
METHODS
published: 22 March 2017

doi: 10.3389/fninf.2017.00021

Frontiers in Neuroinformatics | www.frontiersin.org 1 March 2017 | Volume 11 | Article 21

Edited by:

Michel Dojat,

INSERM, France

Reviewed by:

Zhengyi Yang,

The University of Queensland,

Australia

K Jarrod Millman,

University of California, Berkeley, USA

*Correspondence:

Jonathan Passerat-Palmbach

j.passerat-palmbach@imperial.ac.uk

Received: 22 April 2016

Accepted: 01 March 2017

Published: 22 March 2017

Citation:

Passerat-Palmbach J, Reuillon R,

Leclaire M, Makropoulos A,

Robinson EC, Parisot S and

Rueckert D (2017) Reproducible

Large-Scale Neuroimaging Studies

with the OpenMOLE Workflow

Management System.

Front. Neuroinform. 11:21.

doi: 10.3389/fninf.2017.00021

Reproducible Large-Scale
Neuroimaging Studies with the
OpenMOLE Workflow Management
System
Jonathan Passerat-Palmbach 1*, Romain Reuillon 2, Mathieu Leclaire 2,

Antonios Makropoulos 1, Emma C. Robinson 1, Sarah Parisot 1 and Daniel Rueckert 1

1 BioMedIA Group, Department of Computing, Imperial College London, London, UK, 2 Institut des Systemes Complexes

Paris Ile de France, Paris, France

OpenMOLE is a scientific workflow engine with a strong emphasis on workload

distribution. Workflows are designed using a high level Domain Specific Language

(DSL) built on top of Scala. It exposes natural parallelism constructs to easily delegate

the workload resulting from a workflow to a wide range of distributed computing

environments. OpenMOLE hides the complexity of designing complex experiments

thanks to its DSL. Users can embed their own applications and scale their pipelines from

a small prototype running on their desktop computer to a large-scale study harnessing

distributed computing infrastructures, simply by changing a single line in the pipeline

definition. The construction of the pipeline itself is decoupled from the execution context.

The high-level DSL abstracts the underlying execution environment, contrary to classic

shell-script based pipelines. These two aspects allow pipelines to be shared and studies

to be replicated across different computing environments. Workflows can be run as

traditional batch pipelines or coupled with OpenMOLE’s advanced exploration methods

in order to study the behavior of an application, or perform automatic parameter tuning.

In this work, we briefly present the strong assets of OpenMOLE and detail recent

improvements targeting re-executability of workflows across various Linux platforms.

We have tightly coupled OpenMOLE with CARE, a standalone containerization solution

that allows re-executing on a Linux host any application that has been packaged

on another Linux host previously. The solution is evaluated against a Python-based

pipeline involving packages such as scikit-learn as well as binary dependencies. All were

packaged and re-executed successfully on various HPC environments, with identical

numerical results (here prediction scores) obtained on each environment. Our results

show that the pair formed by OpenMOLE and CARE is a reliable solution to generate

reproducible results and re-executable pipelines. A demonstration of the flexibility of

our solution showcases three neuroimaging pipelines harnessing distributed computing

environments as heterogeneous as local clusters or the European Grid Infrastructure

(EGI).

Keywords: high performance computing, reproducibility, pipeline, large datasets, parameter exploration,

neuroimaging, workflow systems

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/editorialboard
https://doi.org/10.3389/fninf.2017.00021
http://crossmark.crossref.org/dialog/?doi=10.3389/fninf.2017.00021&domain=pdf&date_stamp=2017-03-22
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive
https://creativecommons.org/licenses/by/4.0/
mailto:j.passerat-palmbach@imperial.ac.uk
https://doi.org/10.3389/fninf.2017.00021
http://journal.frontiersin.org/article/10.3389/fninf.2017.00021/abstract
http://loop.frontiersin.org/people/280797/overview
http://loop.frontiersin.org/people/344202/overview
http://loop.frontiersin.org/people/348722/overview
http://loop.frontiersin.org/people/344265/overview

Passerat-Palmbach et al. Reproducible Large-Scale Neuroimaging Studies with OpenMOLE

1. INTRODUCTION

1.1. Problem
Larger sample sizes increase statistical power by reducing the
variance of the sampling distribution. With large datasets like the
Human Connectome Project1 (HCP) now freely available, one of
the reasons why large studies are not more often conducted is the
tremendous amount of computing power required. Distributed
computing can offer this processing power but it can be hard to
set up a distributed experiment for non-computer scientists.

Another important aspect to increase the quality and impact
of scientific results is their capacity to be reproduced, especially
by a different scientist. Researchers are more and more
encouraged to share their experiments and the source code that
led to the results they present. In order to be usable by other
researchers, experiments have to be organized in a certain way.

Researchers are thus faced with two major problems in
order to produce top quality studies: the necessity to provide a
reproducible experimental protocol, and the technical challenge
to upscale their implemented solutions to cope with large
datasets. The whole solution must be made available in a
relatively standard way so that other groups can pick up the
experiment and re-run against their own set of resources and
data.

What is the best way to describe experiments so that they
can easily be reproduced by other researchers? Workflow, or
pipelines, are a common way to model scientific problems
involving different tools along multiple distinct stages. Although
some initiatives try to unify workflow description (Amstutz et al.,
2016), a majority of researchers still compose their pipelines
using plain shell scripts. This approach makes it very hard to
share the resulting pipelines, as shell scripts are strongly tied to
their definition environment. Scripting languages are perfectly
satisfying for workflow definition as long as they offer the
readability and guided design that a high-level programming
language does.

However, canwe simply rely on a high-level scripting language
to distribute the workload resulting from a pipeline? Ad hoc
solutions to submit jobs to a local cluster are very efficient to
quickly run an experiment. However, they cannot manage job
resubmissions on unexpected failures, and are very unlikely to
manage several computing environments. The resulting pipeline
is once again not suitable to share with other researchers using
another computing environment. A very good example in a
widely distributed software package is FSL2 (FMRIB Software
Library), which ships with pipelines that can only be delegated
to a Sun Grid Engine (SGE) cluster.

Some applications might show more complicated than others
to distribute in view of the complex set of dependencies
they require for their execution. The DevOps community has
tackled the problem of complex application deployments with an
increasing use of software containers, the most famous solution
being Docker. However, scientific computing environments are
often designed as High Performance Computing (HPC) clusters,
and cannot be customized for each user’s needs. Cutting-edge

1http://humanconnectome.org/.
2http://fsl.fmrib.ox.ac.uk.

containerization solution such as Docker are not available on
these platforms, most of the time for security reasons as they
require administrator privileges. While this is not a problem to
empower the owner of a virtual machine with such privileges,
HPC administrators are reluctant to grant such powers to
researchers.

In order to build reproducible experiments at large scale, we
thus need three elements:

• a simple access to large scale HPC/cloud environments
• a high-level formalism, such as workflows, to express the

experiment in a portable way
• a standalone container platform that do not require

administrator privileges at any point of its execution
chain

In this paper, we introduce how the OpenMOLE (Reuillon
et al., 2013) workflow management system can be paired
up with the user-level archiver CARE (Janin et al., 2014) to
address these problems in the context of large medical imaging
studies.

1.2. Proposed Solution
OpenMOLE is a generic workflow management solution not
targeting a particular community. It allows users to embed their
own application, rather than limiting them to a set of pre-
packaged tools made available for a specific usage. Although this
approach requires more involvement from the user’s side, it also
gives them more flexibility. Further down the line, a pipeline
solution tailored for a specific field might not be suitable for
multidisciplinary studies. In the specific case of neuroimaging
projects, it is not rare to also collect genetics data in order to
combine it with the information extracted from the images.

Reproducibility and sharing of OpenMOLE workflows start
with its Domain Specific Language (DSL) that is used to describe
the workflow steps and connections. The OpenMOLE DSL is
an embedded DSL, written as a set of extensions to the Scala
programming language. As a superset to Scala, it benefits from all
the constructs available in this high-level programming language
and harnesses Scala’s strong type system to make workflow
descriptions more meaningful and less error-prone. As a Scala
application, OpenMOLE runs in the Java Virtual Machine (JVM)
runtime. This makes it agnostic to its underlying Operating
System (OS) and is another step toward sharing OpenMOLE
workflows from one user to another, regardless of their work
environment.

OpenMOLE is built with a strong focus toward the
distribution of a pipeline workload to remote computing
environments. Pipelines defined within the OpenMOLE
framework are totally decoupled from the environments on
which they are executed. This allows running the same pipeline
on different environments without modifying the definition of
the pipeline itself. On top of that, OpenMOLE was designed
to enable a fine granularity of distribution. Individual tasks,
or groups of tasks, can be deployed to different computing
environments. This is particularly useful when a task of the
pipeline requires specific devices such as GPUs to run, while the
rest of the pipeline can be distributed to classic CPUs.

Frontiers in Neuroinformatics | www.frontiersin.org 2 March 2017 | Volume 11 | Article 21

http://humanconnectome.org/
http://fsl.fmrib.ox.ac.uk
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Passerat-Palmbach et al. Reproducible Large-Scale Neuroimaging Studies with OpenMOLE

This work presents the integration of CARE archives as a
new foundation to make tasks re-executable on the various
computing environments supported by OpenMOLE. The CARE
toolkit (Janin et al., 2014) provides a standalone containerization
solution that does not need administrator privileges to re-execute
on target hosts. While this perfectly fits our requirements for
a solution in par with HPC environments’ constraints, CARE
cannot be used on its own to provide a standard format of
exchange for scientific applications. It has not been built with this
kind of applications in mind and focuses on providing low-level
elements ensuring re-executability of a command line on any
other Linux machine. However, its possibilities can be harnessed
to form the base of a new OpenMOLE task re-executable on
multiple environments.

Medical imaging pipelines are ideal candidates to evaluate
our solution as they typically involve an heterogeneous software
ecosystem. These software pieces usually come with a broad
set of dependencies that are hard to track manually. They
also manipulate large datasets that cannot be embedded in the
software container and have to be transferred separately to the
execution node running the current stage of the pipeline. The
same remark applies to the pipeline’s results as can be seen in
Parisot et al. (2015) for instance.

1.3. Related Work
1.3.1. Generic Workflow Engines
Like OpenMOLE, other initiatives made the choice not to
target a specific community. Kepler (Altintas et al., 2004) was
one of the first general-purpose scientific workflow systems,
recognizing the need for transparent and simplified access to
high performance computing platforms more than a decade
ago. Pegasus (Deelman et al., 2005) is a system that initially
gained popularity for mapping complex workflows to resources
resources in distributed environments without requiring input
from the user.

PSOM (Pipeline System for Octave and Matlab) (Bellec et al.,
2012) is a workflow system centered around Matlab/Octave.
Although this is certainly a good asset for this userbase, it revolves
around Matlab, a proprietary system. This hinders by definition
sharing workflows to the wider community and reduces the
reproducibility of experiments.

1.3.2. Community-Tailored Workflow Engines
On the other hand, some communities have seen the emergence
of tailored workflow managers. For example, the bioinformatics
community has developed Taverna (Oinn et al., 2004) and Galaxy
(Goecks et al., 2010) for the needs of their community.

In the specific case of the neuroimaging field, two main
solutions emerge: NiPype (Gorgolewski et al., 2011) and LONI
(Rex et al., 2003). NiPype is organized around three layers.
The most promising one is the top-level common interface that
provides a Python abstraction of the main neuroimaging toolkits
(FSL, SPM, ...). It is extremely useful to compare equivalent
methods across multiple packages. NiPype also offers pipelining
possibilities and a basic workload delegation layer only targeting
the cluster environments SGE and PBS. Workflows are delegated

to these environments as a whole, without the possibility to
exploit a finer grain parallelism among the different tasks.

The LONI Pipeline provides a graphical interface for choosing
processing blocks from a predefined library to form the pipeline.
It supports workload delegation to clusters preconfigured to
understand the DRMAA API (Tröger et al., 2012).

However, the LONI Pipeline displays limitations at three
levels. First, the format used to define new nodes is XML
(eXtensible Markup Language), and assumes the packaged tools
offer a well-formed command line and its input parameters. On
this aspect, the Python interfaces forming NiPype’s top layer is
far superior to LONI pipeline’s approach. Second, one might also
regret the impossibility to script workflows, to the best of our
knowledge.

The third and main drawback of the LONI pipeline is
in our opinion its restrictive licensing, which prevents an
external user to modify and redistribute the modifications easily.
Previous works in the literature have shown the importance
of developing and releasing scientific software under Free and
Open Source licenses (Stodden, 2009; Peng, 2011). This is of
tremendous importance to enable reproducibility and thorough
peer-reviewing of scientific results.

Finally, we have recently noted another effort developed
in Python: FastR3 (Achterberg et al., 2015). It is designed
around a plugin system that enables connecting to different data
sources or execution environments. At the moment, execution
environments can only be addressed through the DRMA
(Distributed Resource Management Application) API but more
environments should be provided in the future.

1.3.3. Level of Support of HPC Environments
Table 1 lists the support for various HPC environments in the
workflow managers studied in this section. It also sums up the
features and domains of application for each tool.

To the best of our knowledge, we are not aware of
any workflow engine that targets as many environments as
OpenMOLE, but more importantly that introduces an advanced
service layer to distribute the workload. When it comes to
very large scale infrastructures such as grids and clouds,
sophisticated submission strategies taking into account the
state of the resources as well as implementing a level of
fault tolerance must be available. Most of the other workflow
engines offer service delegation layers that simply send jobs
to a local cluster. OpenMOLE implements expert submission
strategies (job grouping, over submission, ...), harnesses efficient
middlewares such as Dirac, and automatically manages end-
to-end data transfer even across heterogeneous computing
environments.

Compared to other workflow processing engines, OpenMOLE
promotes a zero-deployment approach by accessing the
computing environments from bare metal, and copies on-
the-fly any software component required for a successful
remote execution. OpenMOLE also encourages the use of
software components developed in heterogeneous programming

3http://www.fastr.eu/.

Frontiers in Neuroinformatics | www.frontiersin.org 3 March 2017 | Volume 11 | Article 21

http://www.fastr.eu/
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Passerat-Palmbach et al. Reproducible Large-Scale Neuroimaging Studies with OpenMOLE

TABLE 1 | Summary table of the features, HPC environments supported and domains of application of various workflow managers.

Workflow engine Local multi-processing HPC support Grid support Cloud support

Galaxy4 Yes DRMAA clusters No No (manual cluster deployment)

Taverna5 Yes No No No

FastR Yes DRMAA clusters No No

LONI6 No DRMAA clusters No No (manual cluster deployment)

NiPype Yes PBS/Torque, SGE No No

Kepler7 Yes PBS, Condor, LoadLeveler Globus No

Pegasus8 No (need local Condor) Condor, PBS No No (manual cluster deployment)

PSOM Yes No No No

OpenMOLE Yes Condor, Slurm, PBS, SGE, OAR

Ad hoc grids,

gLite/EMI, Dirac,

EGI

EC2 (fully automated)9

Workflow engine Scripting support GUI Generic/Community License

Galaxy No Yes BioInformatics AFL 3.0

Taverna No Yes BioInformatics Apache 2.0

FastR Python No Neuroimaging BSD

LONI No Yes Neuroimaging Proprietary (LONI)

NiPype Python No Neuroimaging BSD

Kepler Partly with R Yes Generic BSD

Pegasus Python, Java, Perl No Generic Apache 2.0

PSOM Matlab No Generic MIT

OpenMOLE Domain Specific Language, Scala Yes Generic AGPL 3

Information was drawn from the web pages in footnote when present, or from the reference paper cited in the section otherwise.

languages and enables users to easily replace the elements
involved in the workflow.

1.4. Main Contributions
This paper puts the light on OpenMOLE’s new features enabling
large-scale pipelines to be reproducible while distributed to a
large range of computing environments.

We first describe the three main elements from the
OpenMOLE platform: (1) the DSL to designmeaningful, reusable
workflows, (2) the integration and simple access to a wide range
of High Performance Computing (HPC) environments, and (3)
the embedded parameter exploration methods (Section 2).

As evoked in the introduction, distributing an application
can be troublesome. We list the potential issues encountered
when distributing a typical medical imaging pipeline in Section
3. We then justify the solution chosen to enable re-executability
and sharing of experiments in Section 3.2, and detail its
implementation in OpenMOLE in Section 3.3.

This solution is evaluated with a workflow exploring the
performance of different parameter initializations for decoding
fMRI acquisitions from a canonical dataset (Haxby et al.,
2001) (Section 4). The decoder is taken from the NiLearn

4https://wiki.galaxyproject.org/.
5https://taverna.incubator.apache.org/introduction/taverna-features.
6http://pipeline.loni.usc.edu/explore/features/.
7https://code.kepler-project.org/code/kepler-docs/trunk/outreach/

documentation/shipping/2.5/UserManual.pdf.
8https://pegasus.isi.edu/documentation/execution_environments.php.
9https://github.com/adraghici/openmole/tree/aws-env.

tutorials (Abraham et al., 2014) and demonstrates how a
workflow made of a complex combination of Python and native
binary dependencies can be successfully reproduced on different
computing platforms without any prior knowledge regarding
the state of their software stack. This study demonstrates the
potential of this work to process a well-known dataset for which
the performance and validity of the pipeline can be evaluated.

As a case-study, we finally detail three neuroimaging pipelines
managed by OpenMOLE and the different benefits brought by
the platform and its software ecosystem (Section 5).

2. WHAT IS OPENMOLE?

Scientific experiments are characterized by their ability to be
reproduced. This implies capturing all the processing stages
leading to the result. Many execution platforms introduce the
notion of workflow to do so (Barker and Van Hemert, 2008;
Mikut et al., 2013). Likewise, OpenMOLEmanipulates workflows
and distributes their execution across various computing
environments.

A workflow is a set of tasks connected through transitions.
From a high level point of view, tasks comprise inputs, outputs
and optional default values. Tasks describe what OpenMOLE
should execute and delegate to remote environments. They
embed the actual applications to study. Depending on the kind of
program (binary executable, Java...) to embed in OpenMOLE, the
user chooses the corresponding task. Tasks execution depends on
inputs variables, which are provided by the dataflow. Each task

Frontiers in Neuroinformatics | www.frontiersin.org 4 March 2017 | Volume 11 | Article 21

https://wiki.galaxyproject.org/
https://taverna.incubator.apache.org/introduction/taverna-features
http://pipeline.loni.usc.edu/explore/features/
https://code.kepler-project.org/code/kepler-docs/trunk/outreach/documentation/shipping/2.5/UserManual.pdf
https://code.kepler-project.org/code/kepler-docs/trunk/outreach/documentation/shipping/2.5/UserManual.pdf
https://pegasus.isi.edu/documentation/execution_environments.php
https://github.com/adraghici/openmole/tree/aws-env
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Passerat-Palmbach et al. Reproducible Large-Scale Neuroimaging Studies with OpenMOLE

produces outputs returned to the dataflow and transmitted to the
input of consecutive tasks. OpenMOLE exposes entry points to
inject data in the dataflow (sources) and extract useful results at
the end of the experiment (hooks).

As shown in Figure 1, OpenMOLE revolves around three
main elements: the Applications, the exploration Methods and
the support of Massively parallel environments. These three
components are put together in a common DSL to describe the
workflows.

We will give a quick overview of these different components
in the subsections. For more details regarding the core
implementation and features of OpenMOLE, interested readers
can refer to Reuillon et al. (2010, 2013, 2015a) and the
OpenMOLE website (Reuillon et al., 2015b).

2.1. A DSL to Describe Workflows
According to Barker and VanHemert (2008), workflow platforms
should not introduce new languages but rely on established ones.
OpenMOLE’s DSL is based on the high level Scala programming
language (Odersky et al., 2004).

OpenMOLE’s DSL introduces new operators in the Scala
programming language to manage the construction and
execution of the workflow. The advantage of this approach
lies in the fact that workflows can exist even outside the
OpenMOLE environment. As a high-level language, the DSL can
be assimilated to an algorithm described in pseudo-code, easily
understandable by most scientists. Moreover, it denotes all the
types and data used within the workflow, as well as their origin.
This reinforces the capacity to reproduce workflow execution
both within the OpenMOLE platform or using another tool.

The philosophy of OpenMOLE is test small (on a local
computer) and scale for free (on remote distributed computing
environments). The DSL supports all the Scala constructs and
provides additional operators and classes especially designed
to compose workflows. OpenMOLE workflows expose implicit
parallel aspects of the workload that can be delegated to
distributed computing environments in a transparent manner.

2.2. Distributed Computing Environments
OpenMOLE helps delegate the workload to a wide range of HPC
environments including remote servers (through SSH), clusters
(supporting the job schedulers PBS, SGE, Slurm, OAR, and
Condor), computing grids running the gLite/EMI middleware
(through the WMS, CREAM and DIRAC entry points) and
Amazon Elastic Compute Cloud (EC2). Support to these
environments is implemented in GridScale10, a Free and Open
Source Scala library.

Building on top of GridScale’s as a service layer, OpenMOLE’s
simple workflow description is quite convenient to determine the
computing environment best suited for a workflow. Switching
from one environment to another is achieved by modifying a
single line in the script. The granularity of the implementation
allows each task of the workflow to be assigned to a different
execution environment. This feature proves very useful when
considering the limited availability of a particular resource
(shared cluster) or its suitability to process a particular problem

10https://github.com/openmole/gridscale.

(necessity to be processed on a GPU or another type of hardware
accelerator).

The final workflow description can thus connect tasks
using different software components but also running on
heterogeneous execution environments thanks to GridScale’s
large support of HPC platforms.

The execution platform of OpenMOLE has proved to be
robust enough to manage no less than half a billion instances
(Schmitt et al., 2015) of a task delegated to the European Grid
Infrastructure (EGI).

2.3. Exploration Methods
OpenMOLE has been designed with distributed parameter space
exploration as a core use case (Reuillon et al., 2013). First
its DSL comprehends a high level representation of design of
experiments11, which is concise and expressive. For instance
expressing the exploration a full-factorial combination on a
discrete parameter i, a continuous one x, a set of files f in a
directory and replicate the experiment 10 times with randomly
generated seeds s is expressed as shown in Listing 1:

val i = Val [Int]

val x = Val [Double]

val x = Val [File]

val x = Val [Long]

val e x p l o r a t i o n =

ExplorationTask (

(i i n (0 to 10)) x

(x in (0 . 0 to 1 0 0 . 0 by 1 0 . 0)) x

(f i n (workD i r e c t o r y / "inputs ")) x

(s in (UniformDistribution [Long] () t a k e 10))

)

Listing 1 | Sampling example in OpenMOLE.

OpenMOLE also proposes advanced design of experiments
with better coverage properties such as the low discrepancy Sobol
sequence12 and the Latin Hypercube Sampling (LHS)13. These
sampling methods have been widely uses for model exploration
and are also adapted to evaluate other classes of parametric
algorithms.

In addition to these classical a priori sampling methods,
OpenMOLE generic formalism is a prolific playground to
develop innovative exploration methods based on iterative
refinement of the sampling. In these methods the results
(outputs) of the explored program are taken into account in
order to generate additional samples at interesting locations in
the parameter space. These exploration methods are aimed to
better comprehend the behavior of an application, or to finely
tune parameters.

Several state-of-the art iterativemethods have been developed,
evaluated and made available through OpenMOLE (multi-
objective calibration (Schmitt et al., 2015), calibration profile
(Reuillon et al., 2015c), Pattern Space Exploration Chérel et al.,
2015; Cottineau et al., 2015a) and more are being developed
such as the model family method (Cottineau et al., 2015b).
Implementations of Evolutionary Algorithms (EA) techniques

11http://www.openmole.org/current/Documentation_Language_Samplings.html.
12https://en.wikipedia.org/wiki/Sobol_sequence.
13http://en.wikipedia.org/wiki/Latin_hypercube_sampling.

Frontiers in Neuroinformatics | www.frontiersin.org 5 March 2017 | Volume 11 | Article 21

https://github.com/openmole/gridscale
http://www.openmole.org/current/Documentation_Language_Samplings.html
https://en.wikipedia.org/wiki/Sobol_sequence
http://en.wikipedia.org/wiki/Latin_hypercube_sampling
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Passerat-Palmbach et al. Reproducible Large-Scale Neuroimaging Studies with OpenMOLE

FIGURE 1 | Organization of OpenMOLE around three axes: the Applications, the exploration Methods and the support of Massively parallel

environments.

taken from the literature such as (Deb et al., 2002) are also
available.

Integrating these methods into OpenMOLE makes them
available to a wide range of use cases (modeling, algorithm
benchmarking, parameter tuning and testing applications...). The
methods pair up perfectly withOpenMOLE as they are inherently
parallel algorithms that can be distributed. The exploration
methods elements of OpenMOLE thus benefit from the wide
range of distributed computing environments available in the
platform.

3. THE CHALLENGES OF DISTRIBUTING
APPLICATIONS

3.1. Problems and Classical Solutions
Let us consider all the dependencies introduced by software
bundles explicitly used by the developer. They can take various
forms depending on the underlying technology. Compiled binary
applications will rely on shared libraries, while interpreted
languages such as Python will call other scripts stored in
packages.

These software dependencies become a problem when
distributing an application. It is very unlikely that a large
number of remote hosts are deployed in the same configuration
as a researcher’s desktop computer. Actually, the larger the
pool of distributed machines, the more heterogeneous they are
likely to be.

If a dependency is missing at runtime, the remote execution
will simply fail on the remote hosts where the requested
dependencies are not installed. An application can also be
prevented from running properly due to incompatibilities
between versions of the deployed dependencies. This case can
lead to silent errors, where a software dependency would be
present in a different configuration and would generate different
results for the studied application.

Silent errors break Provenance, a major concern of the
scientific community (Miles et al., 2007; MacKenzie-Graham
et al., 2008). Provenance criteria are satisfied when an application
is documented thoroughly enough to be reproducible. This
can only happen in distributed computing environments
if the software dependencies are clearly described and
available.

Frontiers in Neuroinformatics | www.frontiersin.org 6 March 2017 | Volume 11 | Article 21

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Passerat-Palmbach et al. Reproducible Large-Scale Neuroimaging Studies with OpenMOLE

Some programming environments provide a solution to these
problems. Compiled languages such as C and C++ offer to build a
static binary, which packages all the software dependencies. Some
applications can be very difficult to compile statically. A typical
case is an application using a closed source library, for which only
a shared library is available.

Another approach is to rely on an archiving format specific
to a programming language. The most evident example falling
into this category are Java Archives (JAR) that embed all the Java
libraries an application will need.

A new trend coming from recent advances in the software
engineering community is embodied by Docker. Docker has
become popular along with other DevOps techniques to
improve efficiency of software engineers. It enables shipping an
application within a so-called container that will include the
application and its required set of dependencies. Containers can
be transferred just like an archive and re-executed on another
Docker engine. Docker containers run in a sandboxed virtual
environment but they are not to be confound with virtual
machines. They are more lightweight as they don’t embed a
full operating system stack. The use of Docker for reproducible
research has been tackled in Boettiger (2014) and Chamberlain
et al. (2014).

The main drawback of Docker is that it implies deploying
a Docker engine on the target host. Having a Docker engine
running on every target host is an unlikely hypothesis in
heterogeneous distributed environments such as computing
grids. It is also impossible to deploy a Docker engine on the fly
as its execution requires administrator privileges. Such privileges
are not granted to end-users on HPC infrastructures at the heart
of most scientific computing experiments. This is only the case in
a fully-controlled environment, most of the time a cloud-based
deployment where the user controls his own virtual machines.

The last option is to rely on a third-party application to
generate re-executable applications. The strategy consists in
collecting all the dependencies during a first execution in order
to store them in an archive. This newly generated bundle is then
shipped to remote hosts instead of the original application. This
is the approach championed by tools like CDE (Guo, 2012),
ReproZip (Chirigati et al., 2013), or CARE (Janin et al., 2014).

Considering all these aspects, the OpenMOLE platform has
for long chosen to couple with tools providing standalone
packages. While CDE was the initial choice, recent requirements
in the OpenMOLE user community have led the development
team to switch to the more flexible CARE. The next section will
detail why OpenMOLE relies on CARE to package applications.

3.2. Why Should I CARE?
The first step toward spreading the workload across
heterogeneous computing elements is to make the studied
application executable on the largest number of environments.
We have seen previously that this could be difficult with the
entanglement of complex software environments available
nowadays. For instance, a Python script will run only in a
particular version of the interpreter and may also make use
of binary dependencies. The best solution to make sure the
execution will run as seamlessly on a remote host as it does

on the desktop machine of the scientist is to track all the
dependencies of the application and ship them with it on the
execution site.

OpenMOLE used to provide this feature through a third-party
tool called CDE (Code, Data, and Environment packaging) (Guo,
2012). CDE creates archives containing all the items required by
an application to run on any recent Linux platform. To do so, it
tracks all the files that interact with the application and creates
the base archive. At the time of writing, CDE appears not to be
maintained anymore, the last significant contribution to themain
source tree dating back from 201214.

The only constraint regarding CDE is to create the archive on
a platform running a Linux kernel from the same generation as
those of the targeted computing elements. As a rule of thumb,
a good way to ensure that the deployment will be successful
is to create the CDE package from a system running Linux
2.6.32. Many HPC environments run this version, as it is the
default kernel used by science-oriented Linux distribution, such
as Scientific Linux and CentOS.

CARE on the other hand presents more advanced features
than CDE. CDE actually displays the same limit than a traditional
binary run on a remote host: i.e., the archive has to be generated
on a platform running an old enough Linux kernel, to have
a maximum compatibility with remote hosts. CARE lifts this
constraint by emulating missing system calls on the remote
environment. Thus, an application packaged on a recent release
of the Linux kernel will successfully re-execute on an older kernel
thanks to this emulation feature. CARE is, to the best of our
knowledge, the only standalone solution ensuring re-execution
on any Linux host, regardless of the original packaging host and
without requiring administrator privileges.

We have also noted ReproZip (Chirigati et al., 2013) as
a promising packaging solution. ReproZip’s most interesting
feature is to produce a package that can be re-run against
different backends. Standalone archives can be extracted as plain
folders, and then re-executed in a chrooted environment using
the target host’s environment and installed packages. Another
option is to install them in the host system as a package in the
case of a Debian-based Operating System. Although they don’t
require any pre-installed software, these solutions cannot ensure
a successful re-execution due to low-level incompatibilities
between the packaging and extraction environments. Other
extraction solutions for ReproZip offer to run in a Vagrant virtual
machine or a Docker container. However, none of these solution
fit our design assumptions to exploit arbitrary environments
without having to deploy anything beforehand.

The next section will describe how OpenMOLE integrates
CARE seamlessly, as a first-class citizen in the DSL.

3.3. Combining OpenMOLE with CARE
Different types of tasks co-exist in OpenMOLE workflows, each
embedding a different kind of application. Portable applications
packaged with CARE are handled by the CARETask. Packaging
an application is done once and for all by running the original
application against CARE. CARE’s re-execution mechanisms

14https://github.com/pgbovine/CDE/commit/219c41590533846de12d7c5cca3f34a.

ac471aae7., last accessed 12-nov-16.

Frontiers in Neuroinformatics | www.frontiersin.org 7 March 2017 | Volume 11 | Article 21

https://github.com/pgbovine/CDE/commit/219c41590533846de12d7c5cca3f34aac471aae7
https://github.com/pgbovine/CDE/commit/219c41590533846de12d7c5cca3f34aac471aae7
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Passerat-Palmbach et al. Reproducible Large-Scale Neuroimaging Studies with OpenMOLE

allow changing the original command line when re-running an
application. This way we can update the parameters passed on the
command line and the re-execution will be impacted accordingly.
As long as all the configuration files, libraries, and other potential
dependencies were used during the original execution, there is
no need to package the application multiple times with different
input parameters. To ensure all the initial execution conditions
are captured, the environment variables defined in the session are
also stored in the archive and populated on re-execution.

The newly packaged archive is the first argument expected
by the CARETask. The second argument corresponds to a
modified command line, updating the original call to specify
a different parameter combination for each instance. The
CARETask performs two actions: it first extracts the CARE
archives by executing archive.tgz.bin (the archive is a self-
extracting executable). The actual re-execution can then take
place in the freshly unarchived work directory. Note that
for each execution of the CARETask, any command starting
with/is relative to the root of the CARE archive’s filesystem,
and any other command is executed in the current directory.
The current work directory defaults to the original packaging
directory.

Figure 2 represents the interactions between the CARE
archive and the CARETask in OpenMOLE.

The CARETask can be customized to fit the needs of a
specific application. For instance, some applications disregarding
standards might not return the expected 0 value upon successful
completion. The return value of the application is used by
OpenMOLE to determine whether the task has been successfully
executed, or needs to be re-executed. Setting the boolean flag
errorOnReturnValue to false will prevent OpenMOLE
from re-scheduling a CARETask that has reported a return code
different from 0. The return code can be saved in a variable using
the returnValue setting.

Another default behavior is to print the standard and error
outputs of each task in the OpenMOLE console. Such raw prints
might not be suitable when a very large number of tasks is
involved or that further processing are to be performed on
the outputs. A CARETask’s standard and error outputs can
be assigned to OpenMOLE variables and thus injected in the
dataflow by summoning respectively the stdOut and stdErr
actions on the task.

When packaging an application with CARE, we make sure
of excluding any input data from the archived files. CARE
allows this with the option -p. Data can later be reinjected
in the archive from OpenMOLE using the inputFiles

directive. This directive accepts OpenMOLE variables that
describe a set of files to be used as parameters. This
means that each instance of a CARETask will see a different
input data in its archive’s filesystem. The task instance’s
work directory will thus contain the extracted application
supplemented by the specific input data files that were previously
discarded from the packaging stage. In this configuration,
input data are perfectly decoupled from the application and
can be manipulated using OpenMOLE’s advanced parameter
exploration methods, before being injected to the appropriate
task.

Files that are not part of the exploration can also be made
available within the CARETask’s filesystem using either the
hostFiles or resources directives.

Listing 2 demonstrates the elements of the CARETask

described in this section.

// Declare the variable

val ou tpu t = Val [String]

val e r r o r = Val [String]

val v a l u e = Val [Int]

val f i l e = Val [File]

// Any task

val pythonTask =

CARETask ("hello.tgz.bin", "python hello.py

/data/fileA.txt") s e t (

s tdOut := output ,

s t d E r r := e r r o r ,

r e t u rnVa l u e := va lue ,

i n p u t F i l e s += (f i l e , "myFile$value.txt") ,

h o s t F i l e s += ("/home/user/fileA.txt" ,

"/data/fileA.txt")

)

Listing 2 | Example of a CARETask using a file from the host injected in

the archive.

The support of CARE as a first-class citizen in the platform
added to existing OpenMOLE features enforces provenance in
workflows at two levels. Not only the workflows are defined using
a platform agnostic language, but we can now ship standalone
archives containing re-executable applications for each stage of
the pipeline.

Integrating CARE in OpenMOLE has enhanced the scope of
potential applications for CARE, which was initially designed as
a tool to create comprehensive bug reports. The development
efforts made in OpenMOLE over the past few months have
propelled CARE in the range of potential solutions to enable
reproducibility in scientific experiments. This integration layer
was necessary to bridge the gap between CARE and the scientific
community, in order to provide a simple interaction with the
end-user.

The next section will show how the CARETask can help
explore a canonical dataset on a heterogeneous set of computing
infrastructures, and create a reproducible workflow describing
the experiment.

4. EVALUATION OF THE
REPRODUCIBILITY OF A NEUROIMAGING
WORKFLOW

We will evaluate the reproducibility enabled by the CARETask
using an fMRI decoder on the Haxby dataset (Haxby et al.,
2001). The goal of this experiment is to show that a pipeline
intended to run on a local machine and requiring a set
of preinstalled dependencies can be re-executed on various
distributed computing environments using the CARETask. It
validates the choice of the CARE technology to package
applications and demonstrates the OpenMOLE integration that
enables CARE to be used to reproduce scientific experiments.

Frontiers in Neuroinformatics | www.frontiersin.org 8 March 2017 | Volume 11 | Article 21

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Passerat-Palmbach et al. Reproducible Large-Scale Neuroimaging Studies with OpenMOLE

FIGURE 2 | Embedding a CARE archive in OpenMOLE with the CARETask.

4.1. Parameter Space Exploration of a
Classifier
This experiment is based on a tutorial 15 for the NiLearn package
(Abraham et al., 2014). The example compares different classifiers
on a visual object recognition decoding task using the Haxby
dataset (Haxby et al., 2001).

The Haxby dataset consists in the fMRI activity recorded
for 6 subjects exposed to various stimuli from different
categories. The example evaluates the performance of different
parameter initialization of a logistic regression classifier to
predict the category the subject is seeing from the fMRI activity.
Significant prediction shows that the signal in the region contains
information about the corresponding category.

We have slightly modified the online example to focus on
well-known classifier: the logistic regression. In the NiLearn
tutorial, two input parameters vary for this algorithm. The same
parameter ranges are tested for this classifier as detailed in
Table 2. In order to obtain comparable results, we have set the
seed of the pseudorandom number generator used in the logistic
regression to 0.

The OpenMOLE workflow for this experiment is made of
multiple tasks running both locally and on remote execution

15https://nilearn.github.io/auto_examples/02_decoding/

plot_haxby_different_estimators.html, last accessed on 12-nov-16.

TABLE 2 | Parameters and their values for the Logistic Regression

classifier.

Parameter Range Description

C {0.1; 0.5; 1; 5; 10; 50; 100} Inverse of regularization strength

Penalty {11; 12} Norm used in the penalization

Seed 0 Seed initializing the

Pseudorandom number

generator

nodes as depicted in Figure 3. The initial task asks NiLearn
to download the whole dataset from an online repository. An
ExplorationTask then determines the parameter space that
will be explored in parallel by OpenMOLE. The processing task
takes a specific tuple of initialization parameters for the logistic
regression from the exploration, along with a single subject as
in the original example. Each instance of the processing task
computes a leave-one-out cross-validated score for the logistic
regression classifier initialized with the given input parameters.
Result files are retrieved using the OpenMOLE hook mechanism
from the remote execution node. They contain a serialized data
structure with the results of the processing task stored in Python’s
pickle format. The collected results are aggregated on the host
machine and plotted locally in a separate PNG file per subject.

Frontiers in Neuroinformatics | www.frontiersin.org 9 March 2017 | Volume 11 | Article 21

https://nilearn.github.io/auto_examples/02_decoding/plot_haxby_different_estimators.html
https://nilearn.github.io/auto_examples/02_decoding/plot_haxby_different_estimators.html
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Passerat-Palmbach et al. Reproducible Large-Scale Neuroimaging Studies with OpenMOLE

FIGURE 3 | Representation of the Haxby decoder workflow: OpenMOLE elements (Exploration, Hook) are intertwined with the native pipeline’s steps

(download, processing, display results) to form the whole parallel workflow.

Input and result files are automatically transferred and passed to
the next task, regardless of their format by OpenMOLE’s internal
mechanisms.

4.2. Testing the Reproducibility
The experiment aims at testing the reproducibility of the whole
workflow on each of the platforms described in Table 3. The
workflow is considered successfully reproduced when generating
the exact same result from one machine to another. This for two
reasons:

• The seed of the PseudoRandom Number Generator (PRNG)
was set to the same value (0) for each instance of the parameter
exploration and across the execution environments. This
disables any stochastic variability in the results;

• The floating precision reported in the original version of the
tutorial is low enough (two digits) so that the underlying
hardware does not impact the final results.

The ensemble of Python scripts taken from the NiLearn tutorial
to form the workflow steps were packaged as a single CARE
archive on the host labeled Personal machine in Table 3. There
is no need to know about the packaged tool in details, or
to manually track its software dependencies. Only the input
and output data (results) locations must be known so that
they can be excluded from the archive. Input data and results
are dynamically injected and extracted at runtime from and
to the OpenMOLE dataflow. This perfectly fits OpenMOLE’s
definition of a workflow as a set of connected black boxes only
communicating with the external world through their inputs and
outputs.

The archive embeds the following Python packages installed in
a virtual environment along with their own binary dependencies:

• matplotlib (1.5.1)
• nibabel (2.0.2)
• nilearn (0.2.5)
• numpy (1.11.1)
• pip (8.1.2)

• scikit-learn (0.17.1)
• scipy (0.17.1)
• virtualenv (15.0.2)

The only common aspect between the platforms in Table 3 is that
their Operating System (OS) runs Linux as a kernel.

The heterogeneity in Java Runtime Environment (JRE)
versions is solved by OpenMOLE shipping with its own JRE
(OpenJDK 1.8.0) to execute on remotemachines. It has been built
against a 2.6.32 Linux kernel in order to ensure it re-executes
successfully on the largest possible range of Linux platforms.

The execution time is only reported here as a marker
of successful re-execution on the given platform. Multiple
parameters can explain the variability from one environment to
another, the most obvious being the different availability of the
required resources.

Table 4 reports the prediction scores resulting from running
the pipeline on the first subject of the dataset. The prediction
scores obtained are similar to those obtained in the tutorial for
equivalent parameters (ex: C = l1, p = 50), down to the second
decimal.

An even more interesting aspect of this technique is that
we obtained identical results from one environment to another,
across all the platforms described in Table 3. In order to switch
the execution of the processing task from one environment
to another, only one line was impacted in the workflow. File
transfers are managed by OpenMOLE as well as data injection
at the right location of the CARE pseudo file system. This is
shown in Listing 3 and is further detailed in specific case studies
in Sections 5.1 and 5.2.

val p r o c e s s i n g = CARETask (wo rkD i r e c t o r y /

"haxby_example.tgz.bin" ,

s"""python processing.py ${d a t a F o l d e r} $$subjectID

$$C $$penalty"""

) s e t (

(i npu t s , ou t pu t s) += (sub j e c t ID , C , p e n a l t y) ,

i n p u t F i l e s += (d a t a F o l d e r) ,

o u t p u t F i l e s += ("classifiers_scores.pkl" , r e s u l t F i l e

)

Frontiers in Neuroinformatics | www.frontiersin.org 10 March 2017 | Volume 11 | Article 21

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Passerat-Palmbach et al. Reproducible Large-Scale Neuroimaging Studies with OpenMOLE

)

val s lurm = SLURMEnvironment ("jpassera" ,

"predict5.doc.ic.ac.uk")

val pbs = PBSEnvironment ("jpassera" ,

"login.cx1.hpc.ic.ac.uk")

c r e a t e D i r s −− download −− exp loDa t a −<

(p r o c e s s i n g on s lurm hook p ick l eHook) >−

e x p l o R e s u l t s −< p l o t

Listing 3 | Data injection and environment switching in the Haxby

workflow.

This experiment demonstrated OpenMOLE’s ability to
efficiently delegate the workload of a real-world pipeline to
an heterogeneous set of computing environments. Coupling
CARE and OpenMOLE in the CARETask enables experiments
to be designed on a personal machine using any toolkit or
programming language. Experiments can then be distributed to
remote environments regardless of the availability of the tools
they depend on, or the ability of the user to install new software
components on the target environment (as illustrated by the
Administrator Privileges column in Table 3).

On a side note, this experiment has shown that the genericity
of the OpenMOLE platform was not a barrier to exploit
field-specific tools in a workflow, NiLearn in this case. By
focusing on providing a high-level workflow formalism and
simplifying the access to HPC environments, this experiment
has shown OpenMOLE was flexible enough to address the needs
of the neuroimaging community while respecting their popular
software ecosystem.

Finally, this experiment has highlighted the role the
CARETask could play in producing reproducible results and re-
executable pipelines. Section 5 will now feature the CARETask in
combination with the DSL and various computing environments
throughout three real-world examples of neuroimaging pipelines.

5. CASE STUDIES

The source code and required material for the three case studies
is not part of the OpenMOLE market place16 due to license
restrictions induced by some of the binary dependencies. It is
however available in its own repository17 and contains entries
presented as they would be on the original market place. For the
sake of clarity, this section will only highlight the parts relevant
with the use case.

5.1. Multiple Environments in the Same
workflow
The first workflow preprocesses the input data as necessary
for a brain parcellation algorithm. Brain parcellation is an
essential task for the construction of brain connectivity networks,
which has the potential to provide new insights into the brain’s
organization. Brain parcellation aims at regrouping brain regions
that have similar connectivity profiles to the rest of the brain, so
as to construct connectivity networks of tractable dimension for
subsequent analysis.

16https://github.com/openmole/openmole-market.
17https://github.com/openmole/frontiers2016.

The method proposed in Parisot et al. (2015) uses diffusion
Magnetic Resonance Imaging (dMRI) data and structural
connectivity to drive the parcellation task. dMRI provides an
indirect measurement of the brain’s structural connectivity
(white matter fiber tracts), by measuring the anisotropy of water
molecules in the brain. Several processing steps are required
in order to recover the white matter tracts and consequently
parcellate the brain from dMRI volumes. In Parisot et al. (2015),
the data is processed using FSL’s bedpostX and probtrackX
(Behrens et al., 2007; Jbabdi et al., 2012), which estimate the fibres
orientations at each voxel and perform probabilistic tractography
respectively. Both methods are very time consuming. On high
quality data such as the HCP database 18, BedpostX takes
approximately a week on CPU and 3 h on GPU, while ProbtrackX
runs for approximately 30 h. In order to process a large group of
subjects for group-wise analysis in a reasonable amount of time, it
is necessary to use BedpostX’s GPU-enabled version (Hernández
et al., 2013) and process the subjects in parallel.

This workflow benefits from OpenMOLE’s capacity of
delegating different tasks of the pipeline to different computing
environments. In this workflow, the first tasks runs a GPU-
enabled version of the FSL bedpostX tool (Hernández et al.,
2013) while the rest of the workflow is executed on CPU. We
thus leverage two distinct computing environments to delegate
the workload of this workflow. Listing 4 highlights the section
of the workflow description declaring two environments and
connecting them with the corresponding tasks.

/// Execution environments configuration

// cluster environment with GPU computing facilities

val SLURMgpu =

SLURMEnvironment (

"jpassera" ,

"predict5.doc.ic.ac.uk" ,

queue = "gpus" ,

g r e s = List (Gres ("gpu" , 1)) ,

memory = 15000

)

// default cluster environment

val SLURMcpu =

SLURMEnvironment (

"jpassera" ,

"predict5.doc.ic.ac.uk" ,

queue = "long" ,

memory = 15000

)

/// Connect the tasks with transitions and run the

workflow

exp lo IDsTask −< (bpTask on SLURMgpu) −− t r a j e c t o r y T a s k

−−

exp loHemisphere sTask −< (p tTask on SLURMcpu)

Listing 4 | Multiple environments used by the parcellation preprocessing

workflow. The bpTask task requires a GPU to run so it is assigned to the

SLURMgpu environment, whereas pbTask can run on traditional CPUs.

Both SLURMxxx environments are ubiquitous declinations of the same

Slurm cluster, with different requirements.

It is worth noting that the required authentications to connect
to the environment do not have to appear in the workflow

18https://db.humanconnectome.org.

Frontiers in Neuroinformatics | www.frontiersin.org 11 March 2017 | Volume 11 | Article 21

https://github.com/openmole/openmole-market
https://github.com/openmole/frontiers2016
https://db.humanconnectome.org
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Passerat-Palmbach et al. Reproducible Large-Scale Neuroimaging Studies with OpenMOLE

TABLE 3 | Different configurations employed in the reproducibility experiment.

Denomination Resource manager/Scheduler CPUs Execution time Operating system Linux kernel

Personal machine None 4 cores 20′36′′ Debian 8 4.6.0-1-amd64

Desktop machine SSH 8 cores 28′14′′ Ubuntu 14.04 3.13.0-91-generic

Lab′s private cluster Slurm 312 cores 14′50′′ Ubuntu 14.04 3.13.0-63-generic

College wide cluster PBS 13,558 cores 48′25′′
Red Hat Enterprise Linux

Server release 6.7
2.6.32-573.12.1.el6.x86_64

European Grid Infrastructure (EGI) EMI/gLite 650,000 cores 27′15′′ CentOS 6/Scientific Linux 2.6.32-642.6.2.el6.x86_64

Denomination File system Python version Java runtime environment Administrator privileges

Personal machine Permanent 2.7.12 OpenJDK 1.8.0_91 Yes

Desktop machine Shared, permanent 2.7.6 OpenJDK 1.7.0_101 Yes

Lab’s private cluster Shared, permanent 2.7.6 OpenJDK 1.7.0_101 No

College wide cluster Temporary 2.6.6 OpenJDK 1.7.0_101 No

European Grid Infrastructure (EGI) Shared, temporary 2.7.8 OpenJDK 1.6.0_40 No

description, but are specified once and for all to the platform.
Authentications are from then on encrypted and stored in the
user’s preferences folder.

It is valid in the OpenMOLE syntax for the same remote
host to appear in different environment blocks. This ubiquity in
environments enables specifying different settings for the same
computing host, for example different memory requirements, or
devices in the present case. This feature goes along with the ability
of each task to run on a separate environment to increase the finer
parallelism granularity in the workflow.

Environments are only associated with the tasks at the
final stage of the workflow description when tasks are also
interconnected. The workflow could be shared without the
environments and remain syntactically correct. Users familiar
with other computing environments can simply replace the
environment declaration by the one of their choice, all in a single
location.

5.2. Sharing a Pipeline with the Community
The second workflow in this study segments a collection
of developing brain images using the Draw-EM software.
Draw-EM19 (Developing brain Region Annotation With
Expectation-Maximization) is an open-source software for
neonatal segmentation based on the algorithm proposed in
Makropoulos et al. (2014). The algorithm performs atlas-based
segmentation to divide the neonatal brain MRI into 87 regions.
The different parts of the workflow are:

• Data pre-processing. The original MRI is brain-extracted
to remove non-brain tissue and corrected for intensity
inhomogeneity.

• Initial tissue segmentation. A spatio-temporal tissue atlas is
registered to the brain MRI. The MRI is segmented into
the different tissue types with an Expectation-Maximization
scheme that combines an intensity model of the image with
the tissue priors of the atlas.

19https://github.com/MIRTK/DrawEM.

• Structural atlas registration. Structural atlases (20 in total)
are registered to the subject MRI with a multi-channel
registration technique. The original intensity image and the
GM probability map are used as different channels of the
registration.

• Structure priors computation. The prior probability maps
of the different structures are computed based on the local
similarity of the transformed atlases with the input MRI.

• Label segmentation. The MRI is segmented into the different
structures with a consequent Expectation-Maximization
scheme.

• Post-processing. The segmented labels are merged in different
granularities to further produce the final tissue segmentations
and different hemispheres of the brain. Temporary files used
for the computations are removed.

The software is used in collaboration between two teams, and
potentially more when data from the developing HCP get
publicly released. This workflow is a good example of common
use cases evoked in introduction to this work. Here we are faced
with two problems when we want to share the pipeline with
collaborators: making the description portable from one system
to another, and ensuring that the applications that form each
stage can be re-executed on another environment.

A first excerpt from this workflow in Listing 5 shows how
OpenMOLE interacts with CSV files to explore a fixed parameter
space. The notion of samplings in OpenMOLE is flexible enough
to traverse a parameter space described in a CSV file or using the
more complex methods listed in Section 2.3.

val s u b j e c t ID = Val [String]

val age = Val [Int]

val e xp l o = ExplorationTask (

CSVSampling (wo rkD i r e c t o r y /"ages.csv") s e t (

columns += sub j e c t ID ,

columns += age ,

s e p a r a t o r := ’ ’

)

)

Listing 5 | CSV file exploration using samplings.

Frontiers in Neuroinformatics | www.frontiersin.org 12 March 2017 | Volume 11 | Article 21

https://github.com/MIRTK/DrawEM
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Passerat-Palmbach et al. Reproducible Large-Scale Neuroimaging Studies with OpenMOLE

T
A
B
L
E
4
|
A
v
e
ra
g
e
p
re
d
ic
ti
o
n
s
c
o
re
s
o
u
t
o
f
1
2
le
a
v
e
-o

n
e
-o

u
t
c
ro
s
s
v
a
li
d
a
ti
o
n
s
(±

s
ta
n
d
a
rd

d
e
v
ia
ti
o
n
)
fo
r
s
u
b
je
c
t
1
o
f
th
e
H
a
x
b
y
d
a
ta
s
e
t.

P
e
n
a
lt
y

C
B
o
tt
le

C
a
t

C
h
a
ir

F
a
c
e

H
o
u
s
e

S
c
is
s
o
rs

S
c
ra
m
b
le
d
p
ix

S
h
o
e

l1

0
0
0
.1
0

0
.1
7
5
0
9
6
1
0
2
7
2
8

0
.3
7
9
7
3
1
7
4
9
1
5
9

0
.1
5
8
4
5
1
5
3
9
3
5
9

0
.6
0
4
1
5
6
1
7
3
2
1
7

0
.8
4
8
0
8
4
8
2
1
3
8
2

0
.2
3
3
5
0
6
6
0
9
8
0
7

0
.6
6
6
6
8
0
2
8
7
6
7
6

0
.3
7
5
0
2
8
4
4
3
7
7
8

(±
0
.2
3
1
0
4
9
9
3
9
1
4
1
)

(±
0
.2
7
6
5
8
6
5
2
3
2
7
5
)

(±
0
.1
6
4
1
1
6
7
9
3
6
8
9
)

(±
0
.2
3
0
0
1
3
4
2
2
4
9
5
)

(±
0
.1
9
3
7
4
9
0
1
2
8
6
6
)

(±
0
.2
4
4
1
5
9
5
5
7
8
8
3
)

(±
0
.1
4
7
9
9
5
1
8
8
8
9
4
)

(±
0
.2
6
9
2
4
1
1
4
0
0
1
3
)

0
0
0
.5
0

0
.4
5
1
6
8
9
0
6
5
7
6
5

0
.6
2
7
9
1
2
4
9
5
8
7

0
.4
0
6
7
4
8
4
5
6
2
8
7

0
.7
3
2
1
8
9
9
4
4
5
5
8

0
.8
7
2
1
3
6
2
2
2
9
1

0
.4
4
5
9
3
5
9
7
2
6
3

0
.7
1
6
0
8
0
1
6
1
6
6
8

0
.4
9
3
9
0
2
2
5
7
8
7
3

(±
0
.1
5
0
0
7
3
3
0
9
6
0
5
)

(±
0
.2
4
4
0
2
3
1
3
1
9
2
2
)

(±
0
.1
3
9
1
5
6
9
4
0
5
1
)

(±
0
.1
6
3
3
1
8
6
0
7
0
2
)

(±
0
.1
7
3
8
0
5
7
1
6
7
8
5
)

(±
0
.2
5
7
5
7
1
4
2
9
7
2
7
)

(±
0
.1
7
4
9
5
8
4
3
2
4
5
6
)

(±
0
.1
9
3
5
3
5
9
7
1
0
8
7
)

0
0
1
.0
0

0
.4
7
3
9
9
2
4
3
8
8
7

0
.6
3
2
7
3
3
4
3
0
1
4
1

0
.4
4
0
5
5
2
8
7
8
7
2
6

0
.7
3
4
6
0
0
1
0
7
4
9
5

0
.8
9
1
8
8
2
9
8
8
0
1
3

0
.4
2
9
4
0
9
8
6
3
5
9
2

0
.7
0
3
7
4
0
4
0
3
0
4
4

0
.4
8
7
1
3
6
0
1
1
5
6
3

(±
0
.1
4
8
3
1
3
8
4
9
9
6
1
)

(±
0
.2
2
7
3
3
4
8
8
9
6
5
)

(±
0
.1
3
7
2
8
1
4
9
4
5
5
4
)

(±
0
.1
3
3
2
1
7
9
9
8
1
6
2
)

(±
0
.1
3
3
4
1
2
6
6
6
9
4
9
)

(±
0
.2
8
3
5
5
9
4
4
9
5
4
)

(±
0
.1
7
5
3
9
7
3
1
4
4
2
8
)

(±
0
.1
8
6
0
9
1
3
8
8
7
7
)

0
0
5
.0
0

0
.4
7
1
4
1
0
6
7
6
7
8
8

0
.6
1
9
8
4
8
7
6
7
2
1
7

0
.4
4
5
5
9
4
3
2
2
9
8
2

0
.7
3
2
5
5
4
9
3
0
4
5

0
.8
8
8
3
7
4
2
1
6
0
8
3

0
.4
3
2
7
0
4
2
4
9
0
9
4

0
.6
9
4
7
1
1
0
3
3
7
2

0
.4
8
2
7
9
6
2
1
0
8
1
3

(±
0
.1
6
4
5
7
4
0
5
1
3
1
7
)

(±
0
.2
1
9
1
3
4
9
5
7
4
8
8
)

(±
0
.0
8
8
6
7
9
4
8
2
8
7
8
8
)

(±
0
.1
1
8
7
1
8
1
9
0
6
2
3
)

(±
0
.1
3
4
1
7
1
7
4
9
0
3
6
)

(±
0
.2
6
8
1
6
4
4
8
3
1
8
6
)

(±
0
.2
0
3
3
1
5
6
8
9
4
0
2
)

(±
0
.1
8
9
9
1
6
5
3
0
2
2
6
)

0
1
0
.0
0

0
.4
6
6
8
3
8
7
4
4
9
5
8

0
.6
3
8
9
2
8
2
5
0
1
1
2

0
.4
4
4
0
8
8
4
5
0
2
3
5

0
.7
3
2
6
0
6
6
4
3
4
4
3

0
.8
9
2
6
6
8
6
0
5
9
0
4

0
.4
0
5
4
3
1
5
2
1
8
2
2

0
.7
1
2
8
5
1
9
5
2
6
5

0
.4
9
7
5
3
7
2
5
6
8
0
4

(±
0
.1
6
6
5
7
9
0
5
4
8
1
5
)

(±
0
.2
1
9
7
3
7
2
7
9
3
2
2
)

(±
0
.0
8
4
2
8
2
1
1
4
0
0
3
7
)

(±
0
.1
2
2
7
7
7
4
0
8
6
6
9
)

(±
0
.1
1
8
4
0
6
6
8
7
7
5
7
)

(±
0
.2
8
1
7
7
7
4
6
0
9
7
5
)

(±
0
.2
1
0
4
3
4
0
0
7
6
9
3
)

(±
0
.1
9
2
6
0
9
6
1
3
8
8
5
)

0
5
0
.0
0

0
.4
8
9
2
2
7
3
9
8
6
6
9

0
.6
3
8
6
2
3
5
4
6
3
6

0
.4
5
5
3
0
3
0
3
0
3
0
3

0
.6
8
8
1
2
3
6
0
1
6
7
6

0
.8
5
7
5
4
6
7
1
0
2
5
6

0
.4
1
6
7
5
3
2
4
6
7
5
3

0
.7
6
4
5
3
2
7
5
5
9
3
7

0
.4
8
6
4
7
4
7
3
0
8
1
8

(±
0
.1
7
3
9
5
0
8
3
3
7
2
4
)

(±
0
.1
8
2
7
4
3
8
9
6
3
9
3
)

(±
0
.1
2
0
8
5
3
0
5
3
0
1
4
)

(±
0
.1
0
9
1
8
0
1
4
8
2
3
1
)

(±
0
.1
1
7
8
0
7
1
2
7
6
2
5
)

(±
0
.2
6
3
2
6
9
8
9
6
3
7
3
)

(±
0
.2
0
1
9
4
0
5
1
6
0
9
6
)

(±
0
.1
8
8
5
3
0
9
9
2
4
1
)

1
0
0
.0
0

0
.4
7
8
9
7
5
0
0
7
7
0
1

0
.6
7
3
1
3
6
1
4
7
9
5
6

0
.4
7
8
6
3
0
6
9
2
6
6
1

0
.6
4
8
0
1
5
2
7
5
1
0
9

0
.8
3
0
9
4
1
7
7
4
9
0
1

0
.4
3
7
7
2
4
4
6
6
8
9
1

0
.7
5
5
7
9
7
7
8
7
4
1
5

0
.4
9
5
2
2
4
7
3
5
5
1
2

(±
0
.1
8
8
9
2
6
4
3
7
9
7
1
)

(±
0
.1
6
4
7
0
1
9
9
4
2
1
8
)

(±
0
.1
5
6
0
0
0
6
8
7
9
2
5
)

(±
0
.1
5
7
2
7
7
8
4
3
9
9
1
)

(±
0
.1
6
6
8
7
8
5
8
9
5
7
3
)

(±
0
.2
3
1
8
3
7
2
9
8
8
0
3
)

(±
0
.2
0
8
2
1
0
9
9
6
0
7
9
)

(±
0
.1
8
1
3
3
5
0
6
1
3
6
6
)

l2

0
0
0
.1
0

0
.4
1
9
0
6
4
7
4
7
5
4
7

0
.5
2
9
7
9
0
4
7
2
6
5
5

0
.5
4
0
1
9
7
8
8
5
2
5
9

0
.5
2
4
8
3
9
1
6
0
0
2
1

0
.6
0
7
3
2
8
5
2
4
3
0
2

0
.5
0
3
2
1
3
2
0
3
5
3
8

0
.7
7
5
1
9
2
0
3
6
1
4
7

0
.5
1
1
0
6
9
8
3
5
4
5
1

(±
0
.1
9
6
0
7
5
4
9
9
6
9
5
)

(±
0
.2
1
4
5
8
3
6
9
0
1
0
8
)

(±
0
.1
7
7
4
9
1
0
6
1
4
8
1
)

(±
0
.1
7
4
6
3
5
4
8
4
2
5
7
)

(±
0
.2
1
9
5
6
4
8
8
7
1
9
2
)

(±
0
.1
5
7
4
9
3
9
2
5
5
2
5
)

(±
0
.1
8
2
4
6
1
2
0
2
7
5
5
)

(±
0
.1
9
0
3
0
9
1
6
4
1
4
5
)

0
0
0
.5
0

0
.4
4
2
4
4
0
7
0
3
1
2
6

0
.5
4
1
5
6
0
0
9
0
0
4
3

0
.5
4
5
4
7
6
9
0
2
1
5
4

0
.5
4
0
3
7
6
1
3
8
1
3
8

0
.6
3
3
5
3
4
9
4
6
9
8
6

0
.5
1
4
0
0
0
9
5
2
7
5
1

0
.7
9
0
3
4
6
3
8
7
3
5
9

0
.4
9
2
8
4
7
2
7
6
9
3
2

(±
0
.2
0
4
4
0
1
4
9
6
0
9
)

(±
0
.2
0
6
6
0
2
1
2
6
6
6
7
)

(±
0
.1
7
4
8
5
7
9
9
8
1
6
)

(±
0
.1
8
4
3
7
0
1
7
5
4
4
2
)

(±
0
.2
3
0
1
1
2
0
2
5
1
8
4
)

(±
0
.1
5
1
1
9
0
4
9
2
2
0
9
)

(±
0
.1
8
5
7
8
4
0
2
3
4
7
3
)

(±
0
.1
6
5
1
3
3
3
3
8
0
3
2
)

0
0
1
.0
0

0
.4
3
3
2
1
4
0
1
3
9
1

0
.5
3
5
6
1
0
2
3
5
3

0
.5
3
9
0
3
6
0
0
6
9
5
6

0
.5
4
9
9
3
4
0
3
6
7
2
4

0
.6
3
3
9
4
5
0
9
0
5
7

0
.5
1
1
7
9
5
8
9
4
7
6
6

0
.7
7
9
9
5
6
7
7
6
9
6
9

0
.5
0
6
1
5
0
3
8
6
0
2
9

(±
0
.1
9
6
9
4
7
1
5
6
9
2
8
)

(±
0
.2
0
3
7
8
5
5
2
0
3
5
9
)

(±
0
.1
6
8
8
8
1
3
6
0
1
9
3
)

(±
0
.1
8
8
6
1
4
0
7
8
4
3
4
)

(±
0
.2
2
3
7
5
4
9
1
7
4
7
2
)

(±
0
.1
4
7
9
2
3
6
9
2
5
8
5
)

(±
0
.1
8
1
2
1
8
5
2
8
8
8
6
)

(±
0
.1
6
8
4
9
5
3
0
5
5
9
3
)

0
0
5
.0
0

0
.4
3
7
2
7
6
7
3
4
9
1
7

0
.5
3
9
0
6
7
0
7
4
3
5
3

0
.5
3
6
3
2
6
6
3
9
6
9
5

0
.5
6
1
1
7
1
1
2
0
5
4
6

0
.6
3
9
5
3
3
4
2
3
0
0
3

0
.5
1
4
2
6
1
0
5
2
7
3

0
.7
7
2
1
9
8
2
6
9
3
9
9

0
.5
0
5
1
1
7
1
7
4
6
6
6

(±
0
.1
9
9
8
1
8
0
5
4
4
4
)

(±
0
.2
0
4
5
0
3
6
9
4
7
4
6
)

(±
0
.1
7
8
9
5
3
8
5
3
7
2
6
)

(±
0
.1
9
9
1
0
3
5
4
1
3
1
7
)

(±
0
.2
2
4
3
5
9
5
4
6
8
6
7
)

(±
0
.1
5
2
5
3
8
3
7
4
4
6
3
)

(±
0
.1
8
2
7
6
1
0
6
6
3
2
7
)

(±
0
.1
6
6
6
2
2
6
6
0
5
4
8
)

0
1
0
.0
0

0
.4
3
6
8
3
5
8
2
4
4
5
1

0
.5
3
4
2
3
3
9
4
4
5
2

0
.5
3
5
0
6
1
8
9
1
3
7
2

0
.5
6
3
7
6
3
6
1
5
8
7
8

0
.6
3
9
5
3
3
4
2
3
0
0
3

0
.5
1
4
4
5
7
7
6
9
5
9
3

0
.7
6
9
4
8
0
8
7
8
0
9
5

0
.5
0
7
2
9
8
1
3
9
6
4
5

(±
0
.2
0
0
0
5
8
1
6
5
7
2
8
)

(±
0
.2
0
4
8
8
0
1
0
5
5
3
1
)

(±
0
.1
7
7
2
1
3
4
9
5
8
3
6
)

(±
0
.1
9
9
7
7
2
4
1
3
4
5
3
)

(±
0
.2
2
4
3
5
9
5
4
6
8
6
7
)

(±
0
.1
5
4
0
8
5
9
9
1
2
4
3
)

(±
0
.1
8
2
8
2
8
4
8
6
1
0
6
)

(±
0
.1
6
6
1
3
3
3
5
6
2
1
9
)

0
5
0
.0
0

0
.4
3
8
7
5
3
6
3
0
8
3
4

0
.5
4
2
4
7
4
4
2
5
0
3
5

0
.5
3
1
6
9
5
0
9
8
0
9
7

0
.5
6
1
1
3
5
1
9
8
4
3
9

0
.6
4
4
3
7
6
7
5
6
6
0
6

0
.4
9
5
5
6
6
2
6
2
1
3
5

0
.7
6
9
4
8
0
8
7
8
0
9
5

0
.5
0
4
6
9
2
1
0
0
8
8
8

(±
0
.2
0
6
1
1
4
0
2
8
6
2
3
)

(±
0
.2
1
1
6
3
5
6
4
6
7
6
)

(±
0
.1
7
4
9
6
4
1
4
5
6
2
7
)

(±
0
.2
0
0
1
8
5
9
7
4
5
9
8
)

(±
0
.2
2
6
1
9
5
3
9
4
6
1
6
)

(±
0
.1
4
4
3
6
4
9
9
8
6
0
4
)

(±
0
.1
8
2
8
2
8
4
8
6
1
0
6
)

(±
0
.1
6
7
1
0
7
1
0
9
8
8
2
)

1
0
0
.0
0

0
.4
3
8
7
5
3
6
3
0
8
3
4

0
.5
4
6
1
7
8
2
7
9
1
0
3

0
.5
3
0
1
3
4
9
7
5
8
9
1

0
.5
6
1
1
3
5
1
9
8
4
3
9

0
.6
4
3
6
4
7
3
9
1
1
9
4

0
.4
9
5
9
5
3
5
0
0
5
9
4

0
.7
6
4
5
0
9
9
8
6
9
1
7

0
.5
0
3
5
0
1
6
2
4
6
9
8

(±
0
.2
0
6
1
1
4
0
2
8
6
2
3
)

(±
0
.2
0
6
4
5
9
6
3
2
7
7
8
)

(±
0
.1
7
3
6
6
1
5
3
2
1
9
1
)

(±
0
.2
0
0
1
8
5
9
7
4
5
9
8
)

(±
0
.2
2
6
0
2
1
9
5
6
6
7
1
)

(±
0
.1
4
4
9
9
3
4
6
8
1
2
2
)

(±
0
.1
8
3
0
5
0
6
8
6
4
8
9
)

(±
0
.1
6
7
0
8
5
4
0
8
7
1
5
)

Frontiers in Neuroinformatics | www.frontiersin.org 13 March 2017 | Volume 11 | Article 21

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Passerat-Palmbach et al. Reproducible Large-Scale Neuroimaging Studies with OpenMOLE

TABLE 5 | Description of the parameters optimized for the MSM tool.

Parameter Dimensionality Range Description

Lambda 3 [0.00001, 100.0] Weights the contribution of the regularizer relative to the similarity force.

sigma_in 3 [2; 10] Sets the input smoothing: this changes the smoothing kernel’s standard deviation

Iterations 3 [3; 5] Controls the number of iterations at each resolution.

A single CARE archive was prepared containing the necessary
material for all the tasks of the original pipeline (available from
Draw-EM’s repository20). We have noticed that generating one
archive per task generally leads to a large amount of duplicated
binaries and shared libraries from one archive to another. When
the different tasks of a pipeline share the same dependencies, it
is thus more efficient to gather all of them in a unique archive.
This strategy leverages OpenMOLE’s file replication mechanisms
better and reduces the amount of data transferred to remote
environments.

The generated CARE archive is then integrated using
CARETasks in the OpenMOLE workflow, and fed with input
data files stored on the host machine. The command used in
the original pipeline is reused as is to build the CARETask and
accepts the parameters explored by the sampling in Listing 5. The
resulting CARETask is presented in Listing 6.

val p a c k a g i n gD i r e c t o r y =

"/homes/am411/vol/MIRTK-develop/MIRTK/Packages/DrawEM/

scripts/v1.1"

val p r e p r o c e s s = CARETask (

wo rkD i r e c t o r y /"careArchives/drawem-bundle.tgz.bin" ,

p a c k a g i n gD i r e c t o r y + "/preprocess.sh ${subjectID}

$age"

) s e t (

(i npu t s , ou t pu t s) += (sub j e c t ID , age) ,

h o s t F i l e s += (workD i r e c t o r y . t o S t r i n g + "/data/T2" ,

p a c k a g i n gD i r e c t o r y + "/T2")

)

Listing 6 | The preprocessing CARETask extracted from the Draw-EM

pipeline. Input data files are injected from the host system and

parameters subjectID and age taken from the CSV sampling in Listing 5.

As this pipeline is meant to be shared and labeled with a
specific version, the fact that CARE archives are not as flexible
as Docker turns from a drawback to an advantage as it makes
it simpler to ship to the end-user. All the parameterizable parts
of the pipeline are handled by the OpenMOLE script, and the
pipeline can still be customized by inserting new tasks. Still,
any user downloading the OpenMOLE workflow along with the
associated CARE archives will be able to reproduce the same
experiments that have been performed by the packager, or to
reuse the same pipeline for further experiments and comparisons.
It is important to note that the data necessary to run the pipeline
are not included in the shipped CARE archives.

5.3. Advanced Parameter Tuning Methods
This third workflow performs parameter optimization for
cortical surface registration. In this example, cortical surface

20https://github.com/MIRTK/DrawEM/blob/c98022a5b78ee99bef5d329fc23f57f9

c15b1a5f/pipelines/neonatal-pipeline-v1.1.sh.

alignment is performed using the Multimodal Surface Matching
tool (MSM) (Robinson et al., 2013); developed as part of the HCP
to enable between subject alignment of multiple different types of
cortical surface features (for example functional activations and
cortical folding). Registration is optimized to maximize the ratio
of feature similarity relative to surface warp distortions.

Here, we study a simplified version of the parameter
optimization. The workflow consists in optimizing the value of
nine parameters of the MSM tool for a fixed pair of subjects. The
parameters explored can be found in Table 5.

In order to find the optimal values for these parameters, we
need to compute a fitness function that we will try to minimize
using our methods. The fitness function estimates a distortion
metric and is computed within its own OpenMOLE task as in
Listing 7.

Now, Listing 8 shows how the NSGA-II (Deb et al., 2002)
could be initialized to optimize this problem in OpenMOLE.

val s u b j e c t ID = Val [String]

val f i t n e s s = CARETask (

wo rkD i r e c t o r y /

"estimate_metric_distortion_anat.tgz.bin" ,

"/usr/bin/fsl/MSM/estimate_metric_distortion \

/home/user/data/${subjectID}/L.white.ICO6.native.

surf.gii \

/home/user/data/${subjectID}/L.reg.surf.gii \

/home/user/data/${subjectID}/L.areal_ -abs")

s e t (

i n pu t s += (s u b j e c t ID) ,

s tdOut += me t r i c

)

Listing 7 | The result metric is retrieved from the standard output (the

command lines have been simplified for the sake of readability).

val e v o l u t i o n =

SteadyStateEvolution (

a l g o r i t hm =

NSGA2 (

// Define the population size: 100

mu = 100 ,

// Define the inputs and their respective

variation bounds.

genome = Seq (

Sequence (lambdas , 0 . 0 0 0 0 1 , 1 0 0 . 0 , s i z e =3) ,

Sequence (s igmaIn_opt , 2 . 0 , 1 0 . 0 , s i z e =3) ,

Sequence (i t e r a t i o n s _ o p t , 3 . 0 , 5 0 . 0 , s i z e =3) ,

) ,

// Define the objectives to minimize.

o b j e c t i v e s = Seq (me t r i c)

) ,

// Define the fitness evaluation

// Define the parallelism level

// Terminate after 1000 evaluations

e v a l u a t i o n = f i t n e s s ,

Frontiers in Neuroinformatics | www.frontiersin.org 14 March 2017 | Volume 11 | Article 21

https://github.com/MIRTK/DrawEM/blob/c98022a5b78ee99bef5d329fc23f57f9c15b1a5f/pipelines/neonatal-pipeline-v1.1.sh
https://github.com/MIRTK/DrawEM/blob/c98022a5b78ee99bef5d329fc23f57f9c15b1a5f/pipelines/neonatal-pipeline-v1.1.sh
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Passerat-Palmbach et al. Reproducible Large-Scale Neuroimaging Studies with OpenMOLE

p a r a l l e l i s m = 10 ,

t e rm i n a t i o n = 1000

)

. . .

(e v o l u t i o n on env)

Listing 8 | Initialization of the NSGA-II algorithm with the parameters to

optimize according to the fitness function from Listing 7.

Multi-dimensional parameters are seamlessly handled by the algorithm.

Advanced exploration methods are computationally
greedy, but are well suited for parallelization on distributed
computing environments. This exploration can also benefit from
OpenMOLE’s workload delegation by using the on keyword
seen in Listing 4. This shows that exploration methods fit
well in the OpenMOLE ecosystem and can benefit from the
other components of the platform, such as the computing
environments.

6. CONCLUSION

In this paper, we have shown the ability of the OpenMOLE
scientific workflow engine to provide reproducible pipelines that
can be shared and distributed on any Linux based environment.

We have seen that the OpenMOLE DSL provided a high-
level description of experiments that can be shared and reused
by scientists on any platform with a JVM. The newly added
CARETask offers a solution to ensure Linux-based application
can be packaged and re-executed seamlessly on another Linux
host without the need to obtain administrator privileges. This
criterion was necessary to target HPC environments, a de-facto
choice to distribute experiments in the scientific world.

Extensions to the OpenMOLE DSL led to a fine integration
of CARE in the framework. Archives only contain binaries and
their dependencies, leaving the data to process to be injected in
the archive’s pseudo-filesystem at runtime from the dataflow. This
results in a solution that can be shared from one machine to
another, from the description of the pipeline to the applications
composing its steps, with the single assumption that it will be
re-executed on a Linux host.

Our experiments have reported successful re-executions
with the distributed computing environments supported by
OpenMOLE. In particular, Section 4 has shown that results
obtained from a pipeline with complex software dependencies

could be identically reproduced on an heterogeneous set of Linux
computing environments.

Medical imaging pipelines were a perfect testbed for our
solution, as they are composed of very diverse software
tools. A description of case studies inspired from real-
world medical imaging solutions has illustrated the suitability
of the solution to handle reproducible medical imaging
experiments at large scale. Problems such as enabling finer
grain parallelism in pipelines, enhancing pipeline sharing with
the community, and automatic parameter tuning are three of
the concerns that can be encountered by researchers tackling
large-scale medical imaging studies. We have addressed these
topics through OpenMOLE implementations of three inhouse
neuroimaging pipelines. They have showcased various features of
the OpenMOLE platform that can help sharing and reproducing
pipelines.

OpenMOLE, as well as all the tools forming its ecosystem,
are free and open source software distributed under the Affero
General Public License version 3 (AGPLv3). This allows anyone
to contribute to the main project, or build extensions on top of it.

Future releases of the OpenMOLE platform will strengthen
the support of cloud computing environments, with a particular
attention given to Amazon EC2. As major datasets become
publicly available in the Amazon cloud, moving neuroimaging
studies to the cloud is necessary to explore whole datasets.
Reproducible OpenMOLE workflows are a valuable addition to
the set of tools available to the community in order to set up
ambitious experiments.

AUTHOR CONTRIBUTIONS

JP has led this work, drafted the initial version of the manuscript,
and is an active contributor to the OpenMOLE project. RR is
the leader of the OpenMOLE project and a main developer.
ML is a main developer of the OpenMOLE project and has
created the graphical user interface. ER, AM, and SP are the
original authors of the pipelines presented as case studies. DR
has taken part in the inception and conception phases of this
work. All authors have revised and agreed on the content of the
manuscript.

FUNDING

The research leading to these results has received funding from
the European Research Council under the European Union’s
Seventh Framework Programme (FP/2007-2013)/ERC Grant
Agreement no. 319456.

REFERENCES

Abraham, A., Pedregosa, F., Eickenberg, M., Gervais, P., Mueller,

A., Kossaifi, J., et al. (2014). Machine learning for neuroimaging

with scikit-learn. Front. Neuroinform. 8:14. doi: 10.3389/fninf.2014.

00014

Achterberg, H., Koek, M., and Niessen, W. (2015). “Fastr: a workflow engine for

advanced data flows,” in 1st MICCAI Workshop on Management and Processing

of Images for Population Imaging (Munich), 39–46.

Altintas, I., Berkley, C., Jaeger, E., Jones, M., Ludascher, B., and Mock,

S. (2004). “Kepler: an extensible system for design and execution of

scientific workflows,” in Scientific and Statistical Database Management,

2004. Proceedings. 16th International Conference on (Santorini: IEEE),

423–424.

Amstutz, P., Andeer, R., Chapman, B., Chilton, J., Crusoe, M. R., Guimerà, R. V.,

et al. (2016). Common Workflow Language, Draft 3.

Barker, A., and Van Hemert, J. (2008). “Scientific workflow: a

survey and research directions,” in Parallel Processing and Applied

Frontiers in Neuroinformatics | www.frontiersin.org 15 March 2017 | Volume 11 | Article 21

https://doi.org/10.3389/fninf.2014.00014
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Passerat-Palmbach et al. Reproducible Large-Scale Neuroimaging Studies with OpenMOLE

Mathematics (Gdansk: Springer), 746–753. doi: 10.1007/978-3-540-

68111-3_78

Behrens, T., Berg, H. J., Jbabdi, S., Rushworth, M., and Woolrich, M. (2007).

Probabilistic diffusion tractography with multiple fibre orientations: what can

we gain? Neuroimage 34, 144–155. doi: 10.1016/j.neuroimage.2006.09.018

Bellec, P., Lavoie-Courchesne, S., Dickinson, P., Lerch, J. P., Zijdenbos, A. P., and

Evans, A. C. (2012). The pipeline system for Octave and Matlab (PSOM): a

lightweight scripting framework and execution engine for scientific workflows.

Front. Neuroinform. 6:7. doi: 10.3389/fninf.2012.00007

Boettiger, C. (2014). An introduction to Docker for reproducible research, with

examples from the R environment. arXiv preprint arXiv:1410.0846.

Chamberlain, R., Invenshure, L., and Schommer, J. (2014).Using Docker to Support

Reproducible Research. Technical Report 1101910, figshare, 2014.

Chérel, G., Cottineau, C., and Reuillon, R. (2015). Beyond corroboration:

strengthening model validation by looking for unexpected patterns. PLoS ONE

10:e0138212. doi: 10.1371/journal.pone.0138212

Chirigati, F., Shasha, D., and Freire, J. (2013). “ReproZip: using provenance to

support computational reproducibility,” in Proceedings of the 5th USENIX

conference on Theory and Practice of Provenance (TaPP).

Cottineau, C., Chapron, P., and Reuillon, R. (2015a). Growing models from the

bottom up. An evaluation-based incremental modelling method (EBIMM)

applied to the simulation of systems of cities. J. Artif. Soc. Soc. Simulat. 18:9.

doi: 10.18564/jasss.2828

Cottineau, C., Reuillon, R., Chapron, P., Rey-Coyrehourcq, S., and Pumain,

D. (2015b). A modular modelling framework for hypotheses testing in the

simulation of urbanisation. Systems 3, 348–377. doi: 10.3390/systems3040348

Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T. (2002). A fast and elitist

multiobjective genetic algorithm: NSGA-II. Evol. Comput. IEEE Trans. 6,

182–197. doi: 10.1109/4235.996017

Deelman, E., Singh, G., Su, M.-H., Blythe, J., Gil, Y., Kesselman, C., et al.

(2005). Pegasus: a framework for mapping complex scientific workflows onto

distributed systems. Sci. Progr. 13, 219–237. doi: 10.1155/2005/128026

Goecks, J., Nekrutenko, A., Taylor, J., and others (2010). Galaxy: a

comprehensive approach for supporting accessible, reproducible, and

transparent computational research in the life sciences. Genome Biol. 11:R86.

doi: 10.1186/gb-2010-11-8-r86

Gorgolewski, K., Burns, C. D., Madison, C., Clark, D., Halchenko, Y. O.,

Waskom, M. L., et al. (2011). Nipype: a flexible, lightweight and extensible

neuroimaging data processing framework in python. Front. Neuroinform. 5:13.

doi: 10.3389/fninf.2011.00013

Guo, P. (2012). CDE: a tool for creating portable experimental software packages.

Comput. Sci. Eng. 14, 32–35. doi: 10.1109/MCSE.2012.36

Haxby, J. V., Gobbini, M. I., Furey, M. L., Ishai, A., Schouten, J. L., and Pietrini,

P. (2001). Distributed and overlapping representations of faces and objects in

ventral temporal cortex. Science 293, 2425–2430. doi: 10.1126/science.1063736

Hernández, M., Guerrero, G. D., Cecilia, J. M., García, J. M., Inuggi, A., Jbabdi,

S., et al. (2013). Accelerating fibre orientation estimation from diffusion

weighted magnetic resonance imaging using GPUs. PLoS ONE 8:e61892.

doi: 10.1371/journal.pone.0061892

Janin, Y., Vincent, C., and Duraffort, R. (2014). “CARE, the comprehensive

archiver for reproducible execution,” in Proceedings of the 1st ACM SIGPLAN

Workshop on Reproducible ResearchMethodologies and New PublicationModels

in Computer Engineering (Edinburgh: ACM), 1.

Jbabdi, S., Sotiropoulos, S. N., Savio, A. M., Graña, M., and Behrens, T. E. J.

(2012). Model-based analysis of multishell diffusion MR data for tractography:

how to get over fitting problems. Magn. Reson. Med. 68, 1846–1855.

doi: 10.1002/mrm.24204

MacKenzie-Graham, A. J., Van Horn, J. D., Woods, R. P., Crawford, K. L., and

Toga, A. W. (2008). Provenance in neuroimaging. Neuroimage 42, 178–195.

doi: 10.1016/j.neuroimage.2008.04.186

Makropoulos, A., Gousias, I., Ledig, C., Aljabar, P., Serag, A., Hajnal, J., et al. (2014).

Automatic whole brain MRI segmentation of the developing neonatal brain.

IEEE Trans. Med. Imaging 33, 1818–1831. doi: 10.1109/TMI.2014.2322280

Mikut, R., Dickmeis, T., Driever, W., Geurts, P., Hamprecht, F. A., Kausler,

B. X., et al. (2013). Automated processing of Zebrafish imaging data: a survey.

Zebrafish 10, 401–421. doi: 10.1089/zeb.2013.0886

Miles, S., Groth, P., Branco, M., and Moreau, L. (2007). The requirements

of using provenance in e-science experiments. J. Grid Comput. 5, 1–25.

doi: 10.1007/s10723-006-9055-3

Odersky, M., Altherr, P., Cremet, V., Emir, B., Maneth, S., Micheloud, S., et al.

(2004). An Overview of the Scala Programming Language. Technical Report

IC/2004/64, EPFL Lausanne, Switzerland.

Oinn, T., Addis, M., Ferris, J., Marvin, D., Senger, M., Greenwood, M., et al.

(2004). Taverna: a tool for the composition and enactment of bioinformatics

workflows. Bioinformatics 20, 3045–3054. doi: 10.1093/bioinformatics/

bth361

Parisot, S., Arslan, S., Passerat-Palmbach, J., Wells, W. M. III., and Rueckert, D.

(2015). “Tractography-driven groupwise multi-scale parcellation of the cortex,”

in Information Processing in Medical Imaging, eds S. Ourselin, D. C. Alexander,

C.-F. Westin, and M. J. Cardoso (Springer), 600–612.

Peng, R. D. (2011). Reproducible research in computational science. Science 334,

1226–1227. doi: 10.1126/science.1213847

Reuillon, R., Chuffart, F., Leclaire, M., Faure, T., Dumoulin, N., and Hill, D. (2010).

“Declarative task delegation in OpenMOLE,” in High Performance Computing

and Simulation (hpcs), 2010 International Conference on (Caen: IEEE),

55–62.

Reuillon, R., Leclaire, M., and Passerat-Palmbach, J. (2015a). “Model Exploration

Using OpenMOLE - a workflow engine for large scale distributed design of

experiments and parameter tuning,” in IEEE High Performance Computing and

Simulation Conference 2015 (Amsterdam: IEEE), 1–8.

Reuillon, R., Leclaire, M., and Passerat-Palmbach, J. (2015b). OpenMOLEWebsite.

Reuillon, R., Leclaire, M., and Rey-Coyrehourcq, S. (2013). OpenMOLE,

a workflow engine specifically tailored for the distributed exploration

of simulation models. Future Gen. Comput. Syst. 29, 1981–1990.

doi: 10.1016/j.future.2013.05.003

Reuillon, R., Schmitt, C., De Aldama, R., and Mouret, J.-B. (2015c). A new method

to evaluate simulation models: the calibration profile (CP) algorithm. J. Artif.

Soc. Soc. Simul. 18:12. doi: 10.18564/jasss.2675

Rex, D. E., Ma, J. Q., and Toga, A. W. (2003). The LONI

pipeline processing environment. Neuroimage 19, 1033–1048.

doi: 10.1016/S1053-8119(03)00185-X

Robinson, E. C., Jbabdi, S., Andersson, J., Smith, S., Glasser, M. F., Van Essen, D. C.,

et al. (2013). “Multimodal surface matching: fast and generalisable cortical

registration using discrete optimisation,” in Information Processing in Medical

Imaging (Asilomar, CA: Springer), 475–486.

Schmitt, C., Rey-Coyrehourcq, S., Reuillon, R., and Pumain, D. (2015). Half

a billion simulations: evolutionary algorithms and distributed computing

for calibrating the SimpopLocal geographical model. arXiv preprint

arXiv:1502.06752.

Stodden, V. (2009). The legal framework for reproducible scientific

research: licensing and copyright. Comput. Sci. Eng. 11, 35–40.

doi: 10.1109/MCSE.2009.19

Tröger, P., Brobst, R., Gruber, D., Mamonski, M., and Templeton, D. (2012).

Distributed Resource Management Application API Version 2 (DRMAA).

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2017 Passerat-Palmbach, Reuillon, Leclaire, Makropoulos, Robinson,

Parisot and Rueckert. This is an open-access article distributed under the terms

of the Creative Commons Attribution License (CC BY). The use, distribution or

reproduction in other forums is permitted, provided the original author(s) or licensor

are credited and that the original publication in this journal is cited, in accordance

with accepted academic practice. No use, distribution or reproduction is permitted

which does not comply with these terms.

Frontiers in Neuroinformatics | www.frontiersin.org 16 March 2017 | Volume 11 | Article 21

https://doi.org/10.1007/978-3-540-68111-3_78
https://doi.org/10.1016/j.neuroimage.2006.09.018
https://doi.org/10.3389/fninf.2012.00007
https://doi.org/10.1371/journal.pone.0138212
https://doi.org/10.18564/jasss.2828
https://doi.org/10.3390/systems3040348
https://doi.org/10.1109/4235.996017
https://doi.org/10.1155/2005/128026
https://doi.org/10.1186/gb-2010-11-8-r86
https://doi.org/10.3389/fninf.2011.00013
https://doi.org/10.1109/MCSE.2012.36
https://doi.org/10.1126/science.1063736
https://doi.org/10.1371/journal.pone.0061892
https://doi.org/10.1002/mrm.24204
https://doi.org/10.1016/j.neuroimage.2008.04.186
https://doi.org/10.1109/TMI.2014.2322280
https://doi.org/10.1089/zeb.2013.0886
https://doi.org/10.1007/s10723-006-9055-3
https://doi.org/10.1093/bioinformatics/bth361
https://doi.org/10.1126/science.1213847
https://doi.org/10.1016/j.future.2013.05.003
https://doi.org/10.18564/jasss.2675
https://doi.org/10.1016/S1053-8119(03)00185-X
https://doi.org/10.1109/MCSE.2009.19
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

	Reproducible Large-Scale Neuroimaging Studies with the OpenMOLE Workflow Management System
	1. Introduction
	1.1. Problem
	1.2. Proposed Solution
	1.3. Related Work
	1.3.1. Generic Workflow Engines
	1.3.2. Community-Tailored Workflow Engines
	1.3.3. Level of Support of HPC Environments

	1.4. Main Contributions

	2. What Is OpenMOLE?
	2.1. A DSL to Describe Workflows
	2.2. Distributed Computing Environments
	2.3. Exploration Methods

	3. The Challenges of Distributing Applications
	3.1. Problems and Classical Solutions
	3.2. Why Should I CARE?
	3.3. Combining OpenMOLE with CARE

	4. Evaluation of the Reproducibility of a Neuroimaging Workflow
	4.1. Parameter Space Exploration of a Classifier
	4.2. Testing the Reproducibility

	5. Case Studies
	5.1. Multiple Environments in the Same workflow
	5.2. Sharing a Pipeline with the Community
	5.3. Advanced Parameter Tuning Methods

	6. Conclusion
	Author Contributions
	Funding
	References

