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Deep generative neural network for accurate drug
response imputation
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Drug response differs substantially in cancer patients due to inter- and intra-tumor hetero-

geneity. Particularly, transcriptome context, especially tumor microenvironment, has been

shown playing a significant role in shaping the actual treatment outcome. In this study, we

develop a deep variational autoencoder (VAE) model to compress thousands of genes into

latent vectors in a low-dimensional space. We then demonstrate that these encoded vectors

could accurately impute drug response, outperform standard signature-gene based approa-

ches, and appropriately control the overfitting problem. We apply rigorous quality assess-

ment and validation, including assessing the impact of cell line lineage, cross-validation,

cross-panel evaluation, and application in independent clinical data sets, to warrant the

accuracy of the imputed drug response in both cell lines and cancer samples. Specifically, the

expression-regulated component (EReX) of the observed drug response achieves high cor-

relation across panels. Using the well-trained models, we impute drug response of The

Cancer Genome Atlas data and investigate the features and signatures associated with the

imputed drug response, including cell line origins, somatic mutations and tumor mutation

burdens, tumor microenvironment, and confounding factors. In summary, our deep learning

method and the results are useful for the study of signatures and markers of drug response.
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A systematic investigation of the association between cancer
genomics data and their therapeutic possibilities can
greatly aid the translation of theoretical tumor biology.

Several large-scale pharmacogenomics projects have been con-
ducted at the cell line level with many conditions, substantially
advancing our knowledge of drug response. These projects
include the Cancer Cell Line Encyclopedia (CCLE)1, Genomics of
Drug Sensitivity in Cancer (GDSC)2, and The Library of Inte-
grated Network-Based Cellular Signatures (LINCS)3, among
others. Although such data were much valuable, it was based on
preclinical features and suffered from limitations on small sample
size and high heterogeneity. On the other hand, The Cancer
Genome Atlas (TCGA) project4 has released comprehensive
multi-omics datasets in 33 cancer types/subtypes. Unfortunately,
the pharmacogenomics information is generally unavailable in
these cancer datasets, leading to a strong gap between the cancer
genomic studies and therapeutic responses at the pan-cancer
level. To fill in this gap, several studies have attempted to infer
drug response for TCGA data by developing various prediction
models, including statistical models that link gene expression to
drug response5 and lncRNA-drug prediction models using Elastic
Net regression6.

In silico prediction (also called imputation) of drug response
currently remains challenging due to several factors. First, the
selection of targeted therapies on specific oncogenes in clinical
practice has been limited to only a few specific mutations7–9, e.g.,
BRAF V600E mutation10,11, or a few signature genes12. However,
mutational status alone is insufficient to determine the oncogenic
state of a given cancer sample or recommend the appropriate
therapeutic choice. This issue becomes worse for those drugs with
general cytotoxicity or having multiple molecular targets. Second,
cancer heterogeneity is a well-known factor contributing to the
great variability in drug response in cancer patients. For instance,
in lung cancer with KRAS mutations, the epithelial–mesenchymal
transition (EMT) program has been shown to underlie the
variability in response to KRAS inhibitors13. The transcriptional
context may play deterministic roles in shaping the response to
inhibitors and should be included in the prediction model. Third,
the measured drug response data from cell lines are typically
noisy and sometimes biased for certain drugs. Notably, cancer cell
lines have their own lineage origins, but many existing methods
train their models without distinguishing specific types of cell
lines. For example, for the drugs whose targets are predominantly
mutated in solid tumors, training a prediction model using both
hematopoietic cell lines and cell lines with solid tumor origins
may reduce the power, when compared to the models trained
using only the latter type of cell lines. There are many factors that
may influence the accuracy of prediction models for drug
response. It is important to use the input from a number of
informative molecules with potential contributing roles rather
than a few targeted genes.

In this work, we developed a deep-learning approach for
drug response prediction based on deep regenerative models.
By applying the variational autoencoder (VAE) framework, we
generated representative models for >1000 cell lines using their
baseline expression profile and trained prediction models for
drug response based on the latent representation of the baseline
expression profiles. Rigorous quality assessment and validation
were implemented, including cross-validation, multiple repli-
cations, and cross-panel evaluation. Because the models were
built on a baseline gene expression profile, they are widely
applicable. We thus applied the models to large cohorts such as
the TCGA pan-cancer samples with gene expression profiles
and conducted association tests to infer various drug–molecule
associations, including somatic mutations, copy number var-
iants (CNVs), gene expression, and drug-pathway associations.

The results revealed the landscape of molecular features in
association with drug response in 33 cancer types that were
beyond the information obtained by using the typical cell line
models.

Results
Our imputation pipeline and analysis consist of three major
components (Fig. 1): a deep regenerative model for the repre-
sentation of the baseline expression of cell lines used in CCLE and
GDSC projects (Fig. 1A, C), a regression model to impute drug
response using the measured IC50 data from CCLE and GDSC
(Fig. 1B), and validations and applications of our approach to
TCGA and other clinical datasets (Fig. 1E). First, we used the
baseline gene expression data to build the VAE models, resulting
in a compressed representation of the samples in the low-
dimensional latent space, which consisted of latent vectors. Sec-
ond, we utilized the latent vectors as the exposure variables and
trained regression models to predict drug response using the
observed data from CCLE and GDSC. These predictive models
were achieved by employing an Elastic Net strategy (VAE model
followed by Elastic Net, or VAEN) and we did it for each mea-
sured compound. Conceptually, the observed (measured) drug
response can be decomposed into the expression-regulated
component (EReX, following the naming system of a previous
work14), the component by other explanatory elements (e.g.,
genetics variants, methylation, microRNA, and lncRNA), and the
component due to uncertainty (e.g., batch effect and experiment
conditions) (Fig. 1D). The component that VAEN and its peers
can estimate is EReX, and theoretically EReX remains the same
for each drug regardless of the measurement platforms or pre-
diction methods.

VAE model resembles cell line lineages. The original cell lines
from the CCLE and GDSC projects represented a wide spectrum
of cell line lineages, such as the epithelial, mesenchymal, and
hematopoietic background. In our VAE model, we included 1100
cell lines from 19 tissues of origin, with each tissue being required
to have at least 20 cell lines. We also filtered for genes that were
most variably expressed across cell lines to build the VAE models
(n= 6163). A parameter sweep was conducted to determine
several key parameters that would affect the resultant models,
including the latent size, learning rate, batch effect, and the
number of epochs. We used the loss between the original data and
reconstructed data to evaluate the fitted model. As shown in
Supplementary Fig. 1, we selected a latent size 100, learning rate
0.0005, batch size 100, and epoch times 100 to build our models,
as the loss by these parameter settings was among the minimum.
The resultant latent vectors were on a dimension of 100 latent
vectors × 1100 cell lines. We applied t-Distributed Stochastic
Neighbor Embedding (t-SNE)15 to represent the data and
observed major clusters organized by cell lineages. As shown in
Fig. 1C, cell lines of hematopoietic and lymphoid tissue origin,
fibroblast, skin, stomach, and breast could form distinct clusters.
However, we did not observe a cluster significantly associated
with any drug.

VAEN prediction models. The VAE model itself was fitted to
achieve a compressed representation of the input data but it was
not tailored toward a better prediction of drug response. Unlike
the traditional principal component analysis (PCA), the com-
pressed representation from VAE is not unique. With the same
input matrix, there could be numerous matrices to faithfully
represent the input data, each of which might be slightly different
from others and individually serve better to one or some drugs
than the other drugs. Hence, we generated 100 VAE models to
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build a pool for the following drug response imputation. For each
drug, we applied an Elastic Net (EN) strategy using the latent
vectors from each VAE model to train the VAEN prediction
models. We used a fixed alpha of 0.5 and conducted fivefold
cross-validation to select lambda. We then evaluated the selected
latent vectors (i.e., those with nonzero coefficients from the EN

model) using tenfold cross-validation by a standard multivariate
linear regression. The average coefficient of determination R2 in
the holdout samples was used to measure the model efficiency.
Among the 100 VAE models (i.e., 100 latent matrices), the one
with the highest average holdout R2 was selected for each drug in
the following analyses.
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We tested several strategies to preprocess the original gene
expression data before inputting them into the VAE models.
Specifically, we tested (1) z-score normalization of each feature
across samples and shrinking each feature to the [0,1] range
(hereafter shortened as Z01); (2) z-score normalization of all
genes for each sample (ZS); and (3) rank-based inverse normal
transformation (Rank). We also tested using the sigmoid
activation function or the ReLU activation function in VAE,
resulting in six types of VAE models. We applied tSNE to
visualize the compressed latent matrices. As shown in Supple-
mentary Fig. 2, all six types of VAE models could resemble the
original cell lineage groups. For each type of VAE compression,
we then trained Elastic Net regression models to predict drug
response. Because we generated 100 VAENs for each type of VAE
compression and each drug, we next used the top ten VAENs for
each drug with the highest average holdout R2 to evaluate the
model stability. As shown in Supplementary Table 1, we found
that VAE models using the sigmoid activation had a relatively
high correlation, indicating the predictions were stable and
robust. We also found that Rank and ZS-based normalization
generated high correlation than Z01-based normalization. Con-
sequently, we used the rank-based transformation and the
sigmoid activation for the VAE part. Using the final VAEN
models, the self-prediction accuracy for 24 CCLE compounds,
measured by Pearson correlation coefficient (PCC), ranged
between 0.38 (LBW242) and 0.77 (Irinotecan). For the 251
GDSC compounds, the self-prediction accuracy ranged between
0.26 (Avagacestat) and 0.82 (AZ628), with 203/251 (80.88%)
compounds having PCC >0.5 (Fig. 2A).

We next used the 14 drugs measured by both CCLE and GDSC
to evaluate the prediction results. We found that the correlation
between CCLE IC50 and GDSC IC50 (PCC ranged between 0.10 in
erlotinib and 0.58 in PF2341066) was not as strong as that
between CCLE ActArea and GDSC LN_IC50 (PCC ranged
between 0.17 in PD-0332991 and 0.75 in nilotinib). Therefore,
we used CCLE ActArea to represent the drug response. In the
comparison of the predicted drug response among the cell lines,
we found a positive correlation between the observed and
predicted drug response (Fig. 2B). When a drug showed a
high consistent drug response between CCLE and GDSC (e.g.,
PCC (nilotinib)= 0.75 between the observed drug response in
CCLE and in GDSC among the 227 cell lines), it also displayed a
trend toward a high consistency in the predicted data (PCC
(nilotinib)= 0.8 for predicted drug response). Notably, for each
drug, the VAE models selected for response imputation differed
in the CCLE prediction model and in the GDSC prediction
model. Because different VAE models are projected in different

spaces with inconsistent conformation, it is mathematically
challenging to obtain a highly correlated prediction. The results
in Fig. 2B indicated that our models are reproducible across study
panels. Strikingly, the predicted response to each drug using the
CCLE model and the GDSC model had an even higher
correlation than the observed response. As aforementioned
(Fig. 1D), EReX is the component that can be explained by the
transcriptome. Thus, the results in Fig. 2B indicated that our
models based on the low-dimensional representation of gene
expression achieved a high performance to estimate EReX. A
similar positive trend was observed when we applied the models
to TCGA data. The drugs having high consistency in the original
CCLE and GDSC projects tended to have high consistency among
the predicted drug response (using the models trained by CCLE
and GDSC, respectively) in cancer samples (Fig. 2C). An example
of such correlations (CCLE name: 17-AAG; GDSC name:
tanespimycin) is shown in Fig. 2D, while results for all drugs
are provided in Supplementary Fig. 3. Specifically, when we
compared the predicted drug response in each cancer type using
the fitted CCLE and GDSC models, we found 50.65% (234/462)
of cancer–drug pairs had a correlation >0.5. All drugs showed a
significant correlation (P < 0.05/462= 1.08 × 10−4 following the
Bonferroni method) in ≥20 cancer types (Fig. 2E). The drugs that
had low consistency in TCGA, such as AZD0530, erlotinib,
lapatinib, and PD-0332991, were among those having the weakest
consistency in the originally observed drug response.

To compare with standard methods, we also used the raw
expression of the 6163 genes, instead of VAE compression, to
train prediction models following the same Elastic Net strategy
(hereafter named the gene+ EN model). Similar strategies have
been reported previously5,16, representing a generalized
signature-based method. In addition, we employed the strategy
to use the canonical PCA to compress genes (i.e., linear
compression) followed by the same Elastic Net-based regression
models (named PCA+ EN). As shown in Supplementary Fig. 4,
although the in-sample PCC was higher for both PCA+ EN and
gene+ EN than those from our VAEN models, the cross-panel
validation showed much weaker correlations in the TCGA
samples. This indicated that the gene+ EN model suffered from
severe overfitting rates. The PCA+ EN models showed better
cross-panel correlations but they were still worse than VAEN
models for most drugs.

Imputed drug response in CCLE cell lines and TCGA cancer
samples. As aforementioned, the cell lines in the VAE models
represented groups of epithelial, mesenchymal, and hemato-
poietic origins. We found that for some drugs, e.g., BRAF

Fig. 1 Illustration of the workflow. A The variational autoencoder (VAE) models. Conv convolution, SD standard deviation. B The pipeline to train
regression models for drug response. CV cross-validation. C t-SNE plot showing the distribution of cell lines with origins using their transcriptome profiles.
D Decomposition of the observed (measured) drug response. EReX expression-regulated component. E Illustration of the cell lines and cancer types with
measured and imputed drug response using CCLE. x axis indicates cell line index or TCGA cancer sample index. The red bars indicated the cell lines (set 1)
that had measured drug response for each of the 24 compounds. The predicted matrix indicated the cell lines with imputed drug response (set 2, pink). The
imputed matrix indicated all cell lines had imputed drug response (set 3, pink). For the TCGA samples, pink bars indicated that the samples had predicted
drug response based on the A-model and the orange bards indicated that the samples had predicted drug response based on the S-model. The vertical gray
lines split the samples into 33 cancer types. The order of these cancer types is as below: ACC adrenocortical carcinoma, BLCA bladder urothelial
carcinoma, BRCA breast invasive carcinoma, CESC cervical and endocervical cancers, CHOL cholangiocarcinoma, COAD colon adenocarcinoma, DLBC
lymphoid neoplasm diffuse large B-cell lymphoma, ESCA esophageal carcinoma, GBM glioblastoma multiforme, HNSC head and neck squamous cell
carcinoma, KICH kidney chromophobe, KIRC kidney renal clear cell carcinoma, KIRP kidney renal papillary cell carcinoma, LAML acute myeloid leukemia,
LGG brain lower grade glioma, LIHC liver hepatocellular carcinoma, LUAD lung adenocarcinoma,LUSC lung squamous cell carcinoma, MESO
mesothelioma, OV ovarian serous cystadenocarcinoma, PAAD pancreatic adenocarcinoma, PCPG pheochromocytoma and paraganglioma, PRAD prostate
adenocarcinoma, READ rectum adenocarcinoma, SARC sarcoma, SKCM skin cutaneous melanoma, STAD stomach adenocarcinoma, TGCT testicular germ
cell tumors, THCA thyroid carcinoma, THYM thymoma, UCEC uterine corpus endometrial carcinoma, UCS uterine carcinosarcoma, UVM uveal melanoma.
LAML and THCA had all their response predicted based on the A-model (pink).
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inhibitors, cell lines with solid tumor origin showed different
responses from hematopoietic cell lines. Therefore, for each drug,
we trained two models, one using all cell lines (named A-model)
and the other using all but hematopoietic cell lines (named S-
model, S denotes solid tumor). Among the 24 CCLE drugs, we
found four drugs (AZD0530, RAF265, TKI258, and ZD-6474)
showed improved average holdout R2 when they were trained by
using solid cell lines only, while PLX4720 received both increased
self PCC and average holdout R2 (Supplementary Fig. 5).

Accordingly, when imputing drug response in TCGA samples, we
examined both models for these drugs in 30 out of the 33 cancer
types (excluding three immune-related cancer: LAML, DLBC,
and THYM) (Fig. 1E). The full names of all cancer types are
available in Fig. 1.

We applied our well-trained and evaluated VAEN models to all
CCLE cell lines (n= 1100) and TCGA samples (33 cancer types,
n= 10,459). We predicted the drug response for each sample for
each of the 24 CCLE compounds and each of the 251 GDSC

Fig. 2 Evaluation of the model efficiency. A Distribution of in-sample Pearson correlation coefficient (PCC) for all drugs. The four panels presented the
performance of drugs that are unique to CCLE (n= 10, yellow panel), unique to GDSC (n= 237, light-blue panel), shared drugs in CCLE (n= 14, green
panel), and shared drugs in GDSC (n= 14, blue panel). B Evaluation of the 14 drugs shared between the CCLE and GDSC panels. x axis: PCC values of the
observed drug response between CCLE and GDSC. y axis: PCC of the predicted drug response between CCLE and GDSC (using set 2, see main text).
C Evaluation of the 14 shared drugs using the TCGA cancer data. x axis: PCC of the observed drug response between CCLE and GDSC. y axis: PCC of the
drug response of TCGA samples (n= 10,459) predicted using the CCLE models and the GDSC models. D Demonstration of the observed and predicted
drug response using an example of a shared compound 17-AAG (also called tanespimycin in GDSC). DR drug response, r Pearson correlation coefficient.
E Evaluation of the predicted drug response in TCGA using the CCLE models and GDSC models. For each of the 14 shared drugs (x axis), we calculated the
PCC and the P value of the predicted drug response using CCLE data and GDSC data in each of the 33 cancer types. The P value corresponds to the
significance levels of correlations. y axis shows the –log10(P) of the PCC in 33 cancer types. On x axis, compounds were ordered by the average –log10(P)
of the 33 cancer types. Each box shows the interquartile range (IQR between Q1 and Q3) for the corresponding set. The central mark (horizontal line)
shows the median. The upper whisker extends from the hinge to the largest value no further than Q3+ 1.5 × IQR and the lower whisker extends from the
hinge to the smallest value at most Q1−1.5 × IQR. For each box, all 33 values are shown as dots.
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compounds. Here, we used CCLE to demonstrate the model
performance. There were three drug-response profile sets for each
compound: the observed response in a limited number of cell
lines (~500, set 1, red bars in Fig. 1E), the predicted response in
the same cell lines as in set 1 (set 2, pink bars with the same
occupancy as the red bars in Fig. 1E), and the imputed response
in all cell lines (set 3, n= 1100, pink bars spanning all cell lines,

Fig. 1E). As shown in Fig. 3A, the predicted drug response is
similar to the original data. Some compounds, such as 17-AAG,
irinotecan, paclitaxel, PD-0325901, and topotecan, had a
relatively wider range of response, whereas other compounds
(e.g., AEW541, erlotinib, Nutlin-3, and PLX4720) had a narrow
distribution. Associations that were previously reported between
genomic signatures and drug response using the observed data
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(set 1) were well-reserved in the predicted drug response in both
sets 2 and 3. For example, BRAF was significantly sensitive to
two BRAF inhibitors and two MEK inhibitors in all three
drug-response profiling sets: AZD6244 (P(set 1)= 9.81 × 10−9,
P(set 2)= 6.88 × 10−10, P(set 3)= 1.08 × 10−14), PD-0325901
(P(set 1)= 2.41 × 10−7, P(set 2)= 2.61 × 10−8, P(set 3)= 2.07 ×
10−16), PLX4720 (P(set 1)= 8.55 × 10−6, P(set 2)= 1.36 × 10−8,
P(set 3)= 1.08 × 10−11), and RAF265 (P(set 1)= 6.00 × 10−5,
P(set 2)= 3.82 × 10−6, P(set 3)= 1.21 × 10−4) (Supplementary
Fig. 6). A previously reported interaction effect between BRAF
mutations and EGFR expression17 was also replicated. We fitted
regression functions following Yresponse ~XBRAF+XEGFR+XBRAF ×
XEGFR, where XBRAF indicated whether a sample harbored a BRAF
mutation and XEGFR was a factor with three levels indicating group
information of a sample defined by EGFR gene expression (the lower
quarter (Q25), the middle half (Q25-75), and the higher quarter of
samples (Q75) ordered by increasing EGFR expression). We found
an increased EGFR expression led to a reduced response to BRAF
inhibitors in BRAF mutant samples but not in BRAF wild-type
samples, consistent with previous studies that EGFR activation
enhances resistance to BRAF inhibitors18. Such a conditional
association was confirmed in all three sets of drug responses to all
four compounds with which BRAF showed association (Supple-
mentary Fig. 7).

We defined the top 5% TCGA samples that had the strongest
predicted drug response using the CCLE model as the sensitive
group and the 5% samples that had the weakest predicted drug
response as the insensitive group (Fig. 3B). Of note, in CCLE, we
used ActArea as the measurement of drug response. ActArea had
a negative relationship with IC50 (i.e., a low IC50 means a high
ActArea and high sensitivity). In GDSC, we used -LN(IC50) as the
measurement of drug response, and thus, the predicted values
had the same trend as ActArea, i.e., a high predicted value
indicates a high sensitivity. We then conducted an enrichment
analysis of the samples from each cancer type in the sensitive or
the insensitive groups (Fisher’s exact test). As shown in Fig. 3C,

enrichment patterns with both sensitive and insensitive groups
were observed for each cancer type. For example, HNSC samples
were enriched in the erlotinib-sensitive group, COAD in
AZD6244 and PD-0325901, and SKCM in PLX4720 and
RAF265 groups. In GDSC, we observed that SKCM was enriched
with sensitive samples to multiple MAPK inhibitors, including
dabrafenib, PD-0325901, PLX4720, refametinib, selumetinib, and
trametinib. Due to space limitation, we only showed inhibitors to
ERK MAPK signaling and EGFR signaling, and the 14 shared
compounds between CCLE and GDSC in Fig. 3F, while the full
list is provided in Supplementary Fig. 8. We took PLX4720 (a Raf
kinase B inhibitor) as an example here. As shown in Fig. 3D
(predicted ActArea of TCGA samples using the CCLE model)
and 3E (predicted -LN(IC50) of TCGA samples using the GDSC
model), there was a high proportion of samples with sensitivity to
PLX4720 in SKCM (CCLE: 96.20%; GDSC: 97.01%) and UVM
(CCLE: 98.75%; GDSC: 98.75%). All these enrichment patterns
were replicated by both CCLE and GDSC models. Further
investigation of cell lineage and cancer types versus drug response
also revealed patterns that were consistent with previous reports19

(Supplementary Information and Supplementary Fig. 9).

Replication of associations between compounds and their
targets in TCGA. Further validation using the drugs with well-
annotated targets confirmed the high quality of the predicted
drug response. These included lapatinib, MET inhibitors (crizo-
tinib/PF2341066, foretinib, and PHA665752), BRAF inhibitors
(PLX4720 and RAF265), and several MEK inhibitors. As shown
in Fig. 4A, the predicted response to lapatinib (ERBB2 inhibitor) had
a strongly significant association with HER2 immunohistochemistry
status in TCGA-BRCA using the CCLE model (P= 2.60 × 10−19) as
well as using the GDSC model (P= 2.52 × 10−9). In CCLE, two
MET inhibitors were measured (PF2341066 and PHA665752), both
of which showed significant association with increasing MET
expression (P= 9.84 × 10−11 for PF2341066 and P= 1.75 × 10−4 for
PHA665752, Fig. 4E) in TCGA-LUAD. The predicted response to

Fig. 3 Distribution of predicted drug response across 33 cancer types. A Distribution of the observed and predicted drug response in CCLE. For each
drug, the sample size for CCLE observed drug response (DR) and CCLE predicted DR is the same: n (17-AAG)= 454, n (AEW541)= 454, n (AZD0530)=
455, n (AZD6244)= 454, n (erlotinib)= 454, n (irinotecan)= 286, n (L-685458)= 442, n (lapatinib)= 455, n (LBW242)= 454, n (nilotinib)= 375,
n (Nutlin-3)= 455, n (paclitaxel)= 454, n (panobinostat)= 451, n (PD-0325901)= 455, n (PD-0332991)= 388, n (PF2341066)= 455, n (PHA665752)=
454, n (PLX4720)= 447, n (RAF265)= 412, n (sorafenib)= 454, n (TAE684)= 455, n (TKI258)= 455, n (topotecan)= 455, n (ZD-6474)= 447. The
number of samples for TCGA predicted DR is n= 10,459 for all drugs. Each box shows the interquartile range (IQR between Q1 and Q3) for the
corresponding set. The central mark (horizontal line) shows the median and the whiskers show the rest of the distribution based on IQR (Q1−1.5 × IQR, Q3
+ 1.5 × IQR). Data outside of this range are considered outliers and represented by dark dots. B Definition of sensitive and insensitive samples for each drug,
using PLX4720 as an example. The x axis is the predicted drug response, and the y axis is the number of samples. C Enrichment test results of the sensitive
or insensitive samples in each of the 30 cancer types (excluding three immune-related cancer types: DLBC, LAML, and THYM) using the CCLE drugs. For
each cell, the top-left triangle shows the sensitive trend (in red), and the bottom right triangle shows the insensitive trend (in blue), with the color
proportional to the P value (the legend is the same as in F and is shown at the bottom of F). In each cell, a P value for the enrichment of sensitive samples
was obtained by a Fisher’s exact test by building a 2 × 2 table using two categorical variables: variable 1: whether a sample belongs to the corresponding
cancer type and variable 2: whether a sample is sensitive to the corresponding drug (defined as the top 5% samples of all cancer types ordered by
decreasing response to the corresponding drug). The P value is shown on the top-left corner if it is <0.05 (nominal significant threshold). Similarly, a P value
for the enrichment of insensitive samples was also obtained by a Fisher’s exact test by building a 2 × 2 table using the following categorical variables: variable
1: whether a sample belongs to the corresponding cancer type and variable 2: whether a sample is insensitive to the corresponding drug (defined as the
bottom 5% samples of all cancer types ordered by decreasing response to the corresponding drug). The P value is shown on the right-bottom corner if it is
<0.05. D, E Demonstration of the proportion of sensitive samples (on the right, red) and insensitive samples (on the left, blue) in response to each drug
(PLX4720 as the example on the plot) using the CCLE samples (D) and the GDSC samples (E). In the back-to-back plots in both D and E, the x axis is the
proportion of the samples being sensitive (the right part) or insensitive (the left part). F Enrichment test results of the sensitive or insensitive samples in
each of the 30 cancer types (excluding three immune-related cancer types: DLBC, LAML, and THYM) using representative GDSC drugs. The P values for
sensitive samples and insensitive samples were similarly calculated as in (C) for CCLE drugs. Due to space limitation, we showed only those drugs that
target on the ERK MAPK signaling pathway and EGFR signaling pathway. Drugs labeled by the vertical red bar were annotated to the ERK MAPK signaling
pathway; drugs labeled by the vertical cyan bar annotated to the EGFR signaling pathway; drugs labeled by the vertical green bar included the remaining
drugs of the 14 shared drugs between CCLE and GDSC after excluding those already being labeled in the ERK/MAPK or EGFR signaling pathways.
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Fig. 4 Validation using TCGA data. A Comparison of predicted response to lapatinib in different subtypes of TCGA-BRCA as defined using HER2
immunohistochemistry status (nNegative= 562, nEquivocal= 179, nPositive= 164). The P value was obtained by fitting a linear regression model with the
predicted response as the outcome variable and the sample status as the predictive variable (negative samples labeled as 0, equivocal samples labeled as 1,
and positive samples labeled as 2). The predictive variable is considered as numerical to measure the increasing trend among the three groups. B Survival
analysis of TCGA-STAD samples treated with 5-fluorouracil. C Survival analysis of TCGA-BRCA samples treated with paclitaxel. The P values in (B) and
(C) were from a log-rank test comparing two groups of samples defined by the predicted response to the corresponding drug (HR: high response, greater
than the median; LR: low response). D Comparison of predicted response to Paclitaxel in TCGA-BRCA samples stratified by response status. The P value
was from a two-sided t test by comparing the disease group (n= 50, including samples annotated as clinical progressive disease (n= 35) and samples as
stable disease (n= 15)) and the non-disease group (n= 109, including samples annotated as partial response (n= 14) and samples as complete response
(n= 95)). E Association of predicted response to two MET inhibitors (PF2341066 and PHA665752) with MET amplification (top panel) or MET expression
(bottom panel) using CCLE models. In the top panel, a two-sided t test was conducted to compare the predicted response in LUAD samples with MET gain
(n= 17, for both the cases of PF2341066 and PHA665752) and other LUAD samples (n= 498, for both the cases of PF2341066 and PHA665752). In the
bottom panel, samples were grouped into three groups based on MET expression: Q25 (n= 129, the lower quartile of all samples ordered by increasing
MET expression), Q25_75 (n= 257, the middle half of samples), and Q75 (n= 129, the upper quartile). F Association of predicted response to three MET
inhibitors (crizotinib (also known as PF2341066), PHA665752, and foretinib (only tested in GDSC)], with MET amplification (top panel) or MET
expression (bottom panel) using GDSC models. In the top panel, a two-sided t test was conducted for LUAD samples with MET gain (n= 17) and other
LUAD samples (n= 498) and in the bottom panel, a linear regression model was fit for three groups nQ25= 129, nQ25_75= 257, and nQ75= 129, as in (E).
G Validation using previously reported gene signatures to AZD6244, erlotinib, and AZD0530. The Normalized Enrichment Score (NES) and P values were
obtained from Gene Set Enrichment Analysis (GSEA) implemented by the R package fgsea (1.16.0). In all boxplots (A, D, E), each box shows the
interquartile range (IQR between Q1 and Q3) for the corresponding set. The central mark (horizontal line) shows the median and the whiskers show the
rest of the distribution based on IQR (Q1−1.5 × IQR, Q3+ 1.5 × IQR).
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these two compounds was also significantly higher in LUAD samples
with MET amplification than other LUAD samples. In GDSC, three
MET inhibitors were measured (PF2341066, known as crizotinib in
GDSC, foretinib, and PHA665752). The predicted response to each
of these compounds was also significantly associated with MET
expression or MET amplification (Fig. 4F). For MEK and BRAF
inhibitors, we examined the mutation status of EGFR, KRAS, HRAS,
NRAS, and BRAF with these compounds (Supplementary Fig. 10).
Overall, samples with mutant EGFR/KRAS/HRAS/NRAS/BRAF ten-
ded to have increased sensitivity to the corresponding kinase inhi-
bitors in most cancer types, although some of the association did not
reach significance (e.g., EGFR with erlotinib in LUAD, P= 0.16 by
A-model and P= 0.046 by S-model). This is likely due to the com-
plex tumor microenvironment and confounding factors such as co-
occurrence of mutations, CNVs, and other omics-level complications.

In addition, some TCGA samples have recorded treatment
history, such as paclitaxel in BRCA and 5-fluorouracil in STAD20.
We conducted survival analyses of these samples by stratifying
the samples using the predicted response. As shown in Fig. 4B, for
STAD samples who were treated with 5-fluorouracil, the
subgroup with a high predicted response to the drug had a
significantly better survival outcome (P= 0.0023) than that with
low predicted response. BRCA samples treated with paclitaxel
showed marginal significance (P= 0.20, Fig. 4C), although the
group annotated with complete or partial response had
significantly higher response than the group with stable or
clinical progressive disease (P= 0.03, Fig. 4D).

Validation using gene expression signatures. To further validate
the imputed drug response, we collected previously reported gene
signatures for drugs. To examine the association between the gene
expression of these signature genes and our imputed drug
response, we fitted linear regression models. For each gene in
each cancer type, we split samples into three groups according to
the gene expression: samples with gene expression in the lower
quarter of the expression range (Q25), samples in the middle half
of the expression range (Q25–Q75), and samples in the higher
quarter of the expression range (Q75). We fitted linear regression
models by taking the group variable as a quantitative type such
that the model evaluated the trend of the drug response changing
across the three groups of samples (similar to a trend test instead
of ANOVA). t-values were obtained from the model and were
combined across all cancer types by t ¼ PK

i¼0 ti=
ffiffiffiffi
K

p
, following

Stouffer’s Z-score method, where K is the total number of cancer
types. With these t-values, we conducted GSEA to validate pre-
viously reported signatures. For the example of AZD6244, a
previous study reported an 18-gene signature with sensitivity to
AZD624412. In our results, these genes were significantly asso-
ciated with the response to AZD6244 (P= 1.44 × 10−4, Nor-
malized Enrichment Score (NES)= 2.30, Fig. 4G, Gene Set
Enrichment Analysis (GSEA)). Specifically, member genes such
as ETV4, ETV5, DUSP6, and SPRY2 were all among the 50 most
positively associated genes with AZD6244 sensitivity. EMT genes
were previously reported as predictors for erlotinib response21. In
our results, we found a significant association between EMT
genes with the predicted erlotinib response (P= 1.56 × 10−4 and
NES= 3.07 for the CCLE model; P= 2.88 × 10−4 and NES= 2.80
for GDSC model). For AZD0530 (also known as saracatinib, a Src
and Abl inhibitor), we found a previously reported gene set for
SRC signaling22, which consisted of eight genes, was significantly
associated with the drug in CCLE (P= 3.89 × 10−4, NES= 1.91)
and marginally significant by the GDSC model (P= 0.059, NES=
1.48). It is worth noting that, although the drug response profiles
were initially imputed using gene expression data at the low-
dimensional space (i.e., latent vectors), there were several steps

during the data encoding and decoding processes, including
nonlinear transformations. Thus, there were no data circulation
problems.

Validation using independent data. To validate the VAEN
models, we collected six datasets with treatment and survival
annotations. The first dataset (GSE33072) was part of the
Biomarker-integrated Approaches of Targeted Therapy for Lung
Cancer Elimination (BATTLE) trial21. We used the subset of
samples treated with erlotinib and predicted their response to the
drug using our VAEN models. As shown in Fig. 5A, by stratifying
the samples using the median value of imputed drug response, we
found a significant difference between the group with high
response and the group with low response. Note that erlotinib
was profiled by both the CCLE and GDSC models. This result was
confirmed by using both the CCLE A-model (P= 0.0047) and the
CCLE S-model (P= 0.0088). Using GDSC models, the high-
response group showed marginally significant improvement in
GDSC A-model (P= 0.058) and GDSC S-model (P= 0.056). As a
comparison, the PCA+ EN models failed to distinguish the
samples. The gene+ EN model trained using GDSC showed
nominal significance but the model using CCLE failed to show
the difference (Supplementary Fig. 11). The second dataset
(GSE32989) included 68 non-small cell lung cancer (NSCLC) cell
lines plus one normal lung cell line, all of which were profiled
using the Illumina HumanWG-6 v2.0 expression beadchip21.
Note that this dataset was generated by the microarray platform.
However, because our model used rank-based normalization, we
could conveniently transform the data and made predictions
using the trained VAEN models. These cell lines have been stu-
died to develop a 74-gene EMT signature. We repeated the ori-
ginal study and separated these cell lines into an epithelial-like
subgroup (n= 44) and a mesenchymal-like subgroup (n= 25).
As shown in Fig. 5B, the predicted response to erlotinib from all
four VAEN models (CCLE A-model: P= 6.88 × 10−11, CCLE S-
model: P= 3.61 × 10−8, GDSC A-model: P= 6.59 × 10−5, and
GDSC S-model: P= 4.39 × 10−4) showed a significant difference
between the two subgroups and the epithelial-like group had
favored response, which was consistent with literature reports.
The third dataset (GSE65185) included 24 melanoma patients
carrying BRAF V600 who were treated with vemurafenib23. We
used the predicted response to PLX4720 to distinguish the sam-
ples by the median value. As shown in Fig. 5, those samples with
higher response to PLX4720 had better survival status (P= 0.031
using CCLE S-model and P= 0.0049 using GDSC A-model,
Fig. 5C, E). Note that in CCLE, the S-model had both higher in-
sample PCC and average holdout R2 and was selected for the
prediction, whereas in GDSC, the A-model showed better per-
formance and was selected. In contrast, both the PCA+ EN
model and the gene+ EN model failed to distinguish samples
with different survival statuses (Supplementary Fig. 12). In
addition, this dataset included three parental cell lines (mela-
noma) and their derived resistant cell lines after treated with PLX
or AZD compounds. Our results showed the parental cell lines
had significantly higher response than the paired resistant lines
(P= 8.032 × 10−4 by CCLE S-model, P= 0.017 by GDSC A-
model, paired t test, Fig. 5D, F). We also collected three datasets
for breast cancer patients with annotated pathological complete
response (pCR) status24–26. pCR is defined as the status with the
disappearance of all invasive cancer in breast cancer patients after
completion of neoadjuvant chemotherapy. Achievement of pCR
had been reported with favorable survival27. Our predicted
response to paclitaxel was significantly higher in pCR group
compared to the group with residual disease (RD) in all three
datasets (Fig. 5G), indicating that the pCR group indeed had a
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better response to the chemotherapy compound. Collectively,
these results proved that our predicted drug response was reliable
in clinical data.

Replication of drug similarity. For the 24 CCLE compounds, we
did a hierarchical clustering using the three sets of drug response
(ActArea) in CCLE and the predicted drug response in TCGA
samples. Figure 6A shows consistent patterns of clusters for four
EGFR inhibitors (AZD0530, erlotinib, lapatinib, and ZD-6474/
vandetanib), two MEK inhibitors (AZD6244 and PD-0325901),
two Raf kinase B inhibitors (PLX4720 and RAF265), and three
cytotoxic compounds (paclitaxel, irinotecan, and topotecan) in
four clustering analyses.

Drugs with cytotoxicity were found associated with a higher
tumor mutational burden (TMB). In CCLE, the cytotoxic
compounds (irinotecan and topotecan) had similar drug response
profiles and were often clustered together. We examined the TMB,
measured as a log-transformed number of mutations per sample, in
TCGA samples. For each drug in each cancer type, we defined the
top quantile (25%) most responsive samples as responders to the
drug and the remaining samples as non-responders. By comparing
TMB in responders with non-responders in each cancer type
(Wilcoxon rank-sum test, two-sided), we found that in multiple
cancer types, responders to cytotoxic compounds (irinotecan and
topotecan) tended to have an increased TMB (Fig. 6B). This trend
was observed in seven cancer types (BLCA, BRCA, COAD, ESCA,
PAAD, and UCS) (Fig. 6C, D).

Fig. 5 Validation using independent datasets. A Survival analysis of samples from GSE33072 who were treated with erlotinib. The P value was from a log-
rank test comparing two groups of samples defined by the predicted response to erlotinib (HR: high response, greater than the median; LR: low response).
B Comparison of predicted response to erlotinib in cell lines stratified into epithelial-like (n= 44) or mesenchymal-like (n= 25) group using the dataset
GSE32989. The P value was obtained by using a two-sided t test. C, E Survival analysis of melanoma samples treated with vemurafenib (data from
GSE65185). These samples were carriers with BRAF V600 mutations. The P value was from a log-rank test comparing two groups of samples defined by
the predicted response to PLX4720 (HR: high response, greater than the median; LR: low response). D, F Comparison of predicted response to PLX4720 in
parental cell lines and in derived resistant cell lines. G Comparison of predicted response to paclitaxel between BRCA subgroups with pCR (pathological
complete response, npCR= 122 in GSE25055, npCR= 27 in GSE32646, and npCR= 56 in GSE20194) and RD (residual disease, also called nCR or non-pCR
in GSE32646 (nRD= 188 in GSE25055, nnCR= 88 in GSE32646, nRD= 222 in GSE20194). In all panels, the P value was obtained by using a two-sided t test.
In the boxplots (B, G), each box shows the interquartile range (IQR between Q1 and Q3) for the corresponding set. The central mark (horizontal line)
shows the median and the dots show the rest of the distribution based on IQR [Q1−1.5 × IQR, Q3+ 1.5 × IQR].
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For GDSC compounds, there were 22 major groups plus
unclassified ones. Compounds that were associated with abnor-
mal TMB were found from different groups (Fig. 6E). The
compounds associated with an increased TMB (nominal P < 0.01
and difference of TMB > 0.2) were statistically enriched with
DNA replication (P= 8.88 × 10−6) and cell cycle (P= 0.019)
(Fig. 6G). On the contrary, the compounds associated with a
decreased TMB (nominal P < 0.01 and difference <−0.2) were
statistically enriched with EGFR signaling (P= 8.84 × 10−3) and
PI3K/mTOR signaling (P= 0.037) (Fig. 6F).

Somatic mutations associated with imputed drug response. To
identify genomic signatures that were associated with the imputed
drug response, we conducted association analyses using multiple
omics data in TCGA. Through this analysis, we aimed to validate
the imputed drug response using the drugs with known targets
(e.g., kinase inhibitors) and also to reveal novel drug–gene asso-
ciations. For somatic mutations, we examined their potential
association with each drug in each cancer type using deleterious

single-nucleotide variants (SNVs). Moreover, considering that
some targeted drugs are quite specific on particular mutations in
kinase domains, we conducted the association test for mutation
clusters according to their locations in the protein sequence. We
split three cancer types into subtypes to avoid strong associations
due to subtype stratification: BRCA to four subtypes (basal-like,
Her2, luminal A, and luminal B)28, LGG to three subtypes (coc1,
coc2, and coc3)29, and THCA to two subtypes (Braf-like and Ras-
like)30 following the original marker publications of TCGA. A
total of ~3000 candidate genes from 33 cancer types (39 if con-
sidering subtypes: 30 main cancer types plus 4 BRCA subtypes, 3
LGG subtypes, and 2 THCA subtypes) were investigated for the
gene–drug association (required to have ≥10 mutations in at least
one cancer type). Notably, this analysis was conducted using
deleterious nonsynonymous SNVs. Benign nonsynonymous
SNVs and small insertions and deletions (indels) were excluded.
To control the false discovery rate, we conducted multiple test
corrections for each drug in each cancer. As a result, we observed
2343 sensitive gene–drug associations and 288 insensitive asso-
ciations for the 24 CCLE compounds (Benjamini–Hochberg (BH)

Fig. 6 Drug similarity. A Hierarchy clustering results of the 24 CCLE drugs using four sets of samples: the observed drug response (set 1), the predicted
drug response in cell lines with observed data (set 2), the predicted drug response in all 1100 cell lines (set 3), and the predicted drug response in all TCGA
cancer samples. B Heatmap showing the association patterns between each drug and the tumor mutation burden (TMB) in CCLE. In each cell, red indicates
a positive association (i.e., responders of the cancer type tended to have a high TMB), while blue indicates a negative association (i.e., responder tended to
have a low TMB). For each cell, a two-sided t test was conducted by comparing the log10(TMB) of samples from the group with high sensitivity (i.e.,
“responders”, defined as the top 25% samples ordered by decreasing predicted response to the corresponding drug) and the log10(TMB) of the remaining
75% samples. The color was determined by whether the sensitive group had a higher average TMB than the other group. C, D Demonstration of TMB
distribution in responders (the 25% samples with the highest response) and non-responders (the remaining 75% samples) using two cytotoxic drugs:
irinotecan (C) and topotecan (D). Each box shows the interquartile range (IQR between Q1 and Q3) for the corresponding set. The central mark (horizontal
line) shows the median and the dots show the rest of the distribution based on IQR (Q1−1.5 × IQR, Q3+ 1.5 × IQR). E Distribution of the association
between GDSC drugs and TMB. Because TMB varied dramatically across cancer types, we conducted the test within each cancer type. Each dot represents
a GDSC drug in a cancer type. The P value was similarly calculated as in (B). x axis is the log2 form of fold change (FC) defined as the average TMB of the
responder group over the average TMB of the nonresponder group. Y axis indicates –log10 form of the unadjusted P value (for plotting only). Red and blue
dots indicate significant associations (PBH < 0.05 and log2FC > 0.2). F, G Enrichment of drug classes in the group of drug-cancer type associations with
negative association patterns (blue dots in E) and with positive association patterns (red dots in E). The P values were obtained from a two-sided Fisher’s
exact test to assess whether a drug class was overrepresented with the negative/positive associations.
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adjusted P, or PBH, <0.05) (Fig. 7A). Among the genes whose
somatic mutations showed significant association with increased
drug response, we found several genes from the phosphoinositide
3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of
rapamycin (mTOR), i.e., the PAM pathway. They were FGFR3,
HRAS, KRAS, BRAF, NRAS, TP53, KIT, and NFE2L2 (Fig. 7B).
We also observed drug–gene associations that were consistent
with their known targets or pathways. For example, ARID1A,
which is part of the ATP-dependent chromatin remodeling
complex SNF/SWI, was associated with sensitivity to topotecan, a
DNA topoisomerase I inhibitor, in STAD (PBH= 1.68 × 10−3)
and nominally significant in UCEC (raw P= 0.016). FLT3 was
significantly associated with sorafenib in LAML (PBH= 2.03 × 10−5),
a multikinase inhibitor, including FLT3. Association test of
somatic mutations with GDSC compounds was also conducted
(Supplementary Fig. 13).

We examined the associations between mutation clusters and
drug response. We clustered mutations that were located within
five amino acids in the protein sequence of a transcript and
applied the Wilcoxon test on the predicted drug response in
samples with the mutations in a cluster versus the samples
without any mutations (wild type). The samples with mutations
outside of the investigated cluster were not included in this test,
so the wild-type samples were free of mutations in the same
gene. In total, we identified 723 cluster–cancer–drug associations
(PBH < 0.2, after excluding associations involved in long genes,
defined as those with >200 k bases), involving 116 clusters from
32 unique genes in 24 cancer types (Fig. 7C). For example, the
aforementioned gene FLT3 had a mutation cluster at 594–605
that was associated with Sorafenib (PBH= 5.18 × 10−3). Other
clusters were also observed in EGFR, FGFR3, IDH1 (R132),
PIK3CA, SF3B1, SPOP, and VHL (Fig. 7C).

Fig. 7 Association of somatic mutations with drug response. A Volcano plot of drug–gene association. The genomic signature was defined using the
mutation status of each gene. Each dot represents the statistics of the association status of a gene in a cancer type with a drug. The P value was obtained
from a two-sided Wilcoxon test comparing the predicted response in samples with the mutant gene (i.e., those with deleterious missense SNVs or
nonsense SNVs) (MT) and samples with wild-type gene (WT). The former group was required to have at least ten samples. x axis: the difference of the
average drug response in the samples harboring the mutated gene from that in the wild samples, y axis: −log10(P) where the unadjusted p-value was used
for plotting. Red (difference >0) and blue (difference <0) dots indicate significant associations (BH-adjusted P < 0.05). B Heatmap showing the significant
drug–gene associations in each cancer type. Due to space limitation, only associations with adjusted PBH < 0.005 for positive association or PBH < 0.01 for
negative association were plotted. Associations involving the gene TP53 were also excluded from plotting. The color and size of the circle in each cell is
proportional to -log10(p) (note that we used the unadjusted P value for plotting). C Heatmap showing the significant drug–gene associations determined by
mutation clusters. Each cell represents a mutation cluster of a specific gene in association with a specific drug. The P value was obtained from a two-sided
Wilcoxon test comparing the predicted response in samples with mutations in a mutation cluster (i.e., only deleterious missense SNVs or nonsense SNVs
considered) and samples with wild-type gene. Similarly, the former group was required to have at least ten samples to allow more tested clusters.
D Distribution of the response to drug AZD6244 in the samples with two mutation clusters of Ras genes. Only the cases that had five or more mutated
samples are shown. Each box shows the interquartile range (IQR between Q1 and Q3) for the corresponding set. The central mark (horizontal line) shows
the median. E Association of drug response with copy number gain. F Association of drug response with copy number gain, focusing on chromosome
17 where ERBB2 was located.
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Mutations on the G12/G13 positions in Ras proteins, including
HRAS, KRAS, and NRAS, showed increased sensitivity to MEK
inhibitors AZD6244 and PD-0325901 in multiple cancer types
(BLCA, CESC, HNSC, PAAD, THYM, UCEC, and UCS)
(Fig. 7D). However, we also observed some indifferent distribu-
tions, such as KRAS in COAD, LUAD, and READ. This might be
due to cancer sample heterogeneity such as subtypes, the co-
occurrence of mutations, and confounders such as CNVs.

The gene–drug association due to copy number changes
occurred in several chromosomes, especially chromosomes 3, 7,
8, 10, 12, and 17 (Fig. 7E). Amplification of a region on
chromosome 7, where EGFR was located, was mainly associated
with kinase inhibitors in LGG, such as 17-AAG (P= 1.10 × 10−8)
and RAF265 (P= 9.76 × 10−13). Chromosome 8, where the proto-
oncogene MYC was located, was mainly amplified in BRCA
and was associated with multiple drugs (P(17-AAG)= 1.76 ×
10−9, P(AZD0530)= 4.62 × 10−11, P(irinotecan)= 3.26 × 10−13,
P(TAE684)= 1.80 × 10−16, P(RAF265)= 3.67 × 10−21). Notably,
the EGFR inhibitor, lapatinib, was significantly associated with
ERBB2 amplification (chr17, P= 2.30 × 10−27), which further
confirmed the accuracy of our VAEN models. As for CNV loss,
deletion of CDKN2A/CDKN2B on chromosome 9 was associated
with multiple drugs in multiple cancer types. On chromosome 16, a
region with the gene WWOX deletion in ESCA was significantly
associated with multiple drugs (P(AZD6244)= 5.89 × 10−18,
P(paclitaxel)= 3.31 × 10−17, P(PD-0325901)= 4.85 × 10−18, and
P(TAE684)= 1.43 × 10−15). Notably, this region represents one
of the most common chromosomal fragile sites and deletion of
WWOX frequently occurs in multiple cancer types31. Hence, the
driver event that leads to the strong association with drug response
remains unclear.

Drug-response profile associated with tumor microenviron-
ment. Drug response in cancer patients is much more complicated
than in cell lines due to the complex tumor microenvironment,
tissue composition (e.g., purity and ploidy), and co-occurrence and
interaction among different levels of alterations. Tumor tissues are
surrounded and infiltrated with cells that are collectively known as
tumor microenvironment (TME). TME consists of extracellular
matrix (ECM), fibroblast, neuroendocrine cells, adipose cells, and
immune and inflammatory cells and is involved in nearly every step
of tumorigenesis32. Interestingly, we found that several of these
TME cells were associated with drug response. First, cancer-
associated fibroblast (CAF) genes and extracellular matrix (ECM)
genes were negatively associated with lapatinib sensitivity, i.e.,
increased CAF/ECM gene expression was associated with insensi-
tivity to lapatinib. Although lapatinib is a HER2 inhibitor and
mainly used in the BRCA HER2+ subtype, this negative correla-
tion trend was observed in many cancer types (23 out of the 39
cancer types (30 main cancer types plus 4 BRCA subtypes, 3 LGG
subtypes, and 2 THCA subtypes), P < 0.05 and NES < 0, GSEA). It
stays in line with previous observations that response to the HER2
inhibitor is dependent on the microenvironment of tumor
samples33, where stroma genes34 and CAF genes played roles in
resistance to both chemo- and targeted therapies35. In our work, we
found that many stroma genes were among the most negatively
associated genes with lapatinib sensitivity. The two EMT-related
genes, ZEB1 (t=−16.71) and SNAI2 (t=−13.94), were both
negatively associated with the response to lapatinib.

Second, we explored 18 genes that were previously reported
with the predictive power of T-cell inflammation36 (referred as
TIS genes). As shown in Fig. 8, several drugs showed strong
positive associations with TIS genes (irinotecan, nilotinib,
PHA665752, PLX4720, and RAF265), while other drugs (e.g.,
AZD6244 and PD-0325901) showed no association with TIS

genes. Because the expression of TIS genes is highly indicative of
immune-hot or immune-cold status, these results suggested that
the samples with a high level of T-cell inflammation (e.g.,
immune-hot) might be more sensitive to PLX4720 and RAF265.
This is also in line with the previous reports17. Notably, these
results for studying tumor microenvironment are hypothetical
without validation and future work is needed to warrant the
validity of the results.

In addition to the tumor microenvironment, tumor hetero-
geneity is also a factor to influences drug response. In examining
the mutation–drug association, we noticed in some cases, the
results were inconsistent with a priori knowledge of drug targets.
For example, BRAF mutations showed no association with BRAF
inhibitor PLX4720 in SKCM (P= 0.11, two-sided t test between
the BRAF V600E carriers and the samples without mutations in
BRAF/HRAS/KRAS/NRAS) or THCA (P= 0.94, same as above).
As reported previously17, in cell lines, response to BRAF
inhibitors was found influenced by EGFR expression (Supple-
mentary Fig. 5). In cancer samples, we found the confounding
effect of EGFR itself was not significant. However, when we
repeated the analysis using pathway activities, we found that the
activities of the related EGFR signaling pathways, instead of
EGFR expression, were better predictors for explaining the
association between BRAF mutations and response to BRAF
inhibitors. To this end, we calculated the activity of 1054
pathways from MSigDB37 using ssGSEA38 and fit regression
models with an interaction factor between BRAF mutation status
and categorized pathway activities: Yresponse ~Xmut+Xpathway+
Xmut ×Xpathway, where Xmut is a categorical variable indicating
whether a sample harboring the BRAF V600 mutations and
Xpathway is a categorical variable with three levels of pathway
activity (Q25, Q25-75, and Q75, the same definition as for EGFR
expression). For example, in SKCM, when the activity of
“downregulation of ERBB2 ERBB3 signaling pathway” was
included in the model, the interaction item was statistically
significant (P= 1.79 × 10−5) and only in the Q25 subgroup,
where the pathway showed low activity, that group with mutant
BRAF was sensitive to BRAF inhibitors (P= 4.92 × 10−3)
(Fig. 8C). In THCA, response to PLX4720 was driven by the
cancer subtypes—the Braf-like subtype had a significantly higher
response than the Ras-like subtype (A-model: p= 2.72 × 10−16; S-
model: P= 8.31 × 10−4; two-sided t test, Fig. 8D). The Braf-like
subtype included THCA samples that harbored BRAF V600
mutations, other BRAF mutations, and RET fusion, while the
Ras-like subtype included the samples with mutations in H/K/
NRAS genes. Thus, the predicted response is consistent with the
BRAF mutation status. Nonetheless, EGFR related pathways still
played roles in the response, such as EGFR downregulation (P=
1.42 × 10−5). In the Q25 subgroup where the pathway EGFR
downregulation had low activity, the samples with mutant BRAF
were significantly sensitive to BRAF inhibitors (P= 0.048). These
results revealed that drug response in cancer samples is much
more complex than in cell line models and many confounding
factors could impact the response.

Discussion
In this study, we have built a variational autoencoder model to
regenerate gene expression profiles in > 1000 cell lines. The latent
vectors, the internal principal variables, were used to build pre-
diction models for a total of 261 compounds from two pharma-
cogenomics projects (24 CCLE and 251 GDSC compounds). The
imputed drug response profiles in 33 cancer types, augmented
with comprehensive multi-omics data from TCGA, provided a
useful resource to further explore genomic signatures that are
associated with drug response.
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Our methods have many advantages and the results have made
it possible to explore the drug response of cancer samples on a
much fine scale. First, although the previous research has made
great efforts to reveal genomic signatures associated with drug
sensitivity and resistance, these results were mainly based on cell
line models. An accurate prediction of drug response profile in
cancer samples would enable the recapitalization of known sig-
natures and novel signatures, whereas the latter ones have been
often missed due to cell line models or sample size limitation.
Second, our analysis of the classification of compounds based on
their response profiles revealed unique groups and signatures.
Although it has been previously noticed that targeting com-
pounds designed for particular genes or mutations and com-
pounds with general cytotoxicity belong to two generally different
groups of drugs, our examination of TCGA data identified the
association between drugs and TMB, which was infeasible from
cell line models. Third, we explored many aspects to identify

genomic signatures in a pan-cancer fashion, including somatic
mutations, somatic CNVs, and gene expression. The positive
associations between AZD6244 and the previously reported 18-
gene signature proved the robustness and accuracy of our results.
The negative associations between CAF genes were insightful for
breast cancer therapeutic selection. In addition, we found several
drugs were positively associated with increased tumor inflam-
mation scores. This is promising, indicating that cancer samples
with higher TIS (i.e., tend to be immune-hot) are more sensitive
to those drugs, especially those BRAF inhibitors.

Our method also has several technical advantages. First, we
trained 100 autoencoders to represent the original cell lines. This
process provided a pool of latent vectors (i.e., predictors) for drug
response. Notably, overfitting has been a widely recognized
challenge in many machine learning and deep-learning applica-
tions. To overcome the potential overfitting problem, we used the
out-sample PCC to select prediction models. We actually

Fig. 8 Drug response with tumor heterogeneity. A Distribution of gene t-scores for all drugs, with stroma genes, highlighted. Stroma genes were found to
be negatively associated with several EGFR inhibitors, such as AZD6244, lapatinib, and PD-0325901. B Distribution of gene t-scores with Tumor
Inflammation Score (TIS) signatures. C Investigation of the association between BRAF mutations and PLX4720 response in SKCM. SKCM samples with
BRAF V600 mutations (labeled as “Mut” on the left panel, nMut= 157) did not show a significantly high response to PLX4720 compared to other SKCM
samples that had no mutations in BRAF, HRAS, KRAS, NRAS, or EGFR (labeled as “WT” on the left panel, nWT= 59). However, this was explained using the
“downregulation of ERBB2 ERBB3 signaling” pathway activity. In the subgroup where this pathway showed low activity (the lower quartile of all samples
ordered by increasing pathway activity, labeled Q25, nQ25= 91, including nMut= 48 for samples with BRAF V600 and nWT= 43 for samples without BRAF
V600), samples with BRAF mutations had a higher response, implying that the pathway had a confounding effect on the response. In the middle subgroup
(Q25_75), there are nQ25_75= 180 samples with nMut= 80 samples harboring BRAF V600 mutations and nWT= 100 samples harboring not. In the higher
quantile subgroup (Q75), there are nQ75= 91, including nMut= 29 for samples with BRAF V600 and nWT= 62. A two-sided t test was conducted in each
subgroup to compare the predicted response between the samples with the BRAF V600 mutation (nMut) and samples without BRAF V600 mutations
(nWT). D Investigation of the association between BRAF mutations and PLX4720 response in THCA. THCA samples were grouped into three subtypes
according to the original publication: Braf-like (n= 271, where n= 224 harboring BRAF V600 mutations and n= 47 not), Ras-like (n= 67, where all having
not the BRAF V600 mutation), and others (n= 89, where 63 harboring BRAF V600 mutations and n= 26 not). When stratifying the samples by the EGFR
downregulation pathway activity, the samples in each subgroup were as below: nMut= 42 and nWT= 81 in the Q25 subgroup, nMut= 170 and nWT= 74 in
the Q25_75 subgroup, and nMut= 75 and nWT= 48 in the Q75 subgroup. In each subgroup, a two-sided t test was conducted to compare the response
between the samples with BRAF V600 mutations (nMut) and samples without (nWT). In the boxplots (C, D), each box shows the interquartile range (IQR
between Q1 and Q3) for the corresponding set. The central mark (horizontal line) shows the median.
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attempted to use the canonical measurements such as accuracy
and F1 score. We found that using the out-sample R2 had the
least overfitting, as evaluated by using the 14 shared drugs in
TCGA samples that were predicted by CCLE models and by
GDSC models (data now shown). Notably, we trained the model
using the data within one panel only (e.g., CCLE), and then
evaluated the performance (e.g., tenfold cross-validation) using
the data in the same panel. Thus, a model trained on one panel is
independent of that trained on the other panel, even for the 14
drugs that were profiled by both the CCLE and GDSC panels.
Second, we explored different normalization methods and acti-
vation functions to identify the model with the best performance
yet with high generalizability. With rank-based normalization of
gene expression data, our method can be applied to a wide variety
of datasets, including microarray-based data, as shown in Fig. 5.
Third, we have applied several approaches to identify genomic
signatures that are associated with each drug.

There were several limitations of our work. For some drugs, we
were unable to improve the prediction accuracy no matter how
the models were fit, such as LBW242 (Fig. 2). For some other
drugs, VAE based models could not compete with PCA-based
models regarding the model-fitting parameters (in-sample PCC
and holdout R2). Two example drugs are 17-AAG and Paclitaxel.
However, with limited data for validation, the PCA-based model
for paclitaxel did not perform well to separate the pCR group
from the non-pCR group. Therefore, future validation would be
required to assess these prediction models. Furthermore, for some
drugs, although we observed high prediction accuracy in the cell
line models, their response in cancer samples was heterogeneous.
We could explain the association between BRAF mutations and
BRAF inhibitor PLX4720. However, for other drugs, such as
erlotinib, we only observed a marginally significant association
between EGFR and erlotinib, and we were not able to figure out
the potential confounding factors. This could be due to mutations
in other genes or other forms of mutations (e.g., CNV, methy-
lation, or post-transcriptional regulation), which could compli-
cate the response to erlotinib. Therefore, investigation of drug
response in cancer samples is much more complicated and
requires consideration of many contexture factors and covariates.

Methods
Data collection and preprocessing
Baseline data. The Cancer Cell Line Encyclopedia (CCLE)1 project has assessed
gene expression in 1156 cell lines (version July 18, 2018). We downloaded RPKM
values from RNA-sequencing (RNA-seq) data. Each cell line has its original cell
lineage. The pool of tested cell lines could be matched to a wide range of cancer
types, including both solid cancers and hematopoietic and lymphoid tissues. We
excluded the lineages that had less than 20 samples. Our working dataset included
1100 cell lines from 19 cell lineages, which were used to build the VAE models. We
selected the most variably expressed genes to construct the VAE models. Note that
the same gene expression data in those cell lines were used for drug response
prediction for CCLE and GDSC drugs.

Drug-response data. The CCLE project assessed the pharmacological profiles of 24
anticancer compounds in 504 cell lines1. We downloaded data from the CCLE
(https://portals.broadinstitute.org/ccle) data portal, including mutations and drug
response measured by the activity area (named “ActArea”). The GDSC project
assessed drug response for 251 compounds using the same pool of cell lines. We
downloaded the fitted dose-response file from the GDSC website (https://www.
cancerrxgene.org/, Release 7.0, version 17.3, access date: August 29, 2018). In this
study, we used the log-transformed IC50 (LN_IC50) in the Elastic Net models,
although AUC can also be used for the same purpose.

TCGA multi-omics data. All data were downloaded from the UCSC Cancer Gen-
ome Browser Xena39. We retrieved the TCGA samples that had somatic mutations,
CNVs, and mRNA expression data. The cancer type abbreviations are listed in
Fig. 1. For SNVs and indels, we downloaded the Unified Ensemble “MC3” gene-
level mutation calls from Xena. We defined deleterious missense SNVs as those
annotated as deleterious by SIFT and damaging by PolyPhen, which was provided
by the MC3 annotations. CNV data were obtained from the Affymetrix 6.0 plat-
form and had 5 levels to represent different CNV status: deep deletion (CN=−2),

copy loss (CN=−1), neutral (CN= 0), copy gain (CN= 1), and amplification
(CN= 2). mRNA expression data from RNA-seq were downloaded in the form of
log2(RPKM+ 1) value.

Preprocess of gene expression data. All RNA-seq data were transformed using the
log2(RPKM+ 1) format. Transformation based on rank-reversed percentile was
used to preprocess the RNA-seq and microarray data.

VAEN model training. We implemented a three-layer VAE model, with the input
layer, encoder, and latent layer, decoder, and output layer (Fig. 1A). The python
library for deep learning, Keras (version 2.1.6)40 with a TensorFlow backend
(version 1.0.1)41, was used to implement the VAE. The encoder is a process to
encode the input vector with a mean vector and a standard deviation vector,
respectively, followed by a nonlinear transformation, e.g., the rectified linear units
(ReLU) or the Sigmoid activation (see main text). We defined the loss function as
the mean squared error plus the KL loss. As for VAEN, a regression model was
trained for each drug following a Elastic Net42 strategy with 5-fold cross-validation
to select lambda. We used the average R2 in the holdout samples to select the
model. CCLE models were trained using CCLE drug response and CCLE genomics
data. GDSC models were trained using GDSC drug response and CCLE
genomics data.

Association test. Drug–gene associations based on somatic mutations were
assessed using Wilcoxon rank-sum test by comparing the predicted drug response
in the mutant samples versus the wild-type samples for each gene. Drug–gene
associations based on gene expression were assessed using the Pearson correlation
coefficient.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The original CCLE, GDSC, and TCGA data are publicly available datasets. CCLE data
were downloaded from https://portals.broadinstitute.org/ccle. GDSC data were
downloaded from the GDSC Website https://www.cancerrxgene.org/. TCGA data were
downloaded from UCSC Cancer Genome Browser Xena39. The intermediate files as well
as the result files are available at https://github.com/bsml320/VAEN/ and https://bioinfo.
uth.edu/VAEN/. All relevant data are available from the authors. Source data are
provided with this paper.

Code availability
All source codes are available at https://github.com/bsml320/VAEN/.
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