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Abstract. The nerve terminal and the postsynaptic 
receptor-containing membranes of the electric organ 
are both linked to the basal lamina that runs between 
them. We have identified an extracellular matrix pro- 
tein whose physical properties suggest it anchors the 
nerve terminal to the basal lamina. The protein was 
identified because it shares an epitope with a proteo- 
glycan component of electric organ synaptic vesicles. 
It too behaves like a proteoglycan. It is solubilized 
with difficulty from extracellular matrix fractions, 
elutes from DEAE Sephacel at pH 4.9 only at high 
ionic strength, and binds to a laminin affinity column 

from which it can be eluted with heparin. Under 
denaturing conditions it sediments rapidly and has a 
large excluded volume although it can be included in 
Sephacryl S-1000 columns. This large, highly charged 
extmcellular matrix molecule can be readily recon- 
stituted into liposomes consistent with the presence of 
a hydrophobic tail. By immunoelectron microscopy the 
antigen is found both in synaptic vesicles and on the 
plasma membrane of the nerve terminal. Since this is 
the first protein described that links the nerve terminal 
membrane to the extracellular matrix, we propose call- 
ing it terminal anchorage protein one (TAP-l). 

T 
HE ability of a neuron to make a precise synaptic con- 
nection to a target neuron or organ gives rise to the 
unique information processing power of the nervous 

system. Although a molecular bridge of some sort must exist 
between nerve ending and target, identifying and isolating 
the molecules has proven a difficult task. An unexpected 
finding suggested that at least in the peripheral system, the 
molecules specifying synaptic connections should be found 
in extracellular matrix (ECM).I Using regeneration of the 
nerve-muscle synapse, Sanes et al. (1978) have shown that 
precise targeting of the regenerating nerve to its original site 
occurs in the absence of the muscle cell target as long as the 
original basal lamina of the muscle remains. The molecules 
that specify the precise regeneration are unknown, as is their 
cell of origin. Antibodies and lectins that bind specifically 
to ECM components of the synaptic region have been de- 
scribed (for review see Sanes, 1983) but identification and 
purification of the unique extracellular molecules is a formi- 
dable task given the minute quantities of material available. 

The electric organ of marine rays, an organ embryologi- 
cally related to muscle, has been a rich source of the molecu- 
lar components of synapses including extracellular factors 
involved in acetylcholine receptor and acetylcholinesterase 
clustering (Fallon et al., 1985; Wallace et al., 1985). We have 
described an antigen, the SV4 antigen, that is enriched in 
ECM of electric organ synaptic junctions and is transported 

1. Abbreviations used in this paper: CHAPS, 3-[(3-cholamidopropyl)- 
dimethylammonio]l-propane-sulfonate; ECM, extracellular matrix; TAP, 
terminal anchorage protein. 

there by the nerve that innervates the electric organ (Caroni 
et al., 1985). In this paper, we have used a monoclonal anti- 
body to the SV4 antigen to isolate from electric fish ECM 
fractions (Godfrey et al., 1984) molecules bearing this anti- 
gen. Only one major component can be solubilized from the 
ECM. It is found to be a highly charged molecule of very 
large size, with a membrane-associating domain. By im- 
munoelectron microscopy it is found in association with the 
outside of the nerve terminal but not elsewhere in the electric 
organ. These properties are those that would be expected of 
a nerve terminal anchorage protein (TAP). 

Materials and Methods 

Materials 

Na~251 was obtained from Amersham Corp. (Arlington Heights, IL), iodo- 
gen was purchased from Pierce Chemical Co. (Rockford, IL), centricons 
from Amicon Corp. (Danvers, MA), Triton X-100 from Boehringer Mann- 
heim Biochemicals (Indianapolis, IN), ultrapure urea from Schwarz/Mann 
Div. (Spring Valley, NY), 10-riM gold goat anti-mouse IgG from Jansen 
Pharmaceutica, Structure Probe, Inc. (West Chester, Phi), and Lowicryl 
K4M from Polysciences, Inc. (Warrington, PA). DEAE Sephacel, 
Sephacryl S-1000, and Sephadex G-25 were obtained from Pharmacia Fine 
Chemicals (Piscataway, NJ). BSA, 3-[(3-cholamidopropyl)-dimethylam- 
monio]l-propane sulfonate (CHAPS), Hepes, SDS, Nonidet P-40, heparin, 
sucrose, diisopropylfluorophosphate, iodoacetamide, pepstatin, leupeptin, 
chymostatin, and guanidine-HCl were purchased from Sigma Chemical Co. 
(St. Louis, MO). The laminin bound to Affi-Gel l0 was a gift from the labo- 
ratory of Dr. L. E Reichardt at University of Califoruia, San Francisco. The 
electric ray, Discopyge ommata, was obtained from Salt Water Aquariums 
(San Francisco, CA). 
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Immunogold Electron Microscopy 
Discopyge ommata was anesthetized and perfused as previously described 
for N. brasiliensis (Carlson et al., 1978). Before removing the electric or- 
gans, the fish were also perfused with 200 mi of 0.8 M NaCI, 10 mM Na 
cacodylate, pH 7.4, and then 200 mi of 0.1 M Na cacodylate, 70 mM NaCl, 
4% paraformaldehyde, 0.1% glutaraldehyde, pH 7,4. A second fish was not 
perfused, but small pieces of electric organ were fixed by immersion in the 
paraformaldehyde-glntaraldehyde solution for 2 h. The tissue samples were 
then processed as described in Valentino et al. (1985) for immunogold elec- 
tron microscopy with Lowicryl K4M. Monoclonal supernatants were used 
undiluted. The two fish gave essentially the same results and both were used 
in the analysis. 

Morphometric Studies 
Grids were examined and photographed using a JEOL 100B electron micro- 
scope. The lengths of membranes were made from enlarged photographic 
prints using a digitizer pad. Areas of the micrographs were measured by cut- 
ting out and weighing photocopies of the desired regions. 

Dot Blot Assays (lmmunoblots) 
Dot blot assays on nitrocellulose (BA85; Schleicher & Schuell, Inc., Keene, 
NH) to detect SV4 antigenicity were done as previously described (Carlson 
and Kelly, 1983) except where the antigen was in a denaturing solution other 
than SDS. 4 M guanidine-HCl/CHAPS containing samples were diluted 
1:200 in spotting buffer (2% SDS, 0.2 M NaC1, 5 mM Hepes, 10 mM beta- 
mercaptoethanol, pH 7.0) before application to the nitrocellulose; 8 M urea 
detergent-containing samples were diluted 20-fold before application. In 
some cases, especially after protease digestion, samples were applied to ei- 
ther DEAE nitrocellulose (NA45; Schleicher & SchueU, Inc.) or DEAE pa- 
per (DES1; Whatman Inc., Clifton, NJ). Here the spotting buffer was 8 M 
urea, 0.1 M NaC1, 50 mM sodium acetate, 0.2% Nonidet P-40, pH 4.9. The 
binding of the monoclonal antibody to filters (50-fold dilution of culture su- 
pernatant) was detected using t25 I-affinity-purified goat anti-mouse IgG, H 
& L chain specific (Cappel Scientific Division, CooperBiomedical, Inc., 
Malvern, PA). The bound radioactivity was detected by counting the filters 
in a gamma counter or by autoradiography with an intensifying screen (Cro- 
nex Lightning-Plus; DuPont Co., Wilmington, DE). In the latter case the 
signal was quantitated by densitometry of the exposed x-ray film (Kodak, 
XAR-5) with a Zeineh Soft Laser scanning densitometer, model SL-504-XL 
(Biomed Instruments, Inc., Fullerton, CA). 

Preparation of the ECM Fraction 
The procedure was a small modification of that of Godfrey et al. (1984). 
All manipulations were done at 4°C. The crushed frozen electric organ from 
D. ommata was prepared as described by Carlson et al. (1978). 300 g of the 
crushed tissue was homogenized with a Waring blender for 2 min in 450 
ml of 0.4 M NaC1, 10 mM EGTA, 10 mM Hepes, 0.02 % sodium azide, pH 
7.4, and spun at 12,500 g for 30 min. The supernatant was discarded and 
the pellet re-homogenized in 200 ml of 0.5 M NaCI, 10 mM EDTA, 10 mM 
Tris, 17 mM iodoacetamide, 0.125 p.l/ml diisopropylfluorophosphate, 0.025 
mg/ml pepstatin, chymostatin, and leupeptin (all three added to the homoge- 
hate at 5 mg/ml in dimethyl sulfoxide), pH 7.5. The protease inhibitors were 
added just before the homogenization. The homogenate was spun at 12,500 g 
for 30 min. The supernatant was discarded and the pellet re-homogenized 
in 300 ml of 10 mM "Iris, pH 7.5. The homogenate was spun at 31,000 g 
for 30 rain. The supernatant was discarded and the pellet mixed with 350 ml 
of 20 mM "Iris, 3 % Nonidet P-40, pH 10.5, using a magnetic stirring motor 
for 2 h. The extract was spun at 31,000 g for 30 min. The supernatant was 
discarded and the pellet frozen for further use. No difference in the antigen 
was found whether the protease inhibitors were added at the first or second 
homogenization. 

Solubilization of the SV4 A ntigen 
from the ECM Fraction 
Two solubilization conditions were used. For SDS solubilization, each gram 
of ECM pellet was mixed with 10 ml of 5 % SDS in 0.12 M Hepes, 1% beta- 
mercaptoethanol, pH 6.8, and boiled for 4 min. For guanidine-HCl extrac- 
tion, each gram of ECM pellet was rotated 18 h at 4°C in 5 ml of 4 M guani- 
dine-HCl, 1 mM EDTA, 10 mM beta-mercaptoethanol, 50 mM sodium 
acetate, pH 5.8, and either 0.2% Nonidet P-40, 50 mM sodium acetate, pH 
5.8, or 2% CHAPS, 50 mM Hepes, pH 7.5. Samples were further 

homogenized in a Polytron (Brinkmann Instruments Co., Westbury, NY) 
then centrifuged at 20,000 g for 20 min. Recovery of SV4 antigen in the su- 
pernatant was about four times higher for homogenization in guani- 
dine-HCl than in SDS even with boiling. 

Sedimentation Velocity of the SV4 Antigens in SDS 
Analytical sedimentation velocity ultracentrifugation of the SDS-solubi- 
lized ECM in sucrose gradients containing SDS was performed with a SW- 
60 rotor (Beckman Instruments, Inc., Palo Alto, CA) as previously de- 
scribed (Carlson and Kelly, 1983). For preparative sedimentation velocity, 
a 2.5-rnl sample was layered on a 36-rnl sucrose gradient and spun in an 
SW-28 rotor for 19.3 h. 2-ml fractions were collected. To remove SDS from 
samples, they were dialyzed exhaustively against 0.2% SDS, 8 mM Hepes, 
pH 7.0, lyophilized, and redissolved in distilled water. To precipitate the 
SDS, KCl was added to a final concentration of 0.2 M, incubated on ice for 
30 min, and spun at 15,600 g for 10 min. The resulting pellet was extracted 
three times with 5 ml of HC1/acetone (165 Itl of 3 M HC1/5 ml acetone) using 
a 15,600 g spin to separate supernatant and pellet. The pellet was dried with 
a Speed-Vac (Savant Instruments, Inc., Hicksville, NY). 

DEAE-Sephacel Chromatography of 
Solubilized ECM Components 
Chromatography on DEAE-Sephacel at pH 5.0 is commonly used to sepa- 
rate highly charged anionic molecules such as proteoglycans. To keep them 
in solution, it is necessary to run the columns in 8 M urea. Samples were 
made up in 8 M urea, 0.11 M NaC1, 0.2% Nonidet P-40, 50 mM sodium 
acetate, pH 4.9, centrifuged to remove insoluble material (20,000 g, 20 
min), and applied to a 2-ml DEAE Sephacel column which was equilibrated 
with the same buffer. After washing with three column volumes, proteins 
were eluted with a linear gradient of NaCI, 0.11-1.4 M, in the same urea 
buffer. The elution volume was twelve to twenty times the column volume. 
Columns were run at room temperature. 

Chromatography of Solubilized ECM 
on Sephacryl $4000 
ECM material solubilized in guanidine-HCl and CHAPS was applied to 
a 120-ml column equilibrated with 4 M guanidine-HC1, 0.2% CHAPS, 
50 mM Hepes, pH 7.4. Chromatography was carried out at a flow rate of 
24 ml/h at room temperature. To assay for protein, column fractions were 
concentrated to 150 ltl and the 4 M guanidine-HCl in the column buffer 
replaced with 8 M urea by repeated concentrations with a Centricon-30. 
This was done to avoid the incompatibility of the 4 M guanidine-HCl and 
the protein assay of Schaffer and Weissmann (1973). 

Pronase Digestion of ECM Fraction 
and Chromatography on Sephacryl $4000 
0.25 g of ECM pellet was resuspended in 1.5 ml of 50 mM Hepes, 0.83% 
Nonidet P-40, pH 7.5, which contained 20 mg/ml pronase (No. 53702, 
Calbiochem-Behring Corp., San Diego, CA) and was incubated for 19 h at 
room temperature. The digest was then spun at 15,600 for 15 rain and the 
supernatant heated in a boiling water bath for 5 rain to inactivate the 
pronase. 1.2 nil of this supernatant was mixed with 6 M guanidine-HCI, 
0.2% Nonidet P-40, 50 mM Hepes, 24 mM heta-mercaptoethanol, pH 7.5, 
and applied to a 120-ml Sephacryl S-1000 column. The conditions of the 
chromatography were as previously described. 

Preparation of lodinated SV4 Antigen from ECM 
Peak fractions from the Sephacel S-1000 chromatography of ECM were 
pooled and the guanidine-HC1/CHAPS buffer exchanged for 6 M urea, 
0.2% CHAPS, 50 mM Hepes, pH 7.0, by repeated concentrations with a 
Centricon-30. The resulting 100 p.1 of solution was mixed with 1 mCi of 
Na125I and iodinated with iodogen (Salacinski et al., 1981). The unbound 
~25I was separated from bound radioactivity (4 x 107 cpm) by spin dialysis 
with Sephadex G-25 fine swollen in the urea/CHAPS buffer. The iodinated 
material was further purified by velocity sedimentation in SDS sucrose gra- 
dients as described previously. To evaluate the purity of this ~2sI-SV4 anti- 
gen, a fraction was diluted to 700 I.tl of 8 M urea, 50 mM NaCI, 50 mM 
sodium acetate, 0.2% Nonidet P-40, pH 4.9, and analyzed on a DEAE- 
Sephacel column. The radioactivity eluted at the expected position. 
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Binding to Laminin AJ~gel 
Iodinated SV4 antigen was diluted 100-fold with 40 mM NaCI, 10 mM 
Hepes, 0.2 % Triton X-100, pH 7.0, and loaded on a 0.6-ml column of laminin 
covalently bound to Afli-gel 10 (Bio-Rad Laboratories, Richmond, CA). 
The flow rate was 29 ml/h and 0.6-ml fractions were collected. The column 
was washed with 12 ml of the same buffer and then eluted with the same 
buffer containing 10 mg/ml heparin. 

To verify that the eluted radioactivity was indeed the SV4 antigen, ali- 
quots of the peak fractions were immunoprecipitated with immunobeads 
(Bio-Rad Laboratories, Richmond, CA) to which the monoclonal antibody 
directed against SV4 was bound. Rabbit anti-mouse Immunobeads (20 nag) 
washed with 0.4 M NaCI, 10 mM Hepes, 1% BSA, pH 7.0, were re- 
suspended in 5 ml of monoclonal supernatant and mixed overnight by rota- 
tion. The beads were washed as before and resuspended in 0.4 M NaCI, 
10 mM Hepes, 1% Triton X-100, 0.1% SDS, pH 7.0 (precipitation buffer). 
To immunoprecipitate fractions, aliquots (containing <0.05 % SDS) were 
mixed with an equal volume of antibody-coupled immunobeads (1 mg/ml) 
and rotated overnight. Samples were underlayed with a pad of 7 % Ficoll 
in precipitation buffer and spun for 10 rain at 15,600 g. The bead pellet was 
then washed three times with precipitation buffer. An identical set of im- 
munoprecipitations was performed with beads coupled to a monoclonal an- 
tibody that does not recognize any ECM component. All procedures in 
binding antibody to the beads and the immunoprecipitations were done at 
4°C. 

Incorporation into Liposomes 

To incorporate proteoglycans into liposomes by the procedure of Brunner 
et al. (1978), the detergent Nonidet P-40 in the DEAE-Sephacel-purified 
proteoglycans first had to be exchanged for cholate. In brief, peak fractions 
from DEAE-Sephacel columns were diluted fivefold in g M urea, 20 mM 
Tris, pH 7.4, to reduce the ionic strength, then adsorbed to a small (2 ml 
total volume) DEAE-Sephacel column. After washing with 2% cholate, 
0.1 M NaCI, pH 7.4, 20 mM Tris, 8 M urea, the proteoglycan was eluted 
with the same buffer containing 3 M NaCI. 1 ml of the eluted fraction was 
added to a tube containing 10 mg of egg phosphatidylcholine and trace 
amounts of 3H-cholesterol (4 x 106 cpm, 5 Ixg; New England Nuclear, 
Boston, MA) dried under a stream of nitrogen. The resulting solution was 
fractionated on a Sephadex G-50 column (1.4 × 40 cm) equilibrated with 
0.1 M NaCI, 20 mM Tris, pH 7.4, and 45 % sucrose. Liposomes were eluted 
in the void volume. 

To show association of proteoglycan and liposomes, a linear density gra- 
dient of 5-35% sucrose (10 ml, 0.1 M NaCI, 20 mM Tris, pH 7.4) was 
layered onto 2 ml of the liposome suspension (in 45 % sucrose) in a Beck- 
man SW41 centrifuge tube. The samples were centrifuged at 35,000 rpm at 
10°C for 12 h, and fractions collected from the bottom. Densities of gradient 
fractions were measured by refractometry. 

To separate proteoglycan-containing liposomes on DEAE-Sephacel, 
columns of 2 ml were washed with 0.05 M NaCI, 20 mM Tris, pH 5.0. The 
liposomes from the G-50 column were passed through the column, the 
column washed with 5 ml of the same buffer, then the proteoglycans eluted 
with a 0.05-1.2 M NaC1 gradient. To separate free proteoglycans from those 
in liposomes, the peak fractions were layered on a 5-60% sucrose density 
gradient (0.1 M NaCI, 20 mM Tris, pH 7.4) in a Beckman SW41 centrifuge 
tube and centrifuged for 16 h at 35,000 rpm (10°C). To remove the external 
proteoglycan with pronase, an aliquot was incubated at room temperature 
for 2 h in 20 ~tg/ml pronase (Calbiochem-Behring Corp.). 

Phospholipid was estimated in all samples by scintillation counting of 
3H-cholesterol and antigenicity by dot blot assay using antibodies to the 
SV4 site for ECM proteoglycan and anti-SV1 for vesicle proteoglycan 
(Caroni et al., 1985). 

Other Techniques 
Synaptic vesicles from the electric organ of D. ommata were purified by the 
methods of Carlson et al. (1978). Protein concentration was measured with 
the filter binding assay of Schaffer and Weissmann (1973). 

Results 

We have shown earlier that an antigenic determinant present 
on a synaptic vesicle proteoglycan is also present at high 
specific activity in the ECM (Caroni et al., 1985). To test 
whether the antigenic site was on the same molecule in vesi- 
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Figure 1. Sedimentation velocity of the ECM and synaptic vesicle 
SV4 antigens in SDS. A shows the sedimentation of the SV4 antigen 
solubilized from the ECM (7 mg ECM pellet) by SDS and run in 
a 5-20% sucrose gradient containing SDS for 2.2 h at 48,000 g. 
B shows the sedimentation of the SV4 antigen from synaptic vesi- 
cles (26 I~g vesicle protein) run under the same conditions for 8.6 h. 
The arrows mark the positions on the gradients which were used 
for the calculation of the sedimentation coefficients. Antigenicity in 
10 Ixl of each fraction was measured by dot blotting on nitrocel- 
lulose. 

cles and ECM, antigenic molecules from the two sources 
were compared. The antigenic molecule was solubilized 
from the ECM fraction in 1% SDS buffer containing beta- 
mercaptoethanol and its sedimentation velocity on a sucrose 
density gradient compared to that solubilized from synaptic 
vesicles. Note that the two gradients were centrifuged for dif- 
ferent times. As can be seen in Fig. 1, the antigens from both 
sources sediment as single peaks indicating that they are 
monodisperse. The uncorrected s values were 11.2 for the 
ECM form and 2.2 for the synaptic vesicle proteoglycan. 
Since the sedimentation velocities of the two molecules 
differed by a factor of 5, even under severe denaturing condi- 
tions they must differ by size, density, or both. 

To confirm this difference, the two molecules were com- 
pared on sizing columns. Using 4 M guanidine-HC1, and 
0.2 % CHAPS to solubilize the ECM form, over four times 
more antigen could be solubilized than SDS. Although the 
vesicle proteoglycan is included (K,v = 0.2) in a Sepharose 
6B column (Carlson and Kelly, 1983), the ECM antigen was 
excluded even by a Sepharose 4B column. The ECM form 
was included in a Sephacryl S-1000 column (Fig. 2), al- 
though it eluted before the blue dextran marker which has a 
size of ,,02 x 106. By comparison with the profile of protein 
eluting from the S-1000 column, ECM proteins of this size 
are quite rare. 
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Figure 2. Permeation chroma- 
tography on the extracellular 
matrix SV4 antigen on Sepha- 
cel S-1000 in 4 M guanidine- 
HCI, 0.2% CHAPS. The SV4 
antigenicity and protein con- 
centration for selected frac- 
tions are shown plottext on the 
figure. The calculated void 
volume (Vo), and the total 
volume (Vr) are indicated on 
the figure by the labeled ar- 
rows. 0.5 g of ECM pellet was 
solubilized in 2.9 ml of 4 M 
guanidine-HCl, 50 mM Hep- 
es, 2% CHAPS, 0.36 M beta- 
mercaptoethanol, pH 7, and 
applied to a 120-ml Sephacel 
S-1000 column. The column 
was equilibrated with the 
same buffer containing 0.2% 
CHAPS and no beta-mercap- 
toethanol. The ordinate gives 
the antigenicity per 10 I+1. 

A second characteristic of the synaptic vesicle proteogly- 
can is its high negative charge (Carlson and Kelly, 1983). As 
a result of this charge, it elutes from DEAE-Sephacel at 0.46 
M salt at pH 5.0 (data not shown). The ECM antigen, iso- 
lated by its high sedimentation velocity (Fig. 1) was passed 
through a DEAE-Sephacel  column under similar conditions 
and its elution conditions were studied. Essentially, all the 
rapidly sedimenting antigen bound to the DEAE column 
(Fig. 3) and was only eluted at higher salt concentration 

(0.7 M). It appears therefore as if by this second criterion, 
the antigenic molecule in the synaptic vesicle is not identical 
to that in the ECM, although both are highly negatively 
charged. Fig. 3 also demonstrates that all of the rapidly 
sedimenting ECM form is highly negatively charged. 

Only a small fraction of the ECM protein solubilized by 
4 M guanidine-HC1 binds to DEAE-Sephacel  and of that 
very little elutes with the antigen at 0.7 M salt (Fig. 4). The 
antigenic molecule is therefore a minor ECM component. 
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Figure 3. Ion exchange chro- 
matography of the SV4 anti- 
gen on DEAE-Sephacei after 
isolation by sedimentation ve- 
locity centrifugation. The SV4 
antigenicity (e)  and the NaCI 
concentration (O) of selected 
fractions are shown plotted 
on the figure. Approximately 
3.0 mg of protein from which 
the SDS was extracted was 
redissolved in 2 ml of 8 M 
urea, 0.2% Nonidet P-40, 0.11 
M NaC1, 50 mM Hepes, pH 
4.9, and applied to a 2-ml 
DEAE Sephacel column. The 
column was washed with 6.5 
ml of this same buffer and then 
eluted with a linear gradient of 
36 ml from 0.11 to 1.4 M NaCl 
in this same buffer solution. 
The flow rate was l0 ml/h, 
0.5-ml fractions were col- 
lected, and 5-1xl samples were 
assayed. 
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Figure 4. The elution profile of guani- 
dine-HC1 solubilized ECM fraction from 
DEAE-Sephacel. SV4 antigenicity (O) and 
protein concentration (O) are shown in the 
figure. About 16 g of ECM pellet was solu- 
bilized in 4 M guanidine-HCl, 50 mM so- 
dium acetate, 50 mM EDTA, 0.2 % Nonidet 
P-40, 10 mM beta-mercaptoethanol, pH 5.8. 
This extraction buffer was exchanged by di- 
alysis with a buffer solution containing 8 M 
urea, 0.11 M NaCI, 50 mM sodium acetate, 
0.2% Nonidet P-40, pH 5.0. The resulting 
60 ml of sample was applied to a 12-ml 
DEAE-Sephacel column, eluted with 150 
ml linear salt gradient (0.11-1.4M NaC1; A) 
at a flow rate of 10 ml/h, 2.4-ml fractions 
were collected, and 1-1~1 fractions assayed. 
Only the gradient portion of the elution 
profile is shown on the figure. 

Note that the antigenic molecule does not elute in such a 
sharp peak in Fig. 4. This is a consistent finding when less 
pure samples are subject to DEAE chromatography. 

Association of  the Extracellular Antigen 
with ECM Components 

Dissociation of the SV4 antigen from the ECM fraction re- 
quires strong denaturing conditions. The ECM fraction used 
in these experiments is a detergent-insoluble material that 
cannot be solubilized by high salt, low salt, or calcium chela- 
tors. It is enriched in collagen and in acetylcholine receptor 
clustering factors (Godfrey et al., 1984). The clustering fac- 
tor and other loosely attached proteins can be removed by a 
pH 5.0 wash (Fallon et al., 1985), but the antigen is not dis- 
turbed. Boiling in 1% SDS solubilizes 70 times more antigen 
than non-denaturing detergent (0.4% Triton X-100) while 
4 M guanidinegHC1, in the presence of 2 % Nonidet P-40, 
solubilizes 270 times as much. 

To explore how the extracellular antigen might be associat- 

ing with the ECM, we examined its binding to laminin 
affinity columns. The antigen was extracted from the ECM 
fraction using guanidine-HC1 and chromatographed on 
Sephacryl S-1000 (Fig. 2) to give partial purification. To al- 
low its detection, the antigen was iodinated with n5I and 
further purified by velocity sedimentation. At least 63 % of 
the recovered radioactivity eluted at 0.68 M salt on DEAE- 
Sephacel and 65 % could be specifically immunoprecipitated 
with antibody to SV4. 

When the purified iodinated material was passed over a 
laminin affinity column, 23 % of the recovered radioactivity 
passed through the column without binding, while 77 % (Fig. 
5) could be eluted with heparin (10 mg/ml). To confirm that 
the radioactive material was indeed in the antigen, fractions 
were immunoprecipitated with antibody to SV4. The major- 
ity (71%) of the eluted counts were immunoprecipitated with 
anti-SV4, while control antibody gave no immunoprecipita- 
tion. We conclude that the extracellular antigen can associate 
with molecules such as laminin, presumably via its highly 
charged domain. The competition with heparin suggests that 
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Figure 5. The binding of the ECM-SV4 an- 
tigen to immobilized laminin and its elution 
by heparin. ~SI-ECM-SV4 antigen (isolated 
by chromatography on Sephacryl S-1000 
and sedimentation velocity) was applied in 
10 ml of column buffer (40 mM NaC1, 10 
mM Hepes, 0.2% Triton X-100, pH 7.0) to 
a 0.6-ml column of laminin covalently 
bound to afli-gel. The column was then 
washed with 12 ml of the same buffer. Only 
about 23 % of the radioactivity eluted from 
the column during these washes. When the 
radioactivity had dropped to background 
levels, the laminin-Affi-gel was eluted with 
column buffer containing 10 mg/ml heparin 
(as indicated by the arrow on the figure). 
The flow rate was 29 ml/h and 0.6-ml frac- 
tions were collected. Radioactivity was as- 
sayed (e) .  To verify that the label was in 
antigenic molecules, aliquots (250 ~tl) of 
fractions (5-10) were subjected to im- 
munoprecipitation using polyacrylamide 
beads to which antibody to SV4 antigen was 
attached (O). The control immunoprecipi- 
tations (A) were done using beads to which 
a nonspecific monoclonal antibody was 
bound. 

the antigenic molecule is a proteoglycan but we have no di- 
rect chemical evidence. 

Evidence for  a Protease-resistant Domain 

The molecule carrying the SV4 antigen has pronase-sensitive 
regions, since exposure to pronase prevents binding to 
nitrocellulose paper (Caroni et al . ,  1985). The antigenicity 
can be recovered in a small,  neutral glycopeptide domain. A 

significant portion of the antigen appears, however, to  be as- 
sociated with a large, pronase-resistant domain which is 
negatively charged and will bind to DEAE-ni t rocel lu lose  
paper. To estimate the size of this domain,  it was chro- 
matographed on Sephacryl  S-1000 and compared with un- 
digested material.  4 M guanidine-HCl  was present through- 
out. The digested material runs more slowly than the intact 
molecule but nonetheless elutes at the position of the blue 
dextran marker  (Fig. 6). The kay for the untreated material 
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Figure 6. The chromatographic separation 
of pronase digested and undigested ECM- 
SV4 antigen on Sephacryl S-1000. The un- 
digested (e)  and pmnase digested (O) mol- 
ecules were chromatographed separately on 
the column, as in Fig. 4. The arrows labeled 
Vo and VT show the calculated void volume 
and the total volume of the column, respec- 
tively. Both the undigested ECM pellet 
(0.25 g) and the pronase-treated ECM pellet 
(0.18 g) were mixed with guanidine-HCl/ 
CHAPS before application to the column. 
The antigenicity for the undigested antigen 
was detected using 2.5-5-1.tl samples and 
the dot blot assay on DEAE-nitrocellulose. 
All these assays gave essentially the same 
results; the results of the DEAE-nitrocellu- 
lose assay are shown. The pronase-resistant 
antigenicity was measured in 15-30-gtl ali- 
quots using the DEAE paper dot blot assay. 
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Figure 7. Chromatography of antigen-containing lipo- 
somes on DEAE-Sephacel. Liposomes (5-ml volume) 
prepared by chromatography on a G50 Sephadex 
column were passed through 2-ml columns of DEAE- 
Sephadex which was then washed with 0.05 M NaCI, 
20 mM Tris, pH 5.0. Most of the phospholipid ( . )  but 
little of the antigen passed straight through the col- 
umn. Antigen (O) eluted by a salt gradient (0.05-1.4 
M NaC1, 50 mM Helms, pH 5.0; l )  was associated 
with a small peak of phospholipid. Note the change 
in phospholipid scale. (A) Liposomes containing 
ECM. Synaptic vesicle SV4 antigen was assayed by 
dot blot on nitrocellulose filters using antibody to 
SV4. (B) Liposomes containing the synaptic vesicle 
proteoglycan assayed by antibody to SVI. 

was 0.52 and for the digested material is 0.69. Although ac- 
curate measurements cannot be made, because we do not 
know to what extent protein and carbohydrate standards are 
appropriate, the digested material is about one-tenth the size 
of the intact form. Given the size of the molecule, there may 
be more than one pronase-resistant domain per polypeptide. 

The Extracellular SV4 Antigens Also 
Have Hydrophobic Domains 

Several heparan sulfate proteoglycans have been found that 
have membrane-associated tails, indicating that they are inte- 
gral membrane proteins (H66k et al., 1984a). If the SV4 an- 
tigen had a hydrophobic tail then it could act as a bridge to 
link membranes and the ECM material. We therefore looked 
for the presence of hydrophobic tails using established proce- 
dures (Kj611en et al., 1980). The Nonidet P-40 detergent was 
removed from SV4 antigen purified on a DEAE-Sephacel 
column by adsorbing it at low ionic strength to a second 
DEAE-Sephacel column, washing the column with a buffer 
containing cholate, then eluting batchwise in high ionic 
strength medium also containing cholate. Excess phos- 
phatidyl choline containing a small amount of 3H-choles- 
terol as marker was added to the SV4 antigen and unilamellar 

liposomes obtained by the filtration procedure of Brunner et 
al. (1978). Proteins that associate with phospholipids float 
to light density positions on equilibrium centrifugation on 
sucrose density gradients (Skehel et al., 1982). By this 
criterion, the majority of the antigenic molecules had 
hydrophobic domains and came to equilibrium at a density 
of 1.11 gcm -3. The equilibrium density of the liposomes 
containing the ECM SV4 antigen (1.10 + 0.01, four measure- 
ments) was always slightly greater than that of free liposomes 
(1.055 + 0.009). To confirm that this indeed represented in- 
corporation into liposomes, liposomes were solubilized by 
adding the detergent deoxycholate before centrifugation. The 
antigens did not float upwards (data not shown). 

The presence of a phospholipid-binding region was con- 
firmed by fractionating liposomes on DEAE-Sephacel. The 
majority of the phospholipid passed through the column 
(Fig. 7). A small peak, however, eluted with the SV4 antigen 
when the salt concentration was raised. In contrast, lipo- 
somes containing the synaptic vesicle proteoglycan (Carlson 
and Kelly, 1983) eluted at a characteristically lower ionic 
strength (0.47 M NaCl). When the antigen-associated lipo- 
somes purified on a DEAE-Sephacel column were cen- 
trifuged on a sucrose density gradient (Fig. 8), the majority 
(64%) of the antigen came to equilibrium at a density close 
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to that of the liposomes as detected by a lipid marker. It is 
likely therefore that these liposomes have the SV4 antigen in- 
serteA into the membrane with their antigen domain outside. 

To determine if the pronase-resistant fraction is very close 
to the site of membrane association, an aliquot of the lipo- 
somes was treated with pronase before the centrifugation. If  
assayed on nitrocellulose paper, the antigenicity was essen- 
tially lost across the gradient (data not shown). If, however, 
the antigenicity in DEAE-binding material was measured, 
then the antigenicity could be recovered. Most was now 
found in the pellet and in high density fractions (Fig. 8 b). 
The liposome peak, denuded of antigen, had now a narrower 
density distribution. We conclude that pronase can shave the 
pronase-resistant antigenic domain from externally facing 
molecules. 

The SV4 Antigen Is Associated with Nerve Terminals 

The biochemical evidence shows that the SV4 antigen in 
homogenates of electric organ is present in ECM as well as 
synaptic vesicles. Earlier immunofluorescence data (referred 
to in Caroni et al., 1985) showed the presence of the SV4 an- 
tigen on the outside of nerve terminals, in close association 
with the postsynaptic membrane. To measure how exclu- 
sively the SV4 antigen should be considered a nerve terminal 
marker in the electric organ, the subcellular location of the 
SV4 antigen was compared by immunoelectron microscopy 
with that of another synaptic vesicle antigen, the cytoplasmi- 
cally located SV2. This 95-kD transmembrane glycoprotein 
(Buckley and Kelly, 1985) appears to be restricted to synaptic 
vesicles, and present in all synaptic vesicles. To allow ac- 
curate measurement, nerve terminals were sectioned, and 
antibody binding was assayed using gold bead-labeled sec- 
ond antibody. 
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Figure 8. Most of the ECM SV4 antigen 
eluting from DEAE-Sephacel has the den- 
sity of liposomes. The SV4 antigen from a 
DEAE column similar to that shown in Fig. 
7 A was layered on a sucrose density gra- 
dient (5-60%) either before (A) or after (B) 
treatment with pronase. Fractions were as- 
sayed for phospholipid or antigenicity by 
dot blot assay on DEAE-nitroceUulose 
filters. Antigenicity in the pellets is shown 
by the hatched bar. Pronase-treated samples 
had barely detectable antigenicity when as- 
sayed by dot blotting on nitrocellulose 
filters. Most of the antigenicity had a den- 
sity close to phospholipid before pronase 
(A) and the phospholipid peak was broad. 
Pronase digestion (B) separated most of the 
phospholipid from the antigenicity, some of 
which now pelleted. The hatched bar gives 
the antigenicity recovered in the pellet. 

Electric fish were perfused, their electric organs dis- 
sected, embedded with Lowicryl, and antibodies applied 
directly to the sections. The SV4 antigen (Fig. 9, a and b) 
is found associated with plasma membrane and vesicles 
while the SV2 antigen is primarily associated with vesicles 
(Fig. 9 c). The number of gold particles per terminal as- 
sociated with the membrane and with the vesicles were mea- 
sured for both antigens (Fig. 10 a). The data clearly show 
that SV4 is associated with the plasma membrane more than 
three times as much as SV2. 

The SV4 antigen appears to be restricted to nerve terminal 
membranes. If  the number of gold particles per length of 
nerve terminal membrane is compared to that for non- 
innervated postsynaptic membrane (Fig. 10 b) a clear prefer- 
ence for the nerve terminal membrane is seen. Preliminary 
measures of the distribution of the SV4 antigen along the 
nerve terminal plasma membrane have not yielded conclu- 
sive evidence for concentration in the synaptic junctional re- 
gion in contrast to the results with horseradish peroxi- 
dase-labeled second antibodies (Buckley, K. M., unpub- 
lished observations; Kelly et al., 1986). The SV4 antigen is 
also, not surprisingly, absent from the highly involuted non- 
innervated face of the electrocyte. The number of gold beads 
contained in the cross-sectional area of this highly involved 
membrane was determined for eight micrographs. When this 
gold bead density was compared to that found over nerve ter- 
minals on the same micrographs, a 30-fold difference was 
seen .  

We conclude that a portion of the SV4 antigen in electric 
organ is associated with the nerve terminal membrane. From 
the biochemical data, we are led to believe that a significant 
fraction of this plasma membrane antigen is ECM as- 
sociated. These data also imply that the SV4 antigen as- 
sociated with the nerve terminal plasma membrane is not due 

Figure 9. Electron micrographic localization of the SV4 and SV2 antigens on the nerve terminals of electric organ. The appropriate 
monoclonal antibody was bound to ultrathin sections of electric organ embedded with Lowicryl K4M. Binding was detected using goat 
anti-mouse IgG coupled to 10-nm gold particles. (A) Three nerve terminals stained for the SV4 antigen. Bar, 1.2 ~tm. (B) A higher 
magnification of a nerve terminal stained for the SV4 antigen. Bar, 0.23 lam. Gold particles appear to be associated with both the synaptic 
vesicles and the periphery of the nerve terminal. (C) A nerve terminal stained for the synaptic vesicle antigen SV2. Bar, 0.58 I.tm. 
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Figure 10. (A) The distribution of gold particles bound to the SV4 
or SV2 antigen associated with synaptic vesicles or nerve terminal 
plasma membrane in electron micrographs. In 43 micrographs 
stained with a monoclonal antibody directed against SV4, the num- 
ber of gold particles associated with either synaptic vesicles or 
nerve terminal plasma membrane was determined for 55 nerve ter- 
minals. For SV2, 24 micrographs were used and the gold particles 
bound to 29 nerve terminals were counted. The SV4 data repre- 
sented two fish preparations, the SV2 only one. The data is 
presented in the bar graph as the average percentage of gold parti- 
cles for each nerve terminal associated with either synaptic vesicles 
or nerve terminal plasma membrane. The error bars show the stan- 
dard error of the mean for these averages. (B) The gold particle 
density (number/length of membrane) on nerve terminal plasma 
membranes (neuron) and non-innervated postsynaptic plasma 
membranes (electrocyte) from electron micrographs stained for the 
SV4 antigen. Lengths of plasma membrane which were well 
defined in the micrographs were measured and the number of 
gold particles associated with the measured region counted. The 
density was obtained by dividing the total number of particles 
counted by the total length of plasma membrane measured. For the 
SV4 antigen two separate fish were perfused, fixed, embedded, sec- 
tioned, and stained. The data from the two sets of electron micro- 
graphs are shown in the figure (labeled I and H). The total plasma 
membrane lengths measured were 54 (I) and 74 (//) txm while the 
electrocyte plasma membrane lengths were 9 (I) and 14 (H) Ixm. 

to synaptic vesicle membrane awaiting recycling. Were this 
true, the SV4 and the SV2 antigens would have the same sub- 
cellular distribution, which is not found (Fig. 10). 

Discussion 

Since nerve terminals are often held in exact apposition to 
a specialized domain of postsynaptic membrane,  some form 

of molecular bridge must hold the two membranes in regis- 
ter. Although the components of such a molecular bridge 
are unknown, electron microscopy, especially using quick- 
freeze techniques (Hirokawa and Heuser, 1982), clearly 
demonstrates physical links. Filamentous strands leaving the 
presynaptic membrane anchor it to the basal lamina, which 
is in turn anchored by similar strands to the postsynaptic 
membrane. 

The distribution and characteristics of the protein de- 
scribed here make it a good candidate for a nerve terminal 
anchorage protein (TAP). By immunoelectron microscopy, 
it is present on the outside of the nerve terminal, and is ab- 
sent from regions of the electrocyte that are not innervated. 
Presumably the molecule is transported down the axon by 
fast axonal transport (Caroni et al., 1985). It is firmly an- 
chored in the basal lamina fraction from which it can be solu- 
bilized only by extreme denaturing conditions. Furthermore, 
the purified molecule binds to laminin affinity columns from 
which it can be eluted by heparin: the purified molecule also 
has a hydrophobic tail which allows it to incorporate into the 
bilayer of liposomes. It is an integral membrane protein of 
nerve terminals, as indicated by the presence of this hydro- 
phobic domain, yet is attached firmly to the basal lamina. 
Thus, the molecule would seem by definition to fall into the 
class of anchorage proteins. With the caution that anchorage 
may not be the primary biological role we propose for the 
moment  to describe the molecule as a terminal anchorage 
protein (TAP). Since more such molecules are likely to be 
discovered we refer to it as TAP-1. 

There appear to be at least two ways that cells anchor to 
an extra-cellular substrate. The ECM proteins laminin and 
fibronectin bind either to conventional membrane protein 
receptors (Lesot et al., 1983; Rao et al., 1983; Terranova et 
al., 1983; Pytela et al., 1985; Malinoff and Wicha, 1983; 
Brown et al., 1983) or to glycosaminoglycan chains of hepa- 
ran sulfate proteoglycans (Johansson and Hf6k ,  1984) which 
may be membrane associated (for review, see H66k et al., 
1984a). There is evidence that cells can anchor to their sub- 
strates by either mechanism but that complete rearrangement 
of the cytoskeleton requires both (for review see Lark et al., 
1985). We have as yet no knowledge how much, if any, of 
the anchorage protein is exposed on the cytoplasmic face of 
the membrane. 

The properties of  the anchorage protein are quite unusual. 
Its size is very large. Depending on whether we compare its 
behavior on Sephacryl S-1000 in guanidine-HCl to proteins 
or to hyaluronic acid, estimates of size range from 10,000,000 
to 350,000, respectively. It has at least one large pronase- 
resistant domain that can be separated from the membrane- 
associating region. This domain, eluting only at high salt 
from DEAE-cellulose,  is presumably a region rich in nega- 
tively charged oligosaccharides. A cluster of glycosamino- 
glycan side chains has been proposed for a chondroitin sul- 
fate proteoglycan with a protease-resistant domain (H/56k et 
al., 1984b). A domain rich in serines and threonines in 
O-linkage with oligosaccharides has also been described for 
the low density lipoprotein receptor (Russell et al., 1984). 
Finally, the anchorage protein binds to laminin and can be 
eluted with heparin, implying a glycosaminoglycan-like do- 
main. It is premature, however, to designate it a proteogly- 
can. Conventional enzymatic tests to verify the presence of 
glycosaminoglycan side chains have yielded ambiguous 
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results, even under conditions where standards were com- 
pletely hydrolyzed. Perhaps the side chains are too closely 
packed. Alternatively, the molecule described here may 
resemble the large, negatively charged glycoprotein found in 
the growing tips of neuronal cells (Chernoff et al., 1983), al- 
though the latter elutes from DEAE at a much lower ionic 
strength. The unusual properties of the anchorage protein are 
not shared by the majority of the ECM proteins. Almost all 
of the other proteins were smaller in size on Sephacryl 
S-1000 and less negatively charged on DEAE-Sephacel. 

Although the anchorage protein was first identified be- 
cause it shared the SV4 antigen with the synaptic vesicle pro- 
teoglycan, they are clearly not identical molecules. Besides 
differences in size and charge density, they migrate differ- 
ently on SDS polyacrylamide gels and the vesicle proteogly- 
can has an antigen (SV1) absent on the anchorage protein 
(Caroni et al., 1985). The two molecules may be related. For 
example, the vesicle may internalize a degradation product 
of the anchorage protein that no longer is firmly attached to 
the basal lamina. To establish a product-precursor or some 
other relationship between the two forms, information on the 
polypeptide backbones will be necessary. 

The SV4 antigenic determinant is not on all ECM proteins, 
only the highly charged, large TAP described here, and the 
synaptic vesicle proteoglycan. It has been shown to have 
properties of an oligosaccharide and to be enriched in neu- 
rons innervating the electric organ (Caroni et al., 1985). Pos- 
sible functions for this unusual determinant are targeting 
newly synthesized material to the correct intracellular desti- 
nation or specifying the correct intercellular interaction be- 
tween neurons and their electric organ target. Alternatively, 
the determinant could be involved in some function unique 
to electric organ. 

The crucial role of the ECM in synaptic regeneration 
(Sanes et al., 1978) has energized the search for unique com- 
ponents of the synaptic junction. In addition to the usual 
components of the basal lamina, laminin, collagen, and 
fibronectin, the synaptic junction contains three unidentified 
antigens (Silberstein et al., 1982), a lectin (Sanes and 
Cheney, 1982), a clustering factor (Fallon et al., 1985), and 
a heparan sulfate proteoglycan that associates with acetyl- 
choline receptor clusters (Bayne et al., 1984). It is striking 
that negatively charged proteoglycans are associated with 
receptor clusters in the postsynaptic membrane (Anderson 
and Fambrough, 1983; Bayne et al., 1984) and now with the 
presynaptic membrane that will bind to the clusters. Both 
proteoglycans could be bridging molecules anchoring their 
respective membranes to the basal lamina. If they are indeed 
components of a molecular bridge crossing the synapse, it 
will be important to discover if they form a universal synaptic 
glue or show synaptic specificity. 
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