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Optimal Translation Along a Circular 
mRNA
Yoram Zarai1, Alexander Ovseevich2 & Michael Margaliot3

The ribosome flow model on a ring (RFMR) is a deterministic model for ribosome flow along a 
circularized mRNA. We derive a new spectral representation for the optimal steady-state production 
rate and the corresponding optimal steady-state ribosomal density in the RFMR. This representation 
has several important advantages. First, it provides a simple and numerically stable algorithm for 
determining the optimal values even in very long rings. Second, it enables efficient computation 
of the sensitivity of the optimal production rate to small changes in the transition rates along the 
mRNA. Third, it implies that the optimal steady-state production rate is a strictly concave function of 
the transition rates. Maximizing the optimal steady-state production rate with respect to the rates 
under an affine constraint on the rates thus becomes a convex optimization problem that admits a 
unique solution. This solution can be determined numerically using highly efficient algorithms. This 
optimization problem is important, for example, when re-engineering heterologous genes in a host 
organism. We describe the implications of our results to this and other aspects of translation.

Gene expression is the process by which the information encoded in a gene is used to synthesize a functional gene 
product. Two main stages of this process are transcription in which the information in the DNA of a specific gene 
is copied into a messenger RNA (mRNA) molecule and translation. The latter includes three phases: (1) initiation: 
complex macro-molecules called ribosomes bind to the mRNA; (2) elongation: the ribosomes unidirectionally 
decode each codon into the corresponding amino-acid that is delivered to the awaiting ribosome by transfer 
RNA (tRNA) molecules; and (3) termination: the ribosome detaches from the mRNA, the amino-acid sequence 
is released, folded and becomes a functional protein1. The output rate of ribosomes from the mRNA, which is also 
the rate in which proteins are generated, is called the protein translation rate or production rate.

Translation occurs in all living organisms, and under almost all conditions, to generate the macromolecular 
machinery for life. Developing a deeper understanding of translation has important implications in numerous sci-
entific disciplines including medicine, evolutionary biology, biotechnology, and synthetic biology. Computational 
models of translation are essential in order to better understand this complex, dynamical and tightly-regulated 
process. Such models can also aid in integrating and analyzing the rapidly increasing experimental findings 
related to translation (see, e.g refs 2–9).

Computational models of translation describe the dynamical flow of ribosomes along the mRNA molecule, 
and include parameters that encode the various factors affecting the codon decoding rates and the binding of 
ribosomes. Some of these models provide a framework for both rigorous analysis and Monte Carlo simulations, 
thus promoting a better understanding of the way the parameters, and other factors, affect the dynamical and 
steady-state behavior of translation. Several computational models have been suggested based on different para-
digms for example kinetics-based ordinary differential equations (see, e.g ref. 10), Petri nets11, and probabilistic 
Boolean networks12. For more details, see the survey papers9, 13.

A standard mathematical model for ribosome flow is the totally asymmetric simple exclusion process (TASEP)14, 15.  
In this model, particles hop unidirectionally along an ordered lattice of L sites. Each site can be either free or 
occupied by a particle, and a particle can only hop to a free site. This simple exclusion principle models particles 
that have “volume” and thus cannot overtake one other. The hops are stochastic, and the rate of hoping from site 
i to site i + 1 is denoted by γi. TASEP has two standard configurations. In TASEP with open boundary conditions 
the two sides of the lattice are connected to two particle reservoirs, and a particle can hop to [from] the first 
[last] site of the lattice at a rate α [β]. The average flow through the lattice converges to a steady-state value that 
depends on the parameters α, γ1, …, γL−1, β. Analysis of TASEP with open boundary conditions is non trivial, 
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and closed-form results have been obtained mainly for the homogeneous TASEP (HTASEP), i.e. for the case 
where all the γis are assumed to be equal.

In TASEP with periodic boundary conditions the chain is closed, and a particle that hops from the last site 
returns to the first one. Thus, here the lattice is a ring, and the total number of particles along the ring is conserved.

TASEP has become a fundamental model in non-equilibrium statistical mechanics, and has been applied to 
model numerous natural and artificial processes such as traffic flow, communication networks, and pedestrian 
dynamics16. In the context of translation, the lattice models the mRNA molecule, the particles are ribosomes, and 
simple exclusion means that a ribosome cannot overtake a ribosome in front of it.

The ribosome flow model (RFM)17 is a continuous-time deterministic model for the unidirectional flow of 
“material” along an open chain of n consecutive compartments (or sites). The RFM can be derived via a dynamic 
mean-field approximation of TASEP with open boundary conditions [16, section 4.9.7] [18, p. R345]. In a RFM 
with n sites, the state variable xi(t) ∈ [0, 1], i = 1, …, n, describes the normalized amount of “material” (or den-
sity) at site i at time t, where xi(t) = 1 [xi(t) = 0] indicates that site i is completely full [completely empty] at time 
t. In the RFM, the two sides of the chain are connected to two particle reservoirs. A parameter λi > 0, i = 0, …, 
n, controls the transition rate from site i to site i + 1, where λ0 [λn] controls the initiation [exit] rate (see Fig. 1).

In the ribosome flow model on a ring (RFMR)18, 19 the particles exiting the last site reenter the first site. This 
is a dynamic mean-field approximation of TASEP with periodic boundary conditions. The RFMR admits a first 
integral, i.e. a quantity that is preserved along the dynamics, as the total amount of material is conserved. Both 
the RFM and RFMR are cooperative dynamical systems20, but their dynamical properties are quite different19.

Through simultaneous interactions with the cap-binding protein eIF4E and the poly(A)-binding protein 
PABP, the eukaryotic initiation factor eIF4G is able to bridge the two ends of the mRNA21, 22. This suggests that a 
large fraction of the ribosomes that complete translating the mRNA re-initiate. The RFMR is a good approxima-
tion of the translation dynamics in these circularized mRNAs. In addition, circular RNA forms (which includes 
covalent RNA interactions) appear in all domains of life23–30, and it was recently suggested that circular RNAs can 
be translated in eukaryotes28–30.

It was shown in ref. 19 that the RFMR admits a unique steady-state that depends on the initial total density 
along the ring and the transition rates, but not on the distribution of the total density among the sites. For a fixed 
set of transition rates, all trajectories emanating from initial conditions with the same total density converge to 
the unique steady-state. Ref. 31 considered the ribosomal density along a circular mRNA that maximizes the 
steady-state production rate using the RFMR. It was shown that given any arbitrary set of positive transition 
rates, there exists a unique optimal total density (the same is true for TASEP with periodic boundary condition32). 
However, this unique optimum was not given explicitly, other than under certain special symmetry conditions 
on the rates.

We note that the ribosomal density along the mRNA molecule plays a critical role in regulating gene expres-
sion, and specifically in determining protein production rates33, 34. For example, it was suggested in ref. 34 that the 
cell tightly regulates ribosomal densities in order to maintain protein concentrations at different growth temper-
atures. At higher temperatures, the ribosomal density along the mRNA “improves” in order to increase protein 
production rates (as protein stability decreases with temperature).

The ribosomal density also affects different fundamental intracellular phenomena. Traffic james, abortions, 
and collisions may form if the ribosomal density is very high35. It may also contribute to co-translational misfold-
ing of proteins, which then requires additional resources in order to degrade the degenerated proteins36–38. On 
the other hand, a very low ribosomal density may lead to high degradation rate of mRNA molecules39–42. Thus, 
analyzing the ribosomal density that maximizes the production rate is critical in understanding how cells evolved 
to adapt and thrive in a changing environment.

Here we derive a new spectral representation (SR) for the optimal steady-state production rate and the corre-
sponding steady-state ribosomal density in the RFMR. This SR has several important advantages. First, it provides 
a simple and numerically stable way to compute the optimal values even in very long rings. Second, it enables 
efficient computation of the sensitivity of the optimal steady-state production rate to small changes in the transi-
tion rates. This sensitivity analysis may find important applications in synthetic biology where a crucial problem 
is to determine the codons that are the most “important” in terms of their effect on the production rate. Also, 
sensitivity analysis is important because of the inherent stochasticity of the bio-molecular processes in the cell 
(see, e.g ref. 43).

Third, the SR implies that the optimal steady-state production rate is a strictly concave function of the tran-
sition rates. Thus, the problem of maximizing the optimal steady-state production rate with respect to the rates 
becomes a convex optimization problem that admits a unique solution. Furthermore, this solution can be deter-
mined numerically using highly efficient algorithms.

Figure 1. The RFM models unidirectional flow along a chain of n sites. The state variable xi(t) ∈ [0, 1] represents 
the density at site i at time t. The parameter λi > 0 controls the transition rate from site i to site i + 1, with λ0 > 0 
[λn > 0] controlling the initiation [exit] rate. The output rate at time t is R(t) := λnxn(t).
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The remainder of this paper is organized as follows. The next two sub-sections briefly review the RFM and the 
RFMR. Section 2 describes our main results and their biological implications. Section 3 concludes and suggests 
several directions for further research. To increase the readability of this paper, the proofs of all the results are 
placed in the Appendix. We use standard notation. Vectors [matrices] are denoted by small [capital] letters. n is 
the set of vectors with n real coordinates. For a (column) vector ∈x n, xi is the ith entry of x, and x′ is the trans-
pose of x. Let  = ∈ > = …++ v v i n: { : 0, 1, , }n n

i , i.e. the set of all n-dimensional vectors with positive entries.

Ribosome Flow Model (RFM)
In an RFM with n sites, the state variable xi(t) ∈ [0, 1], i = 1, …, n, denotes the density at site i at time t, where 
xi(t) = 1 [xi(t) = 0] means that site i is completely full [empty] at time t. The n + 1 parameters λi > 0, i = 0, …, n, 
control the transition rate from site i to site i + 1. The RFM is a set of n first-order nonlinear ordinary differential 
equations describing the change in the amount of “material” in each site:

λ λ= − − − = …− − +x t x t x t x t x t i n( ) ( )(1 ( )) ( )(1 ( )), 1, , , (1)i i i i i i i1 1 1

where x0(t) := 1, xn+1(t) := 0, and xi is the change in the amount of material at site i at time t, i.e. =x t x t( ): ( )i
d
dt i , 

i = 1, …, n. Eq. (1) is a master equation: the change in density in site i is the flow from site i − 1 to site i minus the 
flow from site i to site i + 1. The first flow, that is, the input rate to site i is λi−1xi−1(t)(1 − xi(t)). This rate is propor-
tional to xi−1(t), i.e. it increases with the density at site i − 1, and to (1 − xi(t)), i.e. it decreases as site i becomes 
fuller. In particular, when site i is completely full, i.e. when xi(t) = 1, there is no flow into this site. This is reminis-
cent of the simple exclusion principle: the flow of particles into a site decreases as that site becomes fuller. Note 
that the maximal possible flow from site i − 1 to site i is λi−1. Similarly, the output rate from site i, which is also the 
input rate to site i + 1, is given by λixi(t)(1 − xi+1(t)). The output rate from the chain is R(t) := λnxn(t), that is, the 
flow out of the last site.

In the context of translation, the n-sites chain is the mRNA, xi(t) describes the ribosomal density at site i at 
time t, and R(t) describes the rate at which ribosomes leave the mRNA, which is also the rate at which the proteins 
are generated. Thus, R(t) is the protein translation rate or production rate at time t.

Since every state-variable models the density of ribosomes in a site, normalized such that a value zero [one] 
corresponds to a completely empty [full] site, the state space of the RFM is the n-dimensional unit cube Cn := [0, 
1]n. Let x(t, a) denote the solution of the RFM at time t for the initial condition x(0) = a. It has been shown in ref. 
44 (see also ref. 45) that for every a ∈ Cn this solution remains in Cn for all t ≥ 0, and that the RFM admits a glob-
ally asymptotically stable steady-state e ∈ int(Cn), i.e. =→∞x t a elim ( , )t  for all a ∈ Cn. The value e depends on the 
rates λ0, …, λn, but not on the initial condition x(0) = a. This means that if we simulate the RFM starting from any 
initial density of ribosomes on the mRNA the dynamics will always converge to the same steady-state (i.e., to the 
same final ribosome density along the mRNA). In particular, the production rate R(t) = λnxn(t) always converges 
to the steady-state value:

λ= .R e: (2)n n

A spectral representation of this steady-state value has been derived in ref. 46. Given a RFM with dimension n 
and rates λ0, …, λn, define a (n + 2) × (n + 2) Jacobi matrix
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Note that B is componentwise non-negative and irreducible, so it admits a Perron root μ > 0. It has been 
shown in ref. 46 that μ = R−1/2. This provides a way to compute the steady-state R in the RFM without simulating 
the dynamical equations of the RFM.

For more on the analysis of the RFM using tools from systems and control theory and the biological implica-
tions of this analysis, see refs 46–51. Recently, a network of RFMs, interconnected via a pool of “free” ribosomes, 
has been used to model and analyze competition for ribosomes in the cell52.

Ribosome Flow Model on a Ring (RFMR)
If we consider the RFM under the additional assumption that all the ribosomes leaving site n circulate back to 
site 1 then we obtain the RFMR (see Fig. 2). Just like the RFM, the RFMR is described by n nonlinear, first-order 
ordinary differential equations:
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The difference here with respect to (w.r.t.) the RFM is in the equations describing the change of material in 
sites 1 and n. Specifically, the flow out of site n is the flow into site 1. This model assumes perfect recycling (be it 
covalent or non-covalent), and provides a good approximation when a large fraction of the ribosomes are recy-
cled. Note that the RFMR can also be written succinctly as (1), but now with every index interpreted modulo n. 
In particular, λ0 [x0] is replaced by λn [xn].

Remark 1. It is clear from the cyclic topology of the RFMR that if we cyclically shift all the rates k times for some 
integer k > 1 then the model does not change.

In the RFMR the sum of the ribosomal densities along the ring at time t is given by

= + + .H x t x t x t( ( )): ( ) ( )n1

Let s denote this value at the initial time t = 0, i.e. s := H(x(0)). Since ribosomes that exit site n circulate back 
to site 1, H(t) is constant for all time, that is, H(x(t)) ≡ s for all t ≥ 0. The dynamics of the RFMR thus redistributes 
the particles between the sites, but without changing the sum of densities. In the context of translation, this means 
that the total number of ribosomes on the (circular) mRNA is conserved. We say that H(x(t)) is a first integral of 
the RFMR.

For s ∈ [0, n], the s level set of H is

= ∈ + + = .L y C y y s: { : }s
n

n1

This is the set of all possible ribosome density configurations with sum s. For example, the vectors of densities 
… ′s[ 0 0 0]  and … ′s s[ /2 /2 0 0]  both belong to Ls.

ref. 19 has shown that the RFMR is a strongly cooperative dynamical system, and that this implies that every 
level set Ls contains a unique steady-state λ λ= … ∈e e s C( , , , ) int ( )n

n
1 , and that a trajectory of the RFMR ema-

nating from any x(0) ∈ Ls converges to this steady-state. In particular, the production rate converges to a 
steady-state value R = R(s, λ1, …, λn).

Pick s ∈ [0, n], and a ∈ Ls. Consider the RFMR with x(0) = a. Let

ρ = s n: /

denote the average ribosomal density in the RFMR. At steady-state, i.e. for x = e the left-hand side of all the equa-
tions in (4) is zero, so
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and, since the sum of densities is conserved,

+ + = .e e sn1

Note that it follows from (5) that for any c > 0

λ λ λ λ… = …R s c c cR s( , , , ) ( , , , ), (6)n n1 1

i.e. if we multiply all the rates by a factor c > 0 then the steady-state production rate will also increase by the same 
factor c. This implies that the steady-state production rate R is positively homogeneous of order one w.r.t. the tran-
sition rates. There exists an extensive theory of such functions (see e.g ref. 53).

Given a set of transition rates, an interesting question is what ribosomal density maximizes the steady-state 
production rate in the RFMR? Indeed, s = 0 means zero production rate (as there are no ribosomes on the ring), 

Figure 2. The RFMR models unidirectional flow along a circular chain of n sites. The parameter λi > 0 controls 
the transition rate from site i to site i + 1.
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and so does s = n, as all the sites are completely full and the ribosomes cannot move forward. It was shown in ref. 31 
that for any arbitrary positive set of rates λ1, …, λn, there exists a unique sum of densities s* = s*(λ1, …, λn) (and 
thus a unique average density ρ* = s*/n) that maximizes the steady-state production rate. We denote the corre-
sponding optimal steady-state production rate by R* = R(s*(λ1, …, λn), λ1, …, λn), and the corresponding optimal 
steady-state density by e* = e(s*(λ1, …, λn), λ1, …, λn). This means that in order to maximize the steady-state pro-
duction rate (w.r.t. s), the mRNA must be initialized with a sum of densities s* (the exact distribution of this sum 
along the mRNA at time zero is not important). Initializing with either more or less than s* (i.e with ∑ >=

⁎x s(0)i
n

i1  
or with ∑ <=

⁎x s(0)i
n

i1 ) will decrease the steady-state production rate w.r.t. the one obtained when the circular 
mRNA is initialized with ∑ ==

⁎x s(0)i
n

i1 .
The results in ref. 31 also show that for the optimal value s*, the steady-state density satisfies:

∏ ∏= − .
= =

⁎ ⁎e e(1 )
(7)i

n

i
i

n

i
1 1

This can be explained as follows. If the sum of densities s is too small then the product ∏ = ei
n

i1  is also small and 
thus ∏ < ∏ −= =e e(1 )i

n
i i

n
i1 1 . This case is not optimal i.e. it does not maximizes R, as there are not enough ribo-

somes on the ring. If the sum of densities s is too large then a similar argument yields ∏ > ∏ −= =e e(1 )i
n

i i
n

i1 1 . This 
case is also not optimal, as there are too many ribosomes on the ring and this leads to “traffic jams” that reduce the 
production rate. The optimal scenario lies between these two cases and is characterized by (7).

Example 1. Figure 3 depicts R as a function of s for a RFMR with dimension n = 3 and rates λ1 = 0.7, λ2 = 1.6, and 
λ3 = 2.2. It may be seen that there exists a unique value s* = 1.4948 (all numerical results in this paper are to four 
digit accuracy) that maximizes R. Simulating the RFMR with this initial sum of densities (e.g., by setting 

= ′⁎ ⁎x s s(0) [ /2 0 /2]  or = ′⁎ ⁎ ⁎x s s s(0) [ /3 /3 /3] ) yields

= . . . ′⁎e [0 6878 0 3546 0 4524] ,

and λ= − = .⁎ ⁎ ⁎R e e(1 ) 0 31073 3 1 . Note that s* is close (but not equal) to 3/2, that is, one half of the maximal possi-
ble sum of densities. Note also that ∏ = ∏ − = .= =

⁎ ⁎e e(1 ) 0 1103i i i i1
3

1
3 .                □

Here, we present for the first time a spectral representation of the optimal steady-state production rate R* and 
the steady-state density e* in the non-homogeneous RFMR. We show that this representation has several advan-
tages. First, it provides an efficient and numerically stable algorithm for evaluating R* and e* (and thus s*) even 
for very large rings. This completely eliminates the need to simulate the RFMR dynamical equations for different 
values of s in order to determine the optimal values. Furthermore, the spectral representation allows to analyze 
the sensitivity of R* to small changes in the rates. This sensitivity analysis could be crucial for example in synthetic 
biology applications, where an important problem is to determine positions along the transcript that affect the 
production rate the most (these are not necessarily the positions of the slowest codons)54. Finally, we show that 
the spectral representation implies that R* is a strictly concave function of the rates. This means that the problem 
of maximizing R* w.r.t. the rates is a convex optimization problem. This problem thus admits a unique solution 
that can be efficiently determined numerically using algorithms that scale well with n.

It is important to note that in general the analysis results for the RFMR hold for any set of transition rates. This 
is in contrast to the analysis results for TASEP. Rigorous analysis of TASEP seems to be tractable only under the 
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Figure 3. Steady-state production rate R as a function of the (conserved) sum of ribosomal densities s ∈ [0, 3], 
for a RFMR with dimension n = 3 and transition rates λ1 = 0.7, λ2 = 1.6, and λ3 = 2.2.
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assumption that the internal hopping rates are all equal (i.e. the homogeneous case). In the context of translation, 
this models the very special case where all elongation rates are assumed to be equal.

The next section derives a spectral representation for e* and R*, and describes its implications.

Main Results
Spectral Representation. Consider a RFMR with dimension n > 2 and rates λ1, …, λn > 0. Define an n × n 
matrix
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Note that this is a periodic Jacobi matrix (see, e.g ref. 55).
Since A is symmetric, all its eigenvalues are real. Since A is (componentwise) non-negative and irreducible, it 

admits a unique maximal eigenvalue σ > 0 (called the Perron eigenvalue or Perron root), and a corresponding 
eigenvector ζ ∈ ++

n  (the Perron eigenvector)56.
Our first result provides a representation for the optimal steady-state in the RFMR using the spectral proper-

ties of the matrix A. In what follows, all indexes are interpreted modulo n. Recall that all the steady-state proper-
ties are invariant to any arbitrary cyclic shifts of the rates (see Remark 1), and that the proofs of all the results are 
placed in the Appendix.

Theorem 1. Consider a RFMR with dimension n and rates λ1, …, λn. Let σ > 0 ζ ∈ ++[ ]n  denote the Perron 
eigenvalue [eigenvector] of A in (8). Then the optimal values in the RFMR satisfy:

∑

σ
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Example 2. Consider a RFMR with dimension n = 3 and rates λ1 = 0.7, λ2 = 1.6, and λ3 = 2.2. The corresponding 
matrix A is:

=








. .
. .
. .








.A

0 1 1952 0 6742
1 1952 0 0 7906
0 6742 0 7906 0

The maximal eigenvalue of A is σ = 1.7940, and the corresponding eigenvector is

ζ = . . . ′.[0 6024 0 6219 0 5004]

Now (9) yields R* = 1.7940−2 = 0.3107, = .⁎e 0 68781 , = .⁎e 0 35462 , = .⁎e 0 45243 , and s* = 1.4948. This agrees of 
course with the results in Example 1.

Thm. 1 thus provides a spectral representation of the optimal values R*, e*, and s*. One application of this is 
that the optimal values can be calculated in a numerically stable manner using efficient algorithms for calcu-
lating the eigenvalues and eigenvectors of sparse matrices. For a survey of such algorithms see e.g ref. 57. The 
computation errors are of size O(nε), where n is the dimension of the matrix and ε is machine epsilon (approxi-
mately 10−16 for 64-bit arithmetic). Their time complexity is O(nc) with c a constant in the range2, 3, implying that 
they can be applied to very large matrices. For example, for matrices of dimension 10,000 × 10,000 the running 
times for computing all the eigenvalues and eigenvectors are approximately 20 minutes. Since we require only the 
Perron eigenvalue and eigenvector, better performance is possible using Krylov-subspace eigensolvers, such as 
ARPACK58, that also take advantage of sparsity, and offer to compute small, user-selected subsets of the spectrum.

Thm. 1 has several other interesting implications. Given a RFMR with rates λ1, …, λn, define a vector λ ∈ ++
n  

by λ λ=:1 2, λ λ λ λ= … =: , , n2 3 1. In other words, λ  is a 1-step cyclic shift of λ. Let ∈ ×P n n be a matrix of 
zeros, except for the super-diagonal and the (n, 1) entry that are all equal to 1. For example, for n = 4, 

=


















.P

0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0
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 Then P is a permutation matrix so that P′ = P−1, and λ λ= P . It is straightforward to show that λ λ= ′A PA P( ) ( ) , 
so A(λ) and λA( ) have the same spectral properties. Thus, Thm. 1 leads to the same steady-state results for both 
the original RFMR and its cyclic shift and this agrees with Remark 1.

In some special cases, the Perron eigenvalue and eigenvector of A may be known explicitly and then one can 
immediately determine the optimal steady-state in the corresponding RFMR. The next example demonstrates 
this.

Example 3. Consider a RFMR with homogeneous transition rates, i.e.

λ λ λ= = = : , (10)n c1

where λc denotes the common value of all the rates. Then it is straightforward to verify that A(λc, …, λc) admits a 
Perron eigenvalue σ λ= −2 c

1/2 and a corresponding eigenvector ζ = ′


[1 1 1] . Thm. 1 implies that R* = λc/4 and 
=⁎e 1/2i , i = 1, …, n. This result has already been proven in [31, Prop. 3] using a different approach.      □

Steady-State RFM as a Special Case of the Optimal Steady-State RFMR. Comparing the spectral 
representations for the RFMR and the RFM yields the following result. Consider a RFMR with dimension n, fixed 
rates λ1, …, λn−1, and λn → ∞. In this case, the matrix A(λ) in (8) converges to the matrix:

λ

λ λ

λ λ

λ λ

λ

















…

…

…

…

…

















.

−

− −

− −

−
−

−
−

−
−



0 0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0 0 (11)

n n

n

1
1/2

1
1/2

2
1/2

2
1/2

3
1/2

2
1/2

1
1/2

1
1/2

Comparing this with (3) and using Thm. 1 imply the following.

Corollary 1. Let = … ′⁎ ⁎ ⁎e e e[ ]n1  denote the optimal steady-state of a RFMR with dimension n and rates λ1, …, 
λn, where λn → ∞. Let = … −

 e e e[ ]n1 2  denote the steady-state of a RFM with dimension n − 2 and transition 
rates λ λ λ λ λ λ= = … =− −

  , , , n n0 1 1 2 2 1. Then = … ′−

⁎ ⁎ ⁎e e e e[ ]n2 3 1 .
In other words the steady-state of an RFM with arbitrary dimension m and arbitrary rates λ > 0i  can be 

derived from the steady-state of an RFMR with dimension n: = m + 2, rates λ λ= −


i i 1, i = 1, …, n − 1, λn → ∞, 
that is initialized with the optimal sum of densities s*. In this respect, the RFM is a kind of “open-boundaries” 
RFMR that is initialized with the optimal sum of densities.

This connection between the two models can be explained as follows. By (4), in an RFMR with λn → ∞, the 
steady-state density at site n will be zero, and at site 1 it will be one. Indeed, the transition rate from site n to site 1 
is infinite, so site n will be completely emptied and site 1 completely filled. This “disconnects” the ring at the link 
from site n to site 1. Furthermore, the completely full site 1 serves as a “source” to site 2 whereas the completely 
empty site n serves as a “sink” to site n − 1. The result is that sites 2, …, n − 1, of the RFMR become a RFM with 
dimension n − 2. The next example demonstrates this.

Example 4. Consider a RFMR with dimension n = 5, and rates λ1 = 0.8, λ2 = 0.6, λ3 = 0.4, λ4 = 0.7, and λ5 = 0.5. 
The optimal steady-state values are:

= . . . . . ′ = . .⁎ ⁎e R[0 4260 0 5831 0 5939 0 4019 0 4950] , 0 1421

For λ5 = 100, the optimal steady-state values are:

= . . . . . ′ = .⁎ ⁎e R[0 9440 0 7628 0 6087 0 2643 0 0320] , 0 1791,

for λ5 = 10,000, the optimal steady-state values are:

= . . . . . ′ = .⁎ ⁎e R[0 9942 0 7727 0 6100 0 2591 0 0031] , 0 1808,

and for λ5 = 1,000,000, they are:

= . . . . . ′ = . .⁎ ⁎e R[0 9994 0 7737 0 6102 0 2586 0 0003] , 0 1810 (12)

It may be observed that as λ5 increases, the optimal steady-state density at site 5 [site 1] decreases [increases] to 
zero [one]. On the other hand, for a RFM with dimension n = 3 and rates λ λ λ= . = . = .  0 8, 0 6, 0 40 1 2 , and λ = . 0 73 , 
the steady-state values are: = . . . ′e [0 7738 0 6102 0 2585] , and = .R 0 1810 (compare to (12)).        □

Sensitivity Analysis. Recall that given the transition rates λ1, …, λn, the RFMR admits a unique sum of 
densities s*(λ1, …, λn) for which the steady-state production rate is maximized. Maximizing the steady-state 
production rate is a standard goal in biotechnology, and since codons may be replaced by their synonyms, an 
important question in the context of the RFMR is: how will a change in the rates affect the maximal production 
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rate R*? Note that the effect here is compound, as changing the rates also changes the optimal sum of densities that 
yields the maximal production rate.

In this section, we analyze

φ λ λ
λ

λ λ… =
∂

∂
… = …⁎R i n( , , ): ( , , ), 1, , ,

(13)i n
i

n1 1

i.e. the sensitivity of the optimal steady-state production rate R* w.r.t. λi.
A relatively large value of φi indicates that a small change in λi will have a strong impact on the optimal 

steady-state production rate R*. In other words, the sensitivities indicate which rates are the most “important” in 
terms of their effect on R*. The results in Thm. 1 allow to compute the sensitivities using the spectral properties 
of the matrix A.

Proposition 1. The sensitivities satisfy:

φ
ζ ζ

σ λ ζ ζ
=

′
= … .+ i n

2
, 1, ,

(14)
i

i i

i

1
3 3/2

Equation (14) provides an efficient and numerically stable method to calculate the sensitivities for large-scale 
rings and arbitrary positive rates λis using standard algorithms for computing the eigenvalues and eigenvectors of 
periodic Jacobi matrices. Note that (14) implies that all the sensitivities are positive.

Example 5. Figure 4 depicts ln(φi), computed using (14), as a function of i for a RFMR with dimension n = 98 and 
rates λ1 = λ50 = 0.3 and λi = 1 for all other i. Here the maximal sensitivity is φ1 = φ50, and the sensitivities decrease 
as we move away from sites 1 and 50. This makes sense as the corresponding rates are the bottleneck rates in this 
example.

Equation (14) implies that

φ
φ

ζ ζ

ζ ζ

λ

λ
=











∈ …+

+

i j n, , {1, , },
(15)

i

j

i i

j j

j

i

1

1

3/2

that is, the ratio between any two sensitivities is determined by the corresponding Perron eigenvalue components 
and the corresponding rates. One may expect that the highest sensitivity will correspond to the minimal rate, but 
(15) shows that this is not necessarily so. The next example demonstrates this.

Example 6. Consider a RFMR with dimension n = 7 and rates:

λ = . . . . . . ′.[1 1 1 0 55 1 4 1 3 0 95 0 6]

In this case, R* = 0.2213. Using (14) yields the sensitivities:

φ = . . . . . . . ′.[0 0355 0 0288 0 0774 0 0129 0 0124 0 0298 0 0820]

1 10 20 30 40 50 60 70 80 90 98
-35

-30

-25

-20

-15

-10

-5

0

Figure 4. ln(φi) as a function of i for a RFMR with n = 98 and with rates λ1 = λ50 = 0.3 and λi = 1, for all other 
rates. Note that the maximal sensitivities are φ1, φ50, and that the sensitivities decrease as we move away from 
sites 1 and 50 (recall that the topology is circular).
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Note that although the minimum rate is λ3, the maximal sensitivity is φ7. This implies that increasing λ7 by some 
small value ε > 0 will increase R* more than the increase due to increasing any other rate by ε. For example, increas-
ing λ3 by 0.05 (and leaving all other rates unchanged) yields R* = 0.2248, while increasing λ7 by 0.05 instead (and 
leaving all other rates unchanged) yields R* = 0.2251.

The spectral approach can also be used to derive theoretical results on the sensitivities. The next three results 
demonstrate this.

Proposition 2. The sensitivities satisfy 0 < φi ≤ 1 for all i = 1, …, n.
This implies that an increase [decrease] in any of the rates by ε increases [decreases] the optimal steady-state 

production rate by no more than ε.

Proposition 3. Consider a RFMR with dimension n and homogeneous rates (10). Then

φ = = … .
n

i n1
4

, 1, ,i

This means that in the homogeneous case, all the sensitivities are equal. This is of course expected, as the circu-
lar topology of the sites implies that all the rates have the same effect on R*. Furthermore, the sensitivities decrease 
with n, i.e. in a longer ring each rate has a smaller effect on R*.

Assume now that the RFMR rates satisfy

λ λ= = … −− i n, 1, , 1, (16)i n i

i.e. the rates are symmetric. Note that since all indexes are interpreted modulo n, it is enough that (16) holds for 
some cyclic permutation of the rates. For example, for n = 3 the rates are symmetric if at least two of the rates λ1, 
λ2, λ3 are equal.

Proposition 4. Consider a RFMR with dimension n and symmetric rates (16). Then

φ φ= = … − .− i n, 1, , 1i n i

In other words, the symmetry of the rates implies symmetry of the sensitivities.

Example 7. Consider a RFMR with dimension n = 6 and rates λ1 = λ5 = 1, λ2 = λ4 = 1.2, λ3 = 0.8 and λ6 = 1.5. Note 
that these rates satisfy (16). The sensitivities are:

φ = . . . . . . ′[0 0408 0 0388 0 0804 0 0388 0 0408 0 0200] ,

and it may be observed that φi = φ6−i, i = 1, …, 5.                          □

Optimizing the Production Rate. Any set of rates λ = (λ1, …, λn) induces an optimal sum of densities 
s*, and the RFMR initialized with this sum of densities yields a maximal production rate R* (w.r.t. all other initial 
conditions). This yields a mapping λ → R*(λ). Now suppose that we have some compact set, denoted by Ω, of 
n-dimensional vectors with positive entries. Every vector from Ω can be used as a set of rates λ for the RFMR, and 
thus yields a value R = R*(λ).

0
1

0.05

0.8

0.1

1

0.15

0.6 0.8

0.2

0.60.4

0.25

0.4
0.2 0.2

0 0

Figure 5. R*(λ1, λ2) in RFMR with n = 2 as a function of its parameters.
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A natural problem is finding a vector in Ω that yields the maximal value of R* over all vectors in Ω. We denote 
a vector in Ω that yields the maximal R* by η, i.e.

η λ= .
λ∈Ω

⁎R: arg max ( )

In the context of translation, this means that a circular mRNA with rates η, initialized with s*(η), will yield 
a steady-state production rate that is larger than that obtained for all the other options for the rate vector in Ω 
(regardless of the initial sum of densities in these other circular mRNAs).

The next result is useful for efficiently analyzing the maximization of R* w.r.t. the rates.

Proposition 5. Consider a RFMR with dimension n. The mapping λ λ λ λ= … 

⁎R: ( , , ) ( )n1  is strictly concave 
on ++

n .
For example, for n = 2 it is straightforward to show that

λ λ
λ λ

λ λ
=

+
.⁎R ( , )

( )1 2
1 2

1 2
2

Figure 5 depicts R*(λ1, λ2) as a function of its parameters. It may be observed that this is a strictly concave 
function on ++

2 .
The sensitivity analysis of R*, and its strict concavity w.r.t. the rates, have important implications to the prob-

lem of optimizing the steady-state production rate in the RFMR w.r.t. the rates λ. We now explain this using a 
specific optimization problem. First note that to make the problem meaningful every rate must be bounded from 
above. Otherwise, the optimal solution will be to take this rate to infinity. We thus consider the following con-
strained optimization problem.

Problem 1. Consider a RFMR with dimension n. Given the parameters w1, …, wn, b > 0, maximize R* = R*(λ1, …, 
λn) w.r.t. the parameters λ1, …, λn, subject to the constraints

∑ λ

λ λ

≤

… > .
=

w b,

, , 0 (17)
i

n

i i

n

1

1

In other words, the problem is to maximize R* w.r.t. the rates, under the constraints that the rates are positive 
and their weighted sum is bounded by b. The weights wi can be used to provide different weighting to the different 
rates, and b represents the “total biocellular budget”. By Prop. 2, the optimal solution always satisfies the constraint 
in (17) with equality. Note that a similar optimization problem was defined and analyzed in the context of the 
RFM in ref. 46.

In the context of mRNA translation, each λi depends on the availability of translation resources that affect 
codon decoding times, such as tRNA molecules, amino acids, elongation factors, and Aminoacyl tRNA syn-
thetases. These resources are limited as generating them consumes significant amounts of cellular energy. They 
are also correlated. For example, a large λi may imply large consumption of certain tRNA molecules by site i, 
depleting the availability of tRNA molecules to the other sites. Thus, the first (affine) constraint in (17) describes 
the limited and shared translation resources, whereas b describes the total available biocellular budget.

By Prop. 5, the objective function in Problem 1 is strictly concave, and since the constraints are affine, Problem 
1 is a convex optimization problem59. Thus, it admits a unique solution. We denote the optimal solution of Problem 
1 by λ λ λ= …: ( , , )co co

n
co

1 , and the corresponding maximal (now in the sense of both transition rates and sum of 
densities) steady-state production rate by Rco (where co denotes constrained optimization). This means that for a 
RFMR with dimension n, Rco is the maximal steady-state production rate over all the rates satisfying the con-
straints (17) and all possible initial densities.

The convexity also implies that the solution can be determined efficiently using numerical algorithms that 
scale well with n. To demonstrate this, we wrote a simple and unoptimized MATLAB program (that is guar-
anteed to converge because of the convexity) for solving this optimization problem and ran it on a MAC lap-
top with a 2.6 GHz Intel core i7 processor. As an example, for n = 100 and the (arbitrarily chosen) weights 
wi = 1 + 0.4sin(2πi/100), i = 1, …, 100, and b = 1, the optimal solution was found after 11.7 seconds.

The affine constraint in (17) includes a possibly different weight for each of the rates. For example, if w2 is 
much larger than the other weights then this means that any small increase in λ2 will greatly increase the total 
weighted sum, thus typically forcing the optimal value λ co

2  to be small. In the special case where all the wis are 
equal the formulation gives equal preference to all the rates, so if the corresponding optimal solution satisfies 
λ λ>j

co
i
co, for some i, j, then this implies that, in the context of maximizing R*, λj is “more important” than λi. We 

refer to this case as the homogeneous constraint case and assume, without loss of generality, that wi = 1 for all i. 
Note that by (6) we can always assume, without loss of generality, that b = 1.

Proposition 6. Consider Problem 1 with = = = =w w b 1n1 , i.e. the affine constraint is

∑λ = .
=

1
(18)i

n

i
1
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Then the optimal solution is λ = n1/i
co  for all i. The RFMR with these rates satisfies s* = n/2, =e 1/2i

co  for all i, 
and Rco = 1/(4n).

Remark 2. In view of the Kuhn–Tucker theorem59, the necessary and sufficient condition for optimality of λ in 
Problem 1 with homogeneous weights is that the sensitivity φ λ=

λ
∂
∂

⁎⁎
( )i

R

i
 does not depend on the index i.

Discussion
We considered a deterministic model for translation along a circular mRNA. The behavior of this model depends 
on the transition rates between the sites and on the value = ∑ =s x: (0)i

n
i1 , that is, the sum of densities along the 

ring at the initial time t = 0. The sum of densities is conserved, so ∑ == x t s( )i
n

i1  for all t ≥ 0.
We derived a spectral representation for the steady-state density and production rate for the case where the 

initial sum of densities is the unique value s*, i.e. the sum yielding a maximal steady-state production rate. In fact, 
the proof of Thm. 1 (see the Appendix) shows that we can interpret the optimal density RFMR as a dynamical 
system that “finds” the Perron eigenvalue and eigenvector of a certain periodic Jacobi matrix.

The spectral representation for the RFMR provides a powerful framework for analyzing the RFMR when 
initialized with the optimall sum of densities s*. In addition to providing an efficient and numerically stable 
manner for computing the optimal steady-state production rate and steady-state density, it allows to efficiently 
compute the sensitivity of the optimal steady-state production rate to perturbations in the transition rates. This 
is important as conditions in the cell are inherently stochastic, and thus sensitivity analysis must accompany the 
steady-state description.

Furthermore, using the spectral representation, it was shown that the steady-state production rate with 
optimal sum of densities is a strictly concave function of the RFMR rates. The translation machinery in the 
cell is affected by different kinds of mutations (e.g. synonymous codon mutations, duplication of a tRNA 
gene, etc.). The strict concavity result thus suggests that (at least for highly expressed genes, like ribosomal 
proteins) the selection of mutations that increase fitness may indeed converge towards the unique optimal 
parameter values by a simple “hill-climbing” evolution process. The strict concavity implies that given an 
affine (and more generally convex) constraint on the rates, that represents limited and shared translation 
resources, the unique optimal set of rates can be determined efficiently even for (circular) mRNAs with a 
large number of codons.

Obtaining an optimal production rate is an important problem in synthetic biology and biotechnology. 
Examples include optimal synonymous codon mutations of an endogenous gene, and optimal translation 
efficiency and protein levels of heterologous genes in a new host39, 60–62. These genes compete with endog-
enous genes for the available translation resources, as consuming too much resources by the heterologous 
gene may kill the host60, 61. Thus, in scenarios where the relevant resources are scarce and survival of the cell 
is important any realistic optimization of the protein production rate should explicitly limit resource con-
sumption, as otherwise the fitness of the host may be significantly reduced. The constrained optimization 
problem presented and analyzed here may thus be a useful tool in certain synthetic biology and biotechnol-
ogy applications.

We also showed that the spectral representation of the RFM follows as a special case of the representation 
given here for the RFMR. However, a better understanding of the link between the RFM and the RFMR requires 
further study. Our results suggest several directions for future research. One such direction is finding special 
cases, besides the one described in Example 2.1, where the Perron eigenvalue and eigenvector of A(λ1, …, λn) 
are explicitly known. Another possible direction is the analysis of the dual of the optimization problem defined 
by Problem 1. Specifically, does the dual problem have any interesting biological interpretation in the context of 
translation, and does its analysis provide more insight into optimizing translation?

Finally, TASEP with periodic boundary conditions has been used to model many transport phenomena 
including traffic flow and pedestrian dynamics16, 63. We believe that the spectral representation of the RFMR with 
optimal sum of densities may be useful also for analyzing other applications.

Data availability statement. All the relevant data is included in the manuscript.

Appendix - Proofs
Proof of Thm. 1. Pick n > 2 and parameters c1, …, cn−1 > 0, and cn ≥ 0. Consider the n × n periodic Jacobi matrix:

=















…
…
…

…
…















.

− −

−



J

c c
c c

c c

c c
c c

:

0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0

n

n n

n n

1

1 2

2 3

2 1

1

Note that J is irreducible and (componentwise) non-negative. Let σ > 0 denote that Perron eigenvalue of J and 
let ζ ∈ ++

n  denote the corresponding eigenvector. The equation Jζ = σζ yields
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ζ ζ σζ
ζ ζ σζ
ζ ζ σζ

ζ ζ σζ
ζ ζ σζ

+ =

+ =

+ =

+ =

+ = .
− − − −

− −



c c
c c
c c

c c
c c

,
,
,

,

(19)

n n

n n n n n

n n n n

1 2 1

1 1 2 3 2

2 2 3 4 3

2 2 1 1

1 1 1

Define

ζ

σζ
= = … .+d

c
i n: , 1, ,

(20)
i

i i

i

1

Note that since the indexes are interpreted modulo n, Eq. (20) implies in particular that

ζ

σζ
= .d

c

(21)
n

n

n

1

Then (19) yields:

σ

σ

σ

σ

σ

= −

= −

= −

= −

= − .

− −

− −

− −

−
−

−
− −

−
−

−
−



c d d
c d d
c d d

c d d
c d d

(1 ),
(1 ),
(1 ),

(1 ),
(1 ) (22)

n n

n n n

n n n

2 2
1

2
1

2
1 2

2
2

2
2 3

2
2

2
2 1

2
1

2
1

Also, it follows from (20) that σ∏ = ∏=
−

=d ci
n

i
n

i
n

i1 1 , and from (22) that σ∏ − ==
− ∏

∏
=

=
d(1 )i

n
i

n c
d1

2 i
n

i

i
n

i

1
2

1
, and com-

bining these two equations yields

∏ ∏= − .
= =

d d(1 )
(23)i

n

i
i

n

i
1 1

Note that all the derivations above hold for any real eigenvalue of J and its corresponding eigenvector (assum-
ing all its entries are non zero so that (20) is well-defined), but since the Perron eigenvector is the only eigenvector 
in the first orthant56, all the dis are positive only for the Perron eigenvalue and eigenvector.

Now consider a RFMR with dimension n and rates λ = −c:i i
2, i = 1, …, n, that is:

= − − −

= − − −

= − − −

= − − − .

− −

− −

− −
−

− − −
−

−

−
−

−
−

�

�
�

�

�

x c x x c x x
x c x x c x x

x c x x c x x
x c x x c x x

(1 ) (1 )
(1 ) (1 )

(1 ) (1 )
(1 ) (1 ) (24)

n n

n n n n n n n

n n n n n n

1
2

1 1
2

1 2

2 1
2

1 2 2
2

2 3

1 2
2

2 1 1
2

1

1
2

1
2

1

We already know that this system converges to a steady-state e ∈ Cn, that is,

= − = − = = − .− −
−

−
−R c e e c e e c e e(1 ) (1 ) (1 )n n n n n

2
1 1

2
1 2 1

2
1

Comparing this with (22) shows that ei = di for all i, and that the steady-state production rate is R = σ−2. 
Furthermore, (23) implies that ∏ = ∏ −= =e e(1 )i

n
i i

n
i1 1 , so we conclude that the steady-state satisfies condition (7) 

that describes the unique optimal steady-state (i.e. the steady-state production rate that corresponds to the unique 
optimal sum of densities s*). This proves the first two equations in (9). Finally, since the sum of densities is con-
served, it is equal to ∑ = ei

n
i1 . This completes the proof of Thm. 1.                    □

Proof of Proposition 1. By Thm. 1,

φ
λ

σ σ σ
λ

=
∂

∂
= −

∂
∂

.− −2
(25)i

i i

2 3

By known results from linear algebra (see, e.g. ref. 64), the sensitivity of the Perron root of A w.r.t. a change 
in λi is
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λ
σ

ζ ζ

ζ ζ
∂

∂
=

′

′
.

λ( )A

i

d
d i

Only the entries λ= =+ +
−a ai i i i i, 1 1,

1/2 depend on λi, so

λ
σ

ζ ζ λ

ζ ζ
∂

∂
=

−

′
+

−

,
i

i i i1
3/2

and combining this with (25) proves (14).                             □

Proof of Prop. 2. Since σ > 0 and ζ ∈ ++
n , φi > 0 for all i. To prove the upper bound, perturb λi to λ λ ε= +:i i , 

with ε > 0 sufficiently small. This yields a perturbed matrix A  that is identical to A except for entries (i, i + 1) and 
(i + 1, i) that are

λ λ ε λ
ελ

ε= + = − +− − −
−

o( )
2

( ),i i i
i1/2 1/2 1/2

3/2

where o(ε) denotes a function f(ε) satisfying =ε
ε

ε→lim 0f
0

( ) . This means that = +A A P, where ∈ ×P n n is a 
matrix with zero entries except for entries (i, i + 1) and (i + 1, i) that are equal to ε− +ελ −

o( )
2
i

3/2
. By Weyl’s ine-

quality56, ρ ρ ε≥ − +ελ −

A A o( ) ( ) ( )
2
i

3/2
, where ρ(Q) denotes the maximal eigenvalue of a symmetric matrix Q. 

This means that ≥ − +ρ
λ

λ ε
ε

∂
∂

−A o( )
2

( )

i

i
3/2

, thus φi ≤ (R*/λi)3/2. Since R* ≤ λi, it follows that φi ≤ 1 for all i.    □

Proof of Prop. 3. Consider a RFMR with homogeneous rates (10). Then by Example 2.1, ζi = 1, i = 1, …, n, and 
σ λ= −2 c

1/2, and plugging these in (14) completes the proof.                     □

Proof of Prop. 4. We require the following result.

Proposition 7. Consider the RFMR with dimension n and symmetric rates. Then ζi = ζn+1−i, i = 1, …, n.

Proof of Prop.7. Consider first the case n even. Let ∈ ×Q n n( /2) ( /2) be a reversal matrix, i.e. a matrix of zeros 
except for the counter-diagonal (i.e. entries − +i i( , 1)n

2
, i = 1, …, n/2) that is all ones. For example, for n = 4,

= 





.Q 0 1

1 0

Note that given any arbitrary vector = ′ ∈v v v v[ ]n
n

1 2 /2
/2, = ′− Qv v v v[ ]n n/2 ( /2) 1 1 .

Since the rates satisfy (16), the n × n matrix A has the form

=












A
A A

QA Q QA Q
,1 2

2 1

where ∈ +
×A n n

1
( /2) ( /2) is a matrix of zeros except for the super-diagonal and the sub-diagonal, which are both 

equal to λ λ…−
−

−( , , )n1
1/2

( /2) 1
1/2 , and ∈ +

×A n n
2

( /2) ( /2) is a matrix of zeros except for entry (1, n/2) that is λ −
n

1/2, and 
entry (n/2, 1) that is λ −

n/2
1/2 . Decompose the Perron eigenvector ζ of A as ζ ζ ζ= … ′: [ ]n

1
1 /2  and 

ζ ζ ζ= 


… 
′+: n n

2
( /2) 1 .

Let ρ(W) denote the spectral radius of a matrix W. Since A1 is a principal submatrix of the (componentwise) 
nonnegative matrix A, ρ(A1) ≤ ρ(A) (see [56, Ch. 8]). Assume for the moment that ρ(A1) = ρ(A). Then using the 

fact that QQ = I, that is Q = Q−1, we conclude that ρ ρ






















=
A

QA Q
A

0
0

( )1

1
. This means that the matrices 













A
QA Q

0
0

1

1
 and 











A A
QA Q QA Q

1 2

2 1
 have the same Perron root, but this contradicts Prop. 2. We conclude that

ρ ρ σ< = .A A( ) ( ) (26)1

The equation Aζ = σζ yields

ζ ζ σζ

ζ ζ σζ

+ =

+ = .

A A
QA Q QA Q

,1
1

2
2 1

2
1

1
2 2

Multiplying both sides of the second equation by Q, noting that QQ = I, and rearranging yield

ζ ζ σζ

ζ ζ σ ζ

+ =

+ = .

A A
A Q A Q Q

,

(27)
1

1
2

2 1

1
2

2
1 2

Subtracting the second equation from the first and using again the fact that QQ = I yields
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σ ζ ζ− − − = .A A Q I Q( )( ) 0 (28)1 2
1 2

Combining this with (26) and the fact that A2Q is (componentwise) nonnegative implies that ζ1 = Qζ2, i.e. 
ζi = ζn+1−i, i = 1, …, n. This completes the proof for the case n even. The proof when n is odd is very similar and 
therefore omitted.  □

Now the proof of Prop. 4 follows from combining (14), Thm. 1, and Prop. 7.              □

Proof of Prop. 5. The real scalar mapping −
c c 1/2 is convex on ++

n . This implies that the map 
λ λ λ λ= …  A( , , ) ( )n1 , where A(λ) is given in (8) is convex, that is, the matrix inequality

λ λ λ λ′ + ″ ≥


 ′ + ″



A A A1

2
( ( ) ( )) 1

2
( )

(29)

holds elementwise for any λ λ′ ″ ∈ ++, n . The Perron–Frobenius theorem implies the corresponding inequality 
for the Perron eigenvalue56

σ λ σ λ σ λ λ′ + ″ ≥






 ′ + ″






A A A1

2
( ( ( )) ( ( ))) 1

2
( ) ,

(30)

where the inequality (30) is strict if λ′ ≠ λ′′. Thus, λ σ λ ( ) is a strictly convex function. In view of the identity 
R* = σ−2 in (9), it follows that λ λ

⁎R ( ) is a strictly concave function.                   □

Proof of Prop. 6. We know that Problem 1 admits a unique optimal solution λ. Consider the cyclic shift 
λ λ= +



i i 1, i = 1, …, n, where the indices are taken modulo n. Note that λ λ∑ = ∑ == =
 1i

n
i i

n
i1 1 , so λ  also satisfies 

the constraint (18). The matrices λA( ) and λA( ) have the same spectrum. Since the optimal solution is unique, 
λ λ= . We conclude that the optimal transition rates λi are all equal, and thus λ = n: 1/i

co , i = 1, …, n. By 
Example 2.1, Rco = 1/(4n), and =e 1/2i

co , i = 1, …, n.                        □
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