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Abstract.  Male infertility has become a very serious problem in the human reproduction system, but the molecular mechanism 
of infertility remains largely unknown. Fertilization is the phenomenon in which a sperm and oocyte find each other, interact, 
and fuse. Sperm-oocyte fusion-related factors on the sperm side play crucial roles in male infertility. For example, IZUMO1 
is well-known as a sperm protein essential for fusion of a sperm and oocyte, but its dysfunction or mutation can result 
in male infertility. Recent studies showed a novel sperm protein named Bactericidal/permeability-increasing protein (BPI), 
which takes part in the sperm-oocyte fusion process. The complexity and expected redundancy of the factors involved makes 
the process intricate, with a still poorly understood mechanism, which is difficult to comprehend in full detail. This review 
summarizes the known molecules involved in the process of sperm-oocyte fusion, mainly focusing on the relevant factors on 
the sperm side, whose dysregulation may potentially be associated with male infertility. New insights may come from these 
molecules in this review, can facilitate the development of new treatments of male infertility, and may have a diagnostic value 
in infertility.
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Infertility is defined by the World Health Organization (WHO) as 
the inability to get pregnant over a one-year period of unprotected 

sexual intercourse [1]. Infertility represents a complex and multi-
factorial condition affecting both males and females. Most of all, 
male infertility has been attracting increasing interest because of the 
decline in semen quality in young healthy men worldwide [1–3]. 
Many adverse factors affect sperm quality, including lifestyle, 
diabetes, obesity, hormonal diseases, testicular trauma, cryptorchidism, 
varicocele, genitourinary infections, ejaculatory disorders, chemo/
radiotherapy, or surgical therapies [4–6]. It is well-known that 
genetic disorders of sperm are serious causes of male infertility, e.g., 
chromosomal abnormalities and gene mutations that cause a disorder 
of many physiological processes involved in hormonal homeostasis, 
spermatogenesis, and sperm quality [7, 8]. Sperm gene alterations 
of several sperm molecules associated with sperm-oocyte fusion 
on the sperm side were reported to induce infertility; these genetic 
problems include gene integrity, defective chromatin packaging, and 
a single-gene mutation. In this review, we tried to highlight those 
molecules participating in the sperm-oocyte fusion on the sperm 
side, which are mentioned in recent studies.

Sperm-oocyte Fusion is a Critical Step in Fertilization

A series of well-orchestrated, highly complex sets of events must 
occur together in order for a spermatozoon to fertilize an oocyte. 
For complete fertilization, gametes (especially the sperm) should 
change their morphology, structure, and function. Sperm go through 
great transformation in the process of passage through the outside 
structure of the oocyte with the capacitation and the acrosome 
reaction changing its motility, physiology, and membrane structure 
(Fig. 1). It is widely believed that after sperm catches the egg, the 
acrosome reaction of the sperm is triggered by a component of the 
zona pellucida (ZP), an extracellular coat surrounding the oocyte. 
Nonetheless, recently, it was found that most fertilizing sperm 
began the acrosome reaction before reaching ZP [9]. In fact, the 
acrosome reaction is already observed in the female reproductive 
tract, especially at the ampulla [10]. After the acrosome reaction, the 
spermatozoa are able to penetrate the ZP and enter the perivitelline 
space. In the perivitelline space, the acrosomal structure of sperm 
disappears followed by the outer acrosomal membrane’s fusing with 
the overlying plasma membrane to generate the equatorial segment. 
The sperm-oocyte plasma membrane fusion has long been known 
to be initiated in the equatorial segment region [11]. Many proteins 
in the equatorial segment are reported to participate in the fusion 
process. Fertilization culminates together with sperm and oocyte 
finding each other, interacting, and fusing.

Sperm-oocyte fusion is a critical step in fertilization, which 
requires a series of proteins from both spermatozoa and oocyte to 
mediate membrane adhesion and subsequent fusion. Although the 
mechanisms and molecules in sperm-oocyte fusion on the sperm side 
are closely related to male infertility, little is still known about the 
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mechanisms or the molecules involved [12]. In recent years, efforts 
have been made toward the identification of the molecular players 
and their function, and several molecules on the egg or the sperm 
side have been found to be essential or nearly essential [13]. Herein, 
this review mainly focuses on the factors implicated strongly in the 
sperm-egg fusion process on the sperm side to explain the potential 
mechanisms of male infertility.

IZUMO1 is Essential for Sperm-oocyte Fusion

The sperm protein IZUMO1 was first discovered through screening 
of anti-sperm monoclonal antibodies that disrupt the fusion process 
[14]. Using two-dimensional gel electrophoresis followed by liquid 
chromatography with tandem mass spectrometry, the antigen was 
named IZUMO [14]. Mouse IZUMO1 is an approximately 56-kDa 
protein that appears to be testis specific. Izumo1−/− mice are healthy 
but males are infertile although they have normal mating behavior 

Fig. 1. This diagram presents transformation of sperm morphology in terms of gamete fertility. After passing the cumulus cell layer, the acrosome-reacted 
sperm is capable of penetrating the zona pellucida and entering the perivitelline space. The equatorial segment of the acrosome-reacted sperm 
interacts with oocyte membrane and fusion begins. Finally, the sperm nucleus is released into the oocyte cytoplasm to accomplish fertilization.
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and ejaculation, and produce a normal vaginal plug [15]. In vitro 
fertilization (IVF) assays revealed that after penetration of the ZP, 
Izumo1-deficient sperm accumulate in the perivitelline space of the 
oocyte without fusion with oocyte membrane [15]. A knockout of 
IZUMO1 completely disrupts sperm fusion with an oocyte. There 
also appears to be an ortholog in humans because antibodies to the 
putative human IZUMO1 can react with an approximately 37-kDa 
protein in human sperm lysates, and the antibodies also inhibit fusion 
of human sperm to a ZP-free oocyte [15]. These results indicated 
that IZUMO1 is essential for sperm-oocyte fusion on the sperm side.

Furthermore, it was unexpectedly found that IZUMO1 is encoded 
as a transmembrane protein with an extracellular immunoglobulin-like 
domain, a single transmembrane region, and a short cytoplasmic 
tail, but without any fusogenic domain as in other fusion proteins 
[15]. Therefore, IZUMO1 is likely to combine with other surface 
proteins participating in the fusion process [11, 16]. It seems probable 
that IZUMO1 interacts with the associated proteins that directly 
facilitate the fusion process on the sperm membrane or on the 
oocyte membrane. Guided by this hypothesis, scientists found that 
IZUMO1 localization is affected by a testis-specific serine kinase 
encoded by Tssk6. In Tssk6-deficient sperm, IZUMO1 fails to be 
localized to the sperm equatorial segment after acrosome exocytosis 
[17]. Moreover, a knockout of Tssk6 in sperm leads to the inability 
to fertilize an oocyte in vitro [17, 18]. Thus, the serine kinase Tssk6 
mediates localization of IZUMO1 and interacts with IZUMO1 to 
participate in the sperm-oocyte fusion process. Recent evidence also 
revealed that an oocyte surface receptor named JUNO interacts with 
sperm IZUMO1 directly [19]. The oocytes of Juno-deficient mice are 
completely incapable of being fertilized by acrosome-reacted sperms. 
Disruption of the interaction should also inhibit the fusion process. 
Therefore, the interaction between IZUMO1 and Juno seems to be 
necessary for the adhesion process, thereby promoting the fusion 
process [19]. Most recently, a new molecular model of IZUMO1-JUNO 
recognition has been proposed where monomeric IZUMO1 binds 
JUNO and dimerizes quickly, then an unidentified receptor replaces 
JUNO to mediate membrane fusion [20]. Several studies revealed 
the crystal structures of human IZUMO1 and JUNO as well as the 
IZUMO1-JUNO complex [21–25]. The central β-hairpin region of 
IZUMO1 is crucial for integrity of JUNO’s binding surface located 
behind the putative JUNO ligand-binding pocket [22]. Therefore, it 
was proposed that the interaction of IZUMO1 with JUNO may act 
as a scaffold (before the beginning of membrane fusion) to juxtapose 
the two cell membranes in close proximity and to recruit other 
fusion proteins. Another study also showed that oocyte fusogen CD9 
helps the JUNO receptor to interact with sperm IZUMO1 involved 
in the fusion process [26]. CD9 is well-known as a member of the 
tetraspanin family [27, 28]. Cd9 knockout females were found to 
be severely subfertile: a breakthrough for the gamete interaction 
field [28, 29]. Taken together, these results proved that IZUMO1 is 
essential for sperm-oocyte fusion on the sperm side through complex 
mechanisms by interacting with other proteins either on the sperm 
membrane or on the oocyte membrane.

In addition, a recent study indicated that the short cytoplasmic 
tail of IZUMO1 is highly phosphorylated when it is located in the 
region from the head/tail region of sperm to the equatorial segment 
of sperm. In the caput regions of rat epididymis, there are only 

two phosphorylation sites in the cytoplasmic tail of IZUMO1. 
Nevertheless, when the sperm pass through the epididymis, the 
intracellular C-terminal tail of IZUMO1 is phosphorylated at seven 
sites [13]. In some infertile males, IZUMO1 is present in their sperm 
as its nonphosphorylated form or the number of phosphorylation 
sites is reduced compared with those in fertile men. Thus, it could 
be inferred that strong phosphorylation of IZUMO1 might play 
an important role in the IZUMO1 involvement in male infertility. 
Understanding this process requires more research.

A Disintegrin and Metalloprotease 2 (ADAM2) Plays  
a Role in Sperm-ZP Interaction

Sperm ADAM2 was identified with a fertilization-blocking antibody 
and characterized as one of the members of a disintegrin and metal-
loprotease (ADAM) family [30, 31]. ADAMs are known as binding 
partners for several members of the integrin family [32]. A number 
of these integrins are expressed on the oocyte surface and perform 
important functions in sperm-oocyte interaction on the oocyte side. 
Thus, we will assume that ADAMs may participate in sperm-oocyte 
interaction via binding to integrins on the oocyte surface. This 
hypothesis puts specific ADAM-integrin pairs, especially ADAM2 
and the integrin α9β1, in a category with abalone sperm lysin and 
oocyte VERL (vitelline envelope receptor for lysin) as cognate binding 
partners on the two gametes [33, 34]. Recent studies revealed that 
ADAM2 can enhance the initial adhesion of sperm to the oolema and 
increase the sperm attachment rate. The Adam2–/– knockout also has 
severe defects in sperm membrane interactions and low expression 
level of several ADAM proteins on the sperm surface [35, 36]. 
Besides, the Adam2-deficient sperm show impaired migration into 
the oviduct through the uterotubal junction and fusion to the ZP and 
the oocyte plasma membrane [37]. Nonetheless, there needs to be 
more evidence to prove the hypothesis that ADAM2 has a function 
in the sperm-oocyte fusion through the interaction with the specific 
integrin on the oocyte membrane.

Sperm Equatorial Segment Protein 1 (SPESP1) is 
Crucial for Formation of the Equatorial Segment

It is widely accepted that the equatorial segment after the sperm 
acrosome reaction is important for initiating the fusion with oocyte 
plasma membrane during fertilization [38]. There are various proteins 
known to be distributed only in the equatorial segment of sperm. The 
fusion-related proteins such as IZUMO1 should be localized to the 
sperm equatorial segment after acrosome endocytosis [3]. A number 
of sperm equatorial segment proteins (SPESPs) have also been studied 
regarding their roles in gamete membrane interaction. Among these, 
SPESP1 has been studied actively because either experiments with 
anti-SPESP1 antibodies or in vitro assay of Spesp1 knockout mice 
resulted in severe inhibition of the sperm-oocyte fusion [39–42]. The 
sperm equatorial segment can be disrupted completely due to the lack 
of SPESP1 in Spesp1-deficient males. Furthermore, the disruption 
of Spesp1 was shown to induce an aberrant distribution of various 
sperm proteins, such as ADAM family proteins and MN9 antigen, 
which were found to participate in the fusion process [32, 42]. It has 
been proposed that SPESP1 may help to restrain the MN9 antigen at 
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the moment of fusion [42]. SPESP1 can interact with these proteins 
to facilitate the fusion. Although the exact mechanism is unclear, 
SPESP1 indeed plays an important role in the process of fusion of 
a sperm with oocyte.

Cysteine-rich Secretory Protein 1 (CRISP1) is an 
Epididymal Protein Participating in the Fusion Process

The epididymal protein CRISP1, which is a member of the 
cysteine-rich secretory proteins (CRISPs) family, was identified as a 
sperm surface protein. Once the acrosome reaction occurs, CRISP1 
migrates to the equatorial segment, where the sperm fuses with the 
oocyte plasma membrane [43]. At a structural level, CRISP1 contains 
a CAP domain, which has been implicated in cell-cell interactions. 
Coincubation of peptides derived from the CAP domain (amino 
acid residues 114–158) of rat CRISP1 reduced sperm-oocyte fusion 
during IVF [44]. IVF results indicated that Crisp1-deficient sperm 
show significant difficulty with penetration of the ZP and fusion 
with the oocyte plasma membrane [45]. These results suggest that 
CRISP1 participates in both ZP interaction and the sperm fusion 
with the oocyte. A similar epididymal protein was observed on 
human sperm and named AEG-related protein (ARP) [46–48]. It is 
also reported that human ARP plays a role in gamete fusion through 
complementary sites on the surface of the human oocyte.

Bactericidal/Permeability-increasing Protein (BPI) is a 
Novel Sperm Protein Involved in Sperm-oocyte Fusion

Recently, a novel sperm protein named bactericidal/permeability-
increasing protein (BPI) has received a lot of attention. BPI is a 55–60 
kDa single-chain cationic protein that belongs to a conserved family 
of lipid-transfer proteins. BPI can inhibit all the proinflammatory 
activities of lipopolysaccharides (LPS), including neutrophil oxidase 
enzyme activation, cytokine release, and nitric oxide formation 
[49]. In the male murine reproductive system, BPI was reported 
to be selectively expressed in testes and in the epididymis, not in 
the seminal vesicles, prostate, or solidification glands [50]. In our 
colleagues’ previous study, they discovered that mouse BPI is secreted 
by the epididymal epithelium and then localized to the surface of the 
sperm plasma membrane [51]. BPI is not expressed in the organs 
closer to the external environment; this finding suggests that BPI 
may have multiple functions in the male reproductive system not 
only the antimicrobial function in other organs. Furthermore, they 
found that BPI is enriched in the equatorial segment [51]. Thus, 
our colleagues and we are interested in the function of BPI in male 
infertility. Recent studies also implied that BPI may take part in 
the sperm-oocyte fusion process because incubation with anti-BPI 
antiserum reduces the number of sperm fused with oocytes significantly 
in an IVF assay [52, 53].

Taken together, these pieces of evidence indicate a dual origin of 
the BPI that is associated with mouse spermatozoa. This expression 
pattern of BPI is similar to that of some antimicrobial proteins, such 
as hCAP18/SOB3 localized both in the epididymal epithelia and 
within human spermatozoa acrosomes, potentially displaying zona 
pellucida-binding activity [54, 55]. Additionally, cystatin-related 
epididymal spermatogenic protein (CRESP) is reported to have both 

an antimicrobial function and a role in the sperm-oocyte fusion process 
[56, 57]. Due to the mutualism function of BPI in the interaction 
between proteins and microorganisms, it can be speculated that BPI on 
the sperm surface may not directly interact with the oocyte membrane 
but interacts with or regulates the function of some fusion-related 
proteins on the sperm surface such as CRESP, playing the role of a 
bridge molecule in the sperm-oocyte fusion process. This hypothesis 
requires more evidence and further testing.

Other Molecular Mechanisms Involved in  
Sperm-oocyte Fusion

Cell-cell fusion
Although this review concentrates on molecules participating in 

gamete fusion, knowledge of the molecular mechanism underlying 
general cell-cell fusion could be truly useful. The cell-cell fusion 
mechanism remains poorly understood despite its physiological 
importance in the entire biological process. Recent related studies 
were focused on the discovery of fusogens: cell fusion proteins 
that bring the membranes closer together and mediate the mixing 
of bilayer membranes. In mammals, one family named syncytins 
has been reported as a well-defined fusogen. This family includes 
proteins that originate from endogenous retroviruses related to the 
HIV Gp41 envelope glycoprotein and function in the syncytial 
trophoblasts and in viral fusion [58-60]. For example, syncytin-1 
was found to be expressed in the equatorial segment or acrosomal 
region of spermatozoa, while its receptor (ASCT-2) is expressed on 
oocytes; they together possibly participate in gamete fusion [61]. 
In a synaptic system, a family named SNAREs is also discovered 
as fusogens playing an important role in synaptic vesicles fusion 
process [62, 63]. In a sexual fusion system, it is hypothesized that 
sperm-oocyte fusion-related proteins, such as sperm IZUMO1, 
interact with fusogenic proteins on the sperm membrane or on the 
oocyte membrane to participate in the sperm-oocyte fusion. Sperm 
fusogens are thus expected to be located in the reproductive system 
and can function in cooperation with IZUMO1 or other molecules.

Besides the possibility of fusogenic proteins, it has been demon-
strated that various adhesion molecules and enzymatic activities related 
to cell fusion are also involved in sperm-oocyte fusion because this 
process is in the category of cell-cell fusion processes. For adhesion 
molecules, cadherin is known as a human sperm protein. Cadherin 
is a transmembrane glycoprotein involved in calcium-dependent 
cell-cell adhesion events. An IVF assay indicated that anticadherin 
antibodies reduce the fusion of human sperm to a ZP-free hamster 
oocyte [64, 65]. Cadherin’s participation in gamete interaction has 
not been fully investigated. In addition, zinc metalloproteases are 
necessary for some intercellular fusion processes, such as cell-cell 
fusion in yeast. Inhibitors of zinc metalloproteases and zinc chelators 
are both found to reduce sperm-oocyte fusion. These observations 
indicate that a zinc metalloprotease may take part in the sperm-oocyte 
fusion process [66]. Research into the mechanisms on the basis of 
the studies of cell-cell fusion should bring new insights into the 
sperm-oocyte fusion process.

MicroRNAs
MicroRNAs (miRNAs) are small noncoding single-stranded 
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RNA molecules that are physiologically produced in eukaryotic 
cells to regulate or mostly downregulate genes by pairing with 
their complementary base sequence in relevant mRNA molecules 
in the cytoplasm. It has been reported that a dysfunction in miRNA 
processing such as the use of the Cre-LoxP system to create a specific 
mutant of sperm, Dorsha and Dicer, can result in azoospermia and 
infertility [67, 68]. Because of the necessity of single miRNA in 
target mRNA expression, targeted deletion of miRNA leads to a 
perceptible infertility phenotype in mice. Furthermore, in order to 
characterize the involvement of specific miRNAs that are highly 
expressed in the male reproductive system, several studies have been 
focused on miRNA function in this system. Double disruption of 
miR-34b/c and miR-449 miRNA clusters, which are highly expressed 
in testes, can cause dysregulation of more than 200 molecules and 
may lead to serious male and female infertility [69, 70]. In addition, 
recent evidence showed that miR-27b could negatively regulate the 
expression of CRISP2, which is involved in asthenozoospermia [71]. 
IVF studies showed that CRISP2 knockout sperm have a deficiency 
in penetration of the egg vestments (i.e., cumulus cells and ZP) and 
problems with fusion with the egg [72]. Based on these results, there 
is a greater possibility for miRNAs to take part in the sperm-oocyte 
fusion through regulation of the related proteins such as CRISP1, 
even though the exact function of miRNAs in the fusion needs 
further research. Reinforcing the role of miRNAs is identification 
of these molecules as potential therapeutic targets for the diagnosis 
and treatment of male infertility.

Due to the complex and important process of sperm-oocyte fusion 
in the sexual reproduction system, lots of molecules (that have the 
ability to participate in male infertility and were not elaborated exactly 
in this paper) have been summarized well in other reviews [73]. 
For example, sperm lysozyme-like protein (SLLP1), endoplasmic 
reticulum protein 29 (ERp29), and prostate and testis expression 
(PATE)-like proteins were reported to be involved in the sperm-oocyte 
interaction [74–76]. Disruption of these molecules can lead to a 
perceptible infertility phenotype in mice.

Conclusion

Sperm-oocyte fusion is one of the most impressive events in sexual 

reproduction, culminating in the merger of plasmatic membranes; 
the molecules involved in sperm-oocyte fusion on the sperm side 
are closely related to male infertility [77]. The elucidation of its 
molecular mechanism has confused scientists for a long time. This 
review highlighted the molecules participating in the sperm-oocyte 
fusion on the sperm side (summarized in Table 1). Although many 
mechanisms for some molecules are to be refined and verified, this 
paper focused on the potential molecular mechanisms that may 
provide new ideas for clinical treatment of male infertility. Besides 
the molecules mentioned above, molecular mechanisms of the 
cell-cell fusion process such as formation of myotubes, placenta, 
multinucleated osteoclasts, and macrophages might be involved in 
the sperm reproduction system. This hypothesis needs to be tested 
by more experiments. Therefore, the focus on the role of sperm-
oocyte fusion in male reproductive disorders can further elucidate 
the molecular mechanisms of male infertility and holds promise 
for identification of efficient biomarkers and therapeutic agents for 
these disorders. This study conclusively provides a novel insight 
into some of the mechanisms leading to sperm-oocyte fusion on 
the sperm side, offering a possible therapeutic target for treatment 
of male infertility or even for male contraception. We strongly 
believe that a combination of genetic, biochemical, and biophysical 
approaches will eventually identify and characterize these elusive 
proteins required for fertilization.
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