astrocytes (NHAs) was observed, using an LPS-induced in
vitro injury model of astroglial cultures. Vice versa, BDNF can
promote the growth of astrocytes and regulate the viability
and proliferation of LPS-induced NHA through the PI3K/AKT
pathway (112, 113).

Reports repeatedly demonstrated that inflammatory cytokines
affect neuronal development as well as apoptosis (114, 115). As a
matter of fact, stress and its associated activation of inflammatory
cytokines might have a negative effect on neurogenesis and
neuroplasticity (84, 116, 117). Considerable research efforts
have been devoted to the effect of inflammation on the BDNF
expression in the brain. The significant reduction in BDNF was
caused by the administration of pro-inflammatory cytokines or
lipopolysaccharide (LPS), an inducer for cytokines, serve as an
example. LPS injections could significantly reduce mature BDNF
levels in the hippocampus and cerebral cortex (118), as well as
IFN-α administration, which decreased systemic BDNF levels
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FIGURE 2 | BDNF in the neuroimmune regulation axis of depression. BDNF, brain-derived neurotrophic factor; IL-1, interleukin-1; IL-6, interleukin-6; TNF-β, tumor

necrosis factor-β.

(119). Furthermore, other neurotrophic factors also decreased
to varying degrees: NGF and neurotrophic factor−3 (NT-3), for
instance (120).

It was demonstrated in a number of research studies that
inflammation inhibits BDNF/TrkB expression. Inflammatory
cytokines influence the phosphorylation of the BDNF receptor
(TrkB), thereby further interfering with BDNF signaling (121).
Gibney et al. found that poly-I:C administration upregulated
the expression of the inflammatory cytokines, which caused
the occurrence of an inflammatory reaction. At the same
time, BDNF and TrkB expression in the hippocampus and
cortex were downregulated, which might lead to behavioral
defects of depression and anxiety (122). In addition, it is under
integrated BDNF signaling that antidepressants are able to
reverse LPS-induced apoptosis, which agrees well with the above-
mentioned studies.

The anti-inflammatory mechanism of antidepressive agents

has not been elucidated yet. Imipramine has been shown to
suppress proinflammatory cytokines in rat neural stem cells,

stimulating the expression of BDNF (123). Studies have shown

that the production of inflammatory cytokines was regulated
by complex signaling pathways, especially the nuclear factor-κb

(NF-κB) inflammatory response signal pathway (BDNF-TrkB-

MEK-ERK-NF-κB pathway) whose activation plays a central

regulatory role in the inflammatory response. Investigation of
the effect and potential mechanism of salidroside on depression
showed that salidroside could down-regulate the expression of
BDNF, TrkB, and the NF-κB protein (124). Ge et al. thought
that the antidepressant effect of resveratrol is mainly to reduce
the expression of inflammatory cytokines and improve NF-
κB activation (125). Chrysophanol could inhibit the NF-κB
signaling pathway (126), and the high dose of fisetin could
regulate the expression of NF-κB in the hippocampus to
antagonize the expression of iNOS mRNA (127). Similarly,
the antidepressant effect of aesculetin may be achieved by
inhibiting the NF-κB pathway as well as activating BDNF/TrkB
signaling (128). Furthermore, as an inflammatory intracellular
signaling molecule, p38 mitogen-activated protein kinase is now
a target for clinical studies of chronic inflammatory diseases
due to the potential antidepressant effects of its inhibitors

(129). All these studies provide a basis for the development of

new clinical antidepressants and the continued development of
antidepressant treatments.

CONCLUSION

Based on many clinical and basic research studies, a variety of
theories were proposed to expound the nosogenesis of mood
disorders, especially depression. In this review, the neuroimmune
axis has been related to mood disorders (Figure 2). BDNF is
thought to be involved in the neuroimmune axis regulation. On
the one hand, the expression of BDNF is affected by immune
cells and the immune factors they secrete. On the other hand,
the immunomodulatory process also requires the regulation of
BDNF-mediated signaling pathways. Unfortunately, the specific
mechanism of how BDNF participates in the regulation of
the neuroimmune axis in mood disorders is still unclear and
it is therefore necessary to conduct more in-depth research.
The treatment of mood disorders in the past often only
focus on a certain aspect of research. The characteristics
of the varied symptoms of depression determine that these
treatments are not effective. Exploring a treatment strategy
for depression based on neuroimmune axis regulation may be
more helpful to further guide the development of anti-mood
disorders drugs.
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