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Pre-Bötzinger complex (PBC) neurons located in mammalian brain are the necessary
conditions to produce respiratory rhythm, which has been widely verified experimentally
and numerically. At present, one of the two different types of bursting mechanisms
found in PBC mainly depends on the calcium-activated of non-specific cation current
(ICaN). In order to study the influence of ICaN and stimulus current Iexc in PBC
inspiratory neurons, a single compartment model was simplified, and firing patterns of
the model was discussed by using stability theory, bifurcation analysis, fast, and slow
decomposition technology combined with numerical simulation. Under the stimulation of
different somatic applied currents, the firing behavior of neurons are studied and exhibit
multiple mix bursting patterns, which is helpful to further understand the mechanism of
respiratory rhythms of PBC neurons.

Keywords: pre-Bötzinger complex, bursting, bifurcation analysis, fast and slow analysis, simplified model

INTRODUCTION

In mammals, breathing is a continuous rhythmic behavior, which can be carried out autonomously
and rhythmically. This rhythmic activity provides self-regulation for gases in blood and tissues,
and combines breathing with other movement behaviors to make blood in animals reach a steady
state (Khoo, 2000). Firing is very common in the nervous system, which is one of the main ways
to encode neural information and usually has important functional meanings. The firing patterns
of neurons are very rich and can be divided into two categories: bursting and spiking. Izhikevich
(2000) discussed the excitability, spiking and bursting of neurons by using the bifurcation theory,
and expounded the dynamic characteristics of bursting combined with simulation. At the same
time, a new classification basis of bursting was presented, and the bursting discovered in this article
was also classified based on this criterion. Among them, bursting is the main way of information
transmission, so studying the firing patterns generated by neurons is of great guiding significance
to the reception, transmission, and processing of neural information (Johnson et al., 2001).

At present, a large number of experiments have shown that pre-Bötzinger complex (PBC) is
a necessary factor for the generation of respiratory rhythms, and there are excitatory respiratory
neurons in PBC, which have bursting characteristics (Butera et al., 1999; Zylbertal et al., 2017; Lv
et al., 2019). Rubin (2006) studied the network model of synaptic connections through excitable
intermediate neurons and explained firing phenomenon of PBC. Bertram and Rubin (2017) and
Rubin et al. (2018) studied the parameter range that affects bursting in PBC neural network by
using fast-slow analysis and bifurcation theory, classified different bursting patterns in parameter
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space, and explained various bursting in detail by combining
physical and biological systems. Kiehn (2016) turned to study
the effect of ion change on neuron firing by observing the
activity of single PBC neuron under the change of potassium and
calcium ions, which was proved that the bursting of mammalian
medulla cells was the key to the generation of respiratory
rhythms combined with clinical experiments. Besides, the firing
frequency of PBC was controlled by changing the concentration
of extracellular potassium ions, and the conclusion was consistent
with the model prediction in Neusch et al. (2006).

Different neuron models can also produce a variety of
firing phenomena, and PBC is one of them. Toporikova and
Butera (2011) identified two types of firing patterns in the
model by coupling inspiratory PBC neurons, and found that
the bursting mechanisms depend on the changes of persistent
sodium ions (NaP) and calcium ions (Ca2+), respectively,
which established a single compartment neuron model with two
bursting mechanisms (also called TB model). Park and Rubin
(2013) discovered the mixed bursting phenomenon in PBC by
controlling calcium activated non-specific cationic (CAN) based
on the TB model. Duan et al. (2012) and Wang et al. (2018) then
investigated the mixed bursting in a single compartment PBC,
and the results showed that the TB model could show various
types of mixed bursting in the same period. In addition, the
influence of potassium conductance gK and leakage conductance
gL on the bursting was also described.

In this study, dendritic subsystem in TB model is deleted,
and only the somatic subsystem is retained (Femando et al.,
2004; Feldman and Del Negro, 2006; Toporikova and Butera,
2011) are available for the introduction of dendritic sub-
model and somatic sub-model). There are two main reasons
for deleting dendritic subsystem. Firstly, research on dendritic
subsystem has been involved in a lot of literature (Femando
et al., 2004; Frank et al., 2018; Lai et al., 2018). Moreover,
there are too many parameters of dendritic subsystem in
the model, which is not convenient for specific experiments.
Secondly, dendritic subsystem affects the somatic subsystem
through calcium concentration, while the somatic subsystem
does not affect the calcium subsystem (Lv et al., 2019), and
the range of calcium concentration in dendritic subsystem is
very small, which can be considered as a constant relative to
the somatic subsystem. The firing behavior of PBC neurons
is discussed by applying external stimulus current to somatic
subsystem (Lv and Ma, 2016). Then, the parameter space
is divided into different regions by using the two-parameter
bifurcation analysis, and the bursting characteristics of the firing
region are emphatically discussed. Finally, the slow variables were
parameterized by fast and slow dynamics analysis, and three
types of blasting were found by taking different parameters of
the fast subsystem. The structure of this article is as follows:
Chapter 2 will introduce the mathematical model. The effect of
calcium activated non-specific cationic conductance gcantot on the
firing of PBC neurons based on non-stimulated and stimulus
currents were discussed in chapters 3 and 4, respectively. In
chapter 5 fast and slow analysis is applied to find the types of
bursting in neurons, and making a relevant conclusion at the
end of the article.

FIGURE 1 | Schematic diagram of somatic-dendritic model.

MODEL

In this study, a single compartment model of PBC inspiratory
neurons based on calcium activated non-specific cationic
conductance was used. This model is a simplification of the two-
compartment model (also known as TB model) established by
Toporikova and Butera (2011), in which dendritic subsystem is
deleted, and only the somatic subsystem is studied. As shown
in Figure 1, the somatic subsystem and the dendritic subsystem
are connected through [Ca]. The former contains coupling
variables [Ca], while the latter does. not include variables of
the somatic subsystem, indicating that the somatic subsystem
will be influenced by the dendritic subsystem through [Ca],
while the dendritic subsystem is completely independent of
the somatic subsystem. By applying stimulation current to the
somatic compartment, the influence of external input on PBC
neuron output can be observed, which shows the transition of
different firing patterns. Moreover, stimulation current Iexc is
considered in the model, which is finally composed of three
differential equations:

.
v = (−INa − IK − INaP − IL − ICaN − Iexc)/C (1)
.
n = (n∞(v)− n)/τn(v) (2)
.

h = (h∞(v)− h)/τh(v) (3)

where, v is the membrane voltage, n and h are the state variables
of potassium and calcium ion gate, respectively, INa, IK , IL, INaP
and ICaN are, respectively, sodium, potassium, leakage, persistent
sodium and calcium activated non-specific cation current, and
the expression is:

INa = gNa ·m3
∞ · (1− n) · (v− vNa),

INaP = gNaP ·mp∞ · (v− vNa),

IK = gK · n4
· (v− vK),

IL = gL · (v− vL),

ICaN = gcantot · (v− vNa)
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TABLE 1 | The default parameter.

Parameter Value Parameter Value Parameter Value Parameter Value

C 21 µF gcantot 0.02 nS θm −34mV σn −4 mV

gna 1.8 nS vna 50 mV σm −5mV θh −48 mV

gk 4.2 nS vk −85 mV θmp −40mV σh 5 mV

gl 2.3 nS vl −58 mV σmp −6mV τh 10000 ms

gnap 3 nS τn 10 ms θn −29mV

Steady state and time functions of voltage dependent activation
and deactivation are:

m∞(v) = 1
1+exp( v−θm

σm )

mp∞(v) = 1
1+exp(

v−θmp
σmp )

,

n∞ = 1
1+exp( v−θn

σn )

h∞ = 1
1+exp(

v−θh
σh

)

,

τn(v) = τ̄n
cosh( v−θn

2σn )

τh(v) =
τ̄h

cosh(
v−θh
2σh

)

A detailed description of the parameters is given in Park and
Rubin (2013) and Wang and Rubin (2016). All parameters are
given in Table 1. The numerical software used in this article
is mainly XPPAUT and MATLAB, and the fourthorder Runge-
Kutta algorithm is used with a step size of 0.1.

FIRING ANALYSIS BASED ON CALCIUM
ACTIVATED CONDUCTANCE GCANTOT
WITHOUT STIMULUS CURRENT (Iexc = 0)

The form of non-specific calcium activation current in TB model
is ICaN = gCaN ·f ([Ca])·(v-vna), where gCaN is the non-specific
calcium activation conductance and f is the calcium activation
function related to calcium concentration. In this article, deleting
the dendrite subsystem of the calcium-containing subsystem is
equivalent to taking the calcium concentration constant as a
constant, so gcantot = gCaN ·f ([Ca]). In addition, there has been

FIGURE 2 | Neural model based on unstimulated current (Iexc = 0). (A) Nullcine of the system in the (h,v) plane, red is h-nullcline, green is v-nullcline with different
gcantot values, from right to left, gcantot = –0.2, gcantot = 0.02, and gcantot = 0.4. (B) Bifurcation diagram of the parameter gcantot. The black and red represent the
equilibrium point of instability and stability, respectively, the blue hollow circle represents the unstable periodic orbit, and the green solid circle represents the stable
closed orbit. (C) Changes of respiratory rhythms cycle of neurons in PBC with gcantot.
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FIGURE 3 | The time history figure of voltage of PBC neurons under different
parameters without stimulus current. Red, orange, green, and black are the
action potentials when the parameters gcantot are 0.05, 0.24, 0.41, and 0.7,
respectively.

a study on bursting caused by external stimulation current in
Franaszczuk et al. (2003). Brain stimulation is used to regulate
or terminate epileptic seizures, and two models of recurrent
bursting are established. It is found that the ability of this external
stimulation to terminate recurrent bursting may depend on
identifiable parameters in the model, and it is known that the
duration of neuronal bursting has a great correlation with the
intensity of stimulation current input, which is almost consistent
with the results in Lv and Ma (2016).

When the external stimulation current Iexc = 0, that is, there
is no external stimulation current. Pace et al. (2007) studied the
firing pattern of glutamate receptor in newborn mice based on
the non-specific calcium activated cation current ICaN . It has
been generally believed that ICaN has an important influence on

the firing patterns, and the conductance gcantot is an important
parameter that determines the current and plays a vital role
in the influence of membrane potential, thus gcantot is taken as
a parameter to study the firing pattern of respiratory rhythms
of neurons in PBC.

In Figure 2A, red is the h-nullcline in the plane (h,v),
which is monotonically decreasing and is not affected by gcantot ,
while green is the v-nulcline, which is S-shaped. With the
increase of gcantot , the left and right knee values move to
the left and decrease in amplitude. In addition, the number
of intersections between the branches of the v-nullcline and
the h-nullcline (the equilibrium point of the system) went
from 0 to 2 and back to 1. It can be assumed that the
number of intersections will still be 0 if gcantot continues to
increase. Therefore, there must be a bifurcation with respect
to the parameter gcantot . As shown in Figure 2B, black
represents the unstable equilibrium points, red represents the
stable equilibrium points, green and blue represent the stable
and unstable periodic orbits, respectively. According to the
stability of the equilibrium, the bifurcation curve has four
regions, respectively.

I (0,0.1034) II (1.1034,0.3775) III (0.3775,0.4507)
IV (0.4507,1.006).

Instability and stability appear alternately, the intersection
points of these regions are Hopf bifurcations, embarking from
one of them (take gcantot = 0.4507 in Figure 2B), a stable limit
cycle appears, then becomes unstable at gcantot = 0.3775, and
finally returns to the equilibrium curve. These two points are,
respectively, saddle-node bifurcation of periodic orbits (SNPO)
and homoclinic bifurcation (HC) on the invariant cycle. It
should be noted that there is also a saddle node bifurcation
below the periodic orbit bifurcation curve. From the selected
Hopf bifurcation point, the equilibrium changes from unstable to
stable and produces a stable limit cycle, which shows that it is also
a supercritical Hopf bifurcation. Figure 2C is a graph showing
the change of period with the parameter gcantot . Within the
considered range, the change of period is relatively complicated.
Around gcantot = 0.45, the period jump sharply, which the

FIGURE 4 | (A) Firing pattern of cells in region I of Figure 2B, gcantot is 0.02, 0.05, and 0.1, respectively. (B) Is a partial enlarged view of periodic bursting
corresponding to different parameters gcantot in (A).
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FIGURE 5 | The burster of cells in area III, green for gcantot = 0.41, purple for
gcantot = 0.45.

reason for this is that there is also a period doubling bifurcation
in Figure 2B.

Discussed below in Figure 2B the firing behavior of four
ranges, respectively, take on four scope gcantot for 0.05, 0.24, 0.41,
and 0.7, as shown in Figure 3, it is known that cell is resting in II
and IV area. Therefore, the firing pattern of parameters in regions
I and III will be mainly discussed next.

As shown in Figure 4A, within the scope of the area I, with
the increase of gcantot , the bursting phenomenon in the Figure 4
can be observed to transition from blue to red and then to black,
and the spike number of buster also changes with the increase
of gcantot . When gcantot increases to the boundary of region I,
namely gcantot = 1, the firing of buster in the middle of the peak
potential was gradually compressed, similar to a H-shape, the
dynamics performance for near the point at which there is a
small amplitude of limit cycle attractor, and is stable. In addition,
with the increase of gcantot , the spike potential in each gcantot

also decreases. As can be seen from the local enlarged view of
Figure 4B, gcantot shows great differences in the resting state.
When gcantot = 0.02, the action potential is disturbed at the initial
stage of the resting state, and the amplitude gradually decreases
until 0, and the number of spiking is 4. When gcantot = 0.05, the
membrane potential is disturbed not only at the initial stage of
resting state but also at the terminal stage, but the number of peak
spike at this time is significantly higher than that of the former.
When gcantot = 0.1, the membrane potential is disturbed in the
whole resting phase, and the change frequency is non-monotonic.
The number of peaks reaches 15, but the change amplitude
of busters is smaller than that of the former two parameters.
Different from the first, it can be seen in the latter two cases that
the middle spike of the buster presents an H-shape.

In Figure 5, the green and purple are the action potentials
of neuron when gcantot = 0.41 and 0.45, respectively. It can be
observed that with the increase of gcantot in region III, the spike
potential gradually decreases while the frequency of bursting
increases, which is completely consistent with the situation in
Figure 2. In addition, it is obvious that different parameters will
affect the number of peaks in the bursting, which can be found in
Figure 4, and has been explained in detail. At this time, area III is
basically similar, and its local diagram will not be introduced.

FIRING ANALYSIS BASED ON CALCIUM
ACTIVATED CONDUCTANCE gcantot
WITH STIMULATED CURRENT
(Iexc = −40)

The change of bursting in the absence of external stimulation
current (Iexc = 0) has been discussed previously for conductance
gcantot . This section begins to discuss the influence of external
stimulus current on the firing. Iexc = -40 is taken here. It
should be noted that the negative current here is not less than
0 in the mathematical sense, but the reference direction of the
current is opposite.

Observe the bifurcation diagram of gcantot , as shown in
Figure 6. Black and red represent the unstable and stable

FIGURE 6 | (A) Bifurcation diagram of potential at stimulus current Iexc = –40 regarding parameter gcantot. The black and red represent the equilibrium points of
instability and stability, respectively, the blue hollow circle represents the unstable periodic orbit, and the green solid circle represents the stable closed orbit.
(B) Relationship between frequency and parameter gcantot. PBC based on stimulation current (Iexc = –40).
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FIGURE 7 | There is a stimulus current flowing down the cell at different
parameters of bursting. Black, blue, and red are the membrane potentials
when gcantot = –0.11, –0.04, and 0.046, respectively.

equilibrium points, respectively, while blue and green represent
the unstable and stable limit cycles. Compared with Figure 2, the
stability has undergone a great change. First, the transition mode
of stability has a great difference, from the alternation of stability
and instability to a single change. Therefore, Hopf bifurcation
is generated at gcantot = 0.04611. The upper and lower branches
of the periodic bifurcation curve correspond to the maximum
and minimum values of the action potential, respectively, and
lower branch of the curve extends to the equilibrium curve,
which means that there is a homoclinic bifurcation. The period
and frequency are reciprocal to each other. The essence of
the problem is the same. The period of gcantot is discussed
in Figure 2, and frequency is discussed here. Figure 6B is
frequencies, which is also very different from period in Figure 2C.

After the stimulation current is applied, the frequency change
monotonously, and the change rate always remains constant.

After considering the external stimulus current, the stable state
of its equilibrium points is obtained, and values are, respectively,
taken from its unstable range to observe firing. As shown
in Figure 7, with the increase of gcantot , membrane potential
amplitude decreases, while the frequency gradually increases, and
the number of peaks also increases. Finally, chaos phenomenon
appears, which is quite different from that without considering
the external stimulus current. With the increase of parameters,
the membrane potential of the former gradually flattens out
and even reaches a resting state, which is dynamically explained
as a stable equilibrium point nearby, while the latter tends to
oscillate intensively, corresponding to a stability limit cycle with
a small amplitude in the dynamic system. Therefore, the former
is called point bursting and the latter is called cycle bursting.
Figure 8 discusses the effect of simultaneous changes of external
stimulation current and conductance gcantot on action potential.
Its two-parameter diagram divides the region into four parts, of
which (A,C) region is bursting and (B,D) is quiescent. This is
consistent with the previously discussed case of no stimulation
current. The former is a special case of this case.

FAST AND SLOW ANALYSIS

The change rate of potassium ion channel is slower than that of
sodium ion channel whether it is activated or deactivated. The
spikes of the neuron are highly permeable to potassium ions, but
hardly permeable to sodium ions, so that the membrane potential
tends to potassium ions. As shown in Figure 9, 1/τn and 1/τh are
time state functions of channel gates n and h, respectively. It can
be found that the change of 1/τh is significantly slower than that
of 1/τn. Therefore, h is regarded as a slow parameter, and fast and
slow dynamics analysis is carried out on fast subsystems (Teka
et al., 2011, 2012).

By parameterizing the slow variable h, the original three-
dimensional system becomes a two-dimensional fast subsystem

FIGURE 8 | (A) activity patterns of neurons in a two-parameter space (gcantot,Iexc). Space is divided into four parts: (A) burning, (B) quiet, (C) burning, and (D) quiet.
(B) Firing in four parts: where (A) gcantot = 0.1,Iexc = 10, (B) gcantot = 0.35, Iexc = 10, (C) gcantot = 0.54,Iexc = 10, and (D) gcantot = 0.8,Iexc = 10.
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FIGURE 9 | State function 1/τn and 1/τh diagram along with the change of
membrane potential. Blue and red are the curves of n and h, corresponding to
the left vertical axis and the right vertical axis, respectively.

only related to the fast variables v and n. By using time separation,
the system can be analyzed using two-fast/one-slow technology.
Make:

S = {(v, h, n) ∈ R3
|f (v, h, n) = 0}

Thus, a two-dimensional critical manifold is obtained in a three-
dimensional space. As shown in Figure 10A, the critical manifold
is divided into three parts by a fold curve (L+, L−), the lower sheet
and the upper sheet are attracting, the middle sheet is repulsed,
and the folding curve satisfies

L± = {(v, h, n) ∈ R3
|f (v, h, n) = 0,

∂f
∂v

(v, h, n) = 0}

As shown in Figure 11, v-nullcline is S-shaped and consists of
three branches. The lower branch, middle branch and upper

branch correspond to resting, oscillating and tonic states. The
intersection point of h-nullcline and v-nullcline is the equilibrium
point of the fast subsystem. When the equilibrium point is
located in the middle branch, the cell oscillated, which is the
premise of producing bursting. The bifurcation curve of the
equilibrium point also has three branches. The lower branch
consists of the stable focus of hyperpolarized state, and the
middle branch consists of unstable node. The system is bistable
between the lower and upper branch for a range of h values. In
the upper branch, the equilibrium point changes from unstable
to stable with the increase of h, resulting in Hopf bifurcation.
The periodic orbit bifurcation curve from this point terminates
at the middle branch, resulting in homoclinic bifurcation.

FIGURE 11 | The phase plane of the fast subsystem with gcantot = 0.02,
Iexc = 16. v-nullcline (green) and h-nullcline (red) intersect at point E (diamond).
Another S-curve is the bifurcation curve of the equilibrium point. On this curve,
black indicates the stable equilibrium, red represents the unstable equilibrium,
F1 and F2 (squares) are fold and HB is Hopf bifurcation.

FIGURE 10 | (A) The critical manifold and periodic orbit of full system for Iexc = 16, gcantot = 0.02. L+ and L− are the upper and lower fold curves, respectively. The
red is the periodic orbit of the full system superimposed on the critical manifold, where, F1 is the bifurcation point on the fold curve. (B) The projection of the critical
manifold on the (v,n) plane along the n-axis direction.
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FIGURE 12 | When Iexc = 12, gcantot = 0.11, the constitutional diagram of
phase diagram of fast subsystem and bifurcation diagram of slow variable.
Black and red are the stable and unstable equilibrium points, respectively,
green and blue represent the stable and unstable limit cycles, and purple is
the phase trajectory. F1 and F2 is the fold bifurcation, HB is the Hopf
bifurcation, and HC is the homoclinic bifurcation.

Through comparison, it can be seen that the bifurcation curve
of the equilibrium point is almost consistent with the trend of
v-nullcline. First, v-nullcline is obtained from dv

dt = 0, namely
satisfies f (v,h,n) = 0. The equilibrium point curve of the fast
subsystem also requires dv

dt = 0, therefore, the lower branch and
the middle branch of the fast subsystem almost coincide with each
other, but for the bifurcation curve of the equilibrium point of a
two-dimensional system, not only one equation is required to be
zero, but also the other equation is required to be zero, namely
dn
dt = 0, which is the requirement that v-nullcline does not need
to meet, so the two systems show great deviation in the upper

branch. If the two systems are required to be progressive in the
upper branch, they are equivalent to (n∞(v)− n)/τn(v) ≡ 0, and
then there is 1/τn(v)→ 0, in other words,τn(v)→∞. It can be
seen from Figure 9 that 1/τn(v) gradually increases and can no
longer approach zero after reaching the depolarized state.

Therefore, v-nullcline and the upper branch of the equilibrium
point curve show great difference. In fact, v-nullcline is also the
curve where the singular manifold intersects with an interface
in Figure 10A. The singular manifold has an S-shape, and
v-nullcline naturally has an S-shape. In Figure 10B, the periodic
orbit moves along the lower branch of the invariant manifold,
jumps up through the bifurcation point F1 on the curve L+,
and oscillates in the middle branch again through the bifurcation
point to the upper branch, and its direction is similar to the
bifurcation line of the equilibrium point. Next, the bursting of
the system is analyzed in the phase plane (h,v).

Fold/fold Bursting
When Iexc = 12 and gcantot = 0.11, as shown in Figure 12,
the equilibrium point curve is an S-shaped curve, bounded
by the bifurcation point. The lower branch is composed of
stable nodes, the middle branch is composed of unstable
saddle points, the upper branch is composed of unstable
saddle points passing through the Hopf bifurcation, from
which a stable limit cycle is generated, and turning into
stable focus. With the increase of the slow parameter h,
the resting state of the lower branch corresponding to the
equilibrium curve is shifted upward to the release state
corresponding to the vicinity of the limit cycle through the
fold bifurcation F1. The upper branch oscillates and weakens
with the decrease of h, finally returns to the resting state
through F2, and the firing ends. In this case, Hopf bifurcation
has no influence on bursting. Therefore, this firing type is
fold/fold bursting.

As shown in Figure 13B, the equilibrium curve is still
S-shaped and consists of three parts. The three branches are,

FIGURE 13 | The constitutional diagram of the bifurcation parameters, where slow variable H are taken as bifurcation parameters, between the phase trajectory
corresponding to the membrane potential of the fast subsystem. (A) Time history of membrane potential when Iexc = 16 and gcantot = 0.02. (B) The bifurcation
diagram of action potential with respect to h and the constitutional diagram of corresponding phase trajectories in diagram (A) show that black is a stable equilibrium
points, red is an unstable equilibrium points, green is a stable limit cycle, blue is an unstable limit cycle, and purple is a phase trajectory.
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FIGURE 14 | The constitutional diagram of bifurcation parameters of phase trajectory corresponding to membrane potential of fast subsystem and slow variable h.
(A) the time history diagram of membrane potential when Iexc = 0 and gcantot = 0.1. (B) The bifurcation diagram of action potential with respect to h and the
combination diagram of corresponding phase trajectories in diagram (A) show that black is a stable equilibrium points, red is an unstable equilibrium points, green is
a stable limit cycle, blue is an unstable limit cycle, and purple is a phase trajectory.

respectively, composed of stable nodes, unstable equilibrium
points and stable focal points. The phase diagram corresponding
to bursting in Figure 13A is superimposed on the equilibrium
curve to obtain the slow parameter analysis diagram of the fast
subsystem. Under this parameter condition, there is no Hopf
bifurcation in the bifurcation curve of the fast subsystem, so
there is no stable limit cycle corresponding to the firing state.
Therefore, it is not necessary to discuss the bifurcation type of
transition between the quiescent state and the firing state, but
only the bifurcation related to the hysteresis loop. From the
Figure 13B, it can be found that the lower state shifts to the upper
state via the fold bifurcation with the increase of bifurcation
parameters, and then the upper state returns to the lower state via
another fold bifurcation point until the firing ends. At this time,
the firing type of the system is fold/fold bursting. Compared with
Figure 12, both cases are the same type of firing, but for this type
of bursting, Hopf bifurcation plays no key role and will not affect
the type of bursting. In the former, there is Hopf bifurcation,
while in the latter, Hopf bifurcation gradually approaches the
fold bifurcation until it disappears. Fold bifurcation are points on
the fold curve, thus satisfying dv

dt = 0 and ∂f
∂v = 0, while Jacobian

matrix of fast subsystem is J =

(
∂f
∂v

∂f
∂n

∂g
∂v

∂g
∂n

)
.

Therefore, it is only necessary to satisfy trace(J) = ∂f
∂v +

∂g
∂n =

0 at the Hopf bifurcation, which already exists, so only ∂f
∂v = 0

is needed, and when ∂g
∂n = 0, that is 1

τn(v) → 0, there is a Hopf
bifurcation coinciding with the fold bifurcation.

Fold/homoclinic Bursting
The slow variable is regarded as a bifurcation parameter,
and the fast subsystem is analyzed to obtain Figure 14B.
As shown in the figure, the equilibrium point curve of
the fast subsystem is composed of three parts, namely
S-shape, the lower branch (black) is stable node, the middle

FIGURE 15 | When Iexc = 17 and gcantot = 0.2416, the phase trajectory
corresponding to the membrane potential of the fast subsystem and the slow
variable h are superimposed as bifurcation parameters.

branch is unstable saddle point, the upper branch are
composed of unstable saddles point and stable nodes, and
the Hopf bifurcation is taken as a boundary, from which
a limit cycle of stable points appears. At the same time,
the phase diagram corresponding to the membrane potential
in Figure 14A is superimposed on the equilibrium point
curve of the fast subsystem to analyze the firing type under
this parameter.

With the increase of the control variable h, the stable node
corresponding to the resting state of the lower branch of the
equilibrium bifurcation curve disappears, and is transformed into
an unstable saddle point through the folding bifurcation, and
then transferred upward to the vicinity of the stable limit cycle
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corresponding to the firing state. The stable limit cycle starting
from the Hopf bifurcation point gradually approaches the saddle
point branch of the equilibrium curve with the decrease of the
slow parameter h, and returns to the stable node corresponding
to the resting state near the saddle point homoclinic orbit,
and the firing activity ends. Therefore, the firing type in which
the rest state and the firing state change with each other is
fold/homoclinic bursting.

Hopf/homoclinic Bursting
As shown in Figure 15, when Iexc = 17 and gcantot = 0.2416,
the equilibrium point curve is S-shaped, the lower branch
corresponds to the resting state, jumps to the upper branch
through the fold bifurcation F1, the motion trajectory generates
damped oscillation near the stable focus, then passes through
the Hopf bifurcation (h = 0.2637), and the final firing state is
transferred to the resting state through the homoclinic orbit
bifurcation of the limit cycle with the decrease of the slow variable
h, and the final firing is finished. Therefore, this kind of firing
mode is Hopf/homoclinic bursting.

CONCLUSION

In this study, a single-compartment PBC neuron model is
obtained by simplifying TB model, and Based on this model,
the effects of different calcium-activated non-specific cation
current (ICaN) and external stimulus current (Iexc) on membrane
potential are investigated. Firstly, by adjusting the calcium
activated conductance (gcantot), it is found that the number of
peaks in bursting pattern changes with the parameters. Then
the stimulation current was adjusted to observe the discharge
difference caused by calcium activated conductance. The plane
is divided into four regions in parameter space (gcantot , Iexc),
and different regions were corresponding to the resting state and
active state, respectively, which provided a more comprehensive
understanding of the parameter region of neuronal firing.
Finally, by using the fast-slow analysis, the slow variables
were parameterized and the parameters gcantot and Iexc were
changed, respectively, to discuss the dynamic mechanism of the
firing pattern of PBC neuron, and three types of bursting was
found, which are fold/fold bursting, fold/homoclinic bursting and
Hopf/homoclinic bursting, respectively.

This study shows that the external stimulation current
has an important influence on the firing rhythm of PBC
neuron, and the neuron can produce bursting by changing
the calcium activation conductance. In the respiratory rhythm
of mammals, there are many kinds of bursting patterns
(Butera et al., 1999; Wang and Rubin, 2016). Through the
experimental results and numerical simulation, it is also
observed that there are abundant bifurcation phenomena
in the model, such as Hopf bifurcation, folding bifurcation,
homoclinic orbital bifurcation, saddle node bifurcation on
the invariant ring and period-doubling bifurcation. Therefore,
the research in this article is a great significance for
understanding the dynamic mechanisms of PBC neural
network, and it also provides some meaningful thoughts
and opinions for further to explore the mechanisms of
respiratory rhythms.
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