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Visual attention is a mechanism of the visual system that can select relevant objects from a specific scene.
Interactions among neurons in multiple cortical areas are considered to be involved in attentional
allocation. However, the characteristics of the encoded features and neuron responses in those attention
related cortices are indefinite. Therefore, further investigations carried out in this study aim at
demonstrating that unusual regions arousing more attention generally cause particular neuron responses.
We suppose that visual saliency is obtained on the basis of neuron responses to contexts in natural scenes. A
bottom-up visual attention model is proposed based on the self-information of neuron responses to test and
verify the hypothesis. Four different color spaces are adopted and a novel entropy-based combination
scheme is designed to make full use of color information. Valuable regions are highlighted while redundant
backgrounds are suppressed in the saliency maps obtained by the proposed model. Comparative results
reveal that the proposed model outperforms several state-of-the-art models. This study provides insights
into the neuron responses based saliency detection and may underlie the neural mechanism of early visual
cortices for bottom-up visual attention.

T
he visual system is equipped with outstanding capabilities of comprehending complex scenes rapidly and
obtaining the key points that capture interest immediately1. Since the neuronal hardware is insufficient
for such challenging tasks, an accurate encoding strategy with the minimal consumption of biological

resources2,3 is evolved in the visual system. Visual attention is an important signal processing mechanism that
can selectively increase the responses of cortical neurons that represent relevant information of potentially
important objects4,5. The neural spiking activity and joint properties of neurons in early areas6 can be modulated
by visual attention and thus only a crucial subset of input information is collected by intermediate and higher
visual processes.

The visual attention mechanism has attracted many researchers in areas of psychology7–9, neurophysiology10,11,
computational neuroscience12,13, and computer vision science14–17. Numerous areas in the cortex are related to
attentional allocation, according to psychology and neurophysiology researches. Experiments in humans found
that activities of the lateral geniculate nucleus (LGN) can be modulated by both spatial attention and saccadic eye
movements19. The superior colliculus (SC) is the first structure subjected to strong attention effects4. Studies
indicated the appearance of bottom-up saliency maps in the primary visual cortex (V1)10,20–24. However, there is
also another study that could not find such attention modulation effects in human V1 area25. A possible explana-
tion for this contrary result is that the task was not demanding enough to generate strong modulation of neuron
responses26. Additionally, bottom-up visual saliency can be guided by the top-down information from deeper
layers27–31 such as the lateral intraparietal (LIP) region of the cortex29,30, the frontal eye fields (FEF)31,32, and the
pulvinar33,34. The areas LIP, FEF, pulvinar, the inferotemporal cortex (IT), and the feature-selective visual areas
V2 and V4 all drive bottom-up attention signals and receive top-down attention biasing signals20,29–34 simulta-
neously. The medial temporal (MT), the medial superior temporal (MST), and the prefrontal cortices are
modulated by both spatial and feature-based attention35,36.

Literatures analyzed above suggest that area V1 is important for the conformation of bottom-up saliency while
other areas receive signals from both area V1 and deeper layers simultaneously. Neurons in area V1 can encode
principal and independent components extracted from images37 efficiently. The response magnitude of neurons
in V1 is higher when the stimulus is distinct from its surroundings23,37. Objects that stand out from their
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surroundings are generally considered to be salient and attention
attracting17,20,24. However, the specific relationship between V1 neu-
ron responses and visual attention is still not clear38,39. Therefore, we
focus on the effect of area V1 upon bottom-up visual attention in
free-viewing scenes.

We suppose that unique neuron responses imply salient image
regions and more extraordinary neuron responses correspond to
more salient regions, based on the analysis of statistical properties
of neuron responses. Consequently, neuron responses to each loca-
tion in scenes can be formed to predict the corresponding value of
saliency. An integral visual attention model is proposed based on the
statistical properties of neuron responses in area V1 to test the hypo-
thesis. Firstly, V1 neuron responses to each pixel are calculated with
the stimuli and a set of well-trained Gabor-like receptive fields of V1
neurons. Then a statistical distribution model of neuron responses is
built to compute the possibility that a specific neuron response
emerges. Afterwards, the saliency value of each pixel is obtained
according to the self-information of the corresponding neuron
responses.

Self-information is adopted to measure the saliency value accord-
ing to emergence possibilities of neuron responses. This strategy
was firstly used in the model of Attention based on Information
Maximization40 (AIM). In AIM a saliency map was thought of as
the average Shannon self-information of cells across a cortical col-
umn corresponding to content appearing at each spatial location.
Here, we take a distinct approach. The statistical properties of neuron
responses are considered and obtained based on interactions among

the excitatory and inhibitory neurons in area V1. Color information
in images should be completely used due to the fact that salient
regions often have distinctive colors compared to the background.
Therefore, four different color spaces including RGB, CIELAB, HSI,
and YIQ are used in the proposed model to provide more integrated
information. Saliency sub-maps of images in gray-scale and each
separate channel of the color spaces are computed independently.
Saliency sub-maps with lower entropies are selected and combined
into the final saliency map using a novel entropy-based strategy.

The proposed visual attention model is tested on traffic images to
highlight vehicles out of complex backgrounds. Comparative experi-
ments are carried out against both excellent salient object detection
models and eye fixation prediction models, including Chang’s model
(SVO)41, Goferman’s model42, Jiang’s model (CBsal)43, AIM40, the
spectral residual (SR) approach44, and ITTI’s model14. Furthermore,
all the models are evaluated quantitatively using four popular visual
attention datasets to demonstrate the superiority and stability of the
proposed model.

Results
As Figure 1 suggests, appearances in different color spaces reveal
distinct information of an image. Four color spaces are used in the
proposed model to take advantages of color information. The sali-
ency sub-map in each channel is computed on the foundation of
corresponding neuron responses. The final saliency map is obtained
via a novel entropy-based combination operation. The red car in
Figure 1 is highlighted while the plants and road in the background

Figure 1 | Framework of the proposed visual attention model. Each rectangle depicts an operation involved in the overall computational framework.

Color space transformation: Original image saved in the RGB color space is transformed into gray-scale image. It is also transformed into the CIELAB,

HSI, and YIQ color spaces. Channels of all the four color spaces are separated. Compute neuron responses: Neurons responses in area V1 are extracted

from local patches of gray-scale image and all the twelve separate channels of the four color spaces (see Methods). Afterwards, statistical probabilities of

the neuron responses are estimated based on the histogram of the neuron responses. Compute visual saliency: Saliency sub-maps are obtained by adding

the self-information in each dimension of the neuron responses up. Saliency sub-maps are computed for gray-scale image and all the twelve separate

channels. Combine into final saliency map: The entropy of each saliency sub-map is computed. Afterwards the sub-map with the lowest entropy is

selected from each color space (the sub-maps in red rectangles). Finally, the selected sub-maps of all the four color spaces together with the sub-map of the

gray-scale image are combined into the final saliency map. Reciprocals of their corresponding entropies are taken as combining weights for sub-maps. The

original image is taken by X.H. Wang with a digital camera Canon IXUS 125HS.

www.nature.com/scientificreports
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are suppressed in the final saliency map, revealing the effect of visual
attention.

Neuron dynamic spiking and statistical properties of neuron
responses. Neurophysiological evidence certificates that neurons in
early visual areas extract primary features and transmit them to high-
level neurons of the visual cortex37. Receptive Fields (RFs) of neurons
in the early visual cortex could be typically simulated by localized and
oriented feature detectors, such as Gabor filter45 and Derivative of
Gaussian (DoG) filter46. Sparse coding has ability to represent the
properties of V1 neuron responses. For instance, SAILnet47 and E-I
Net48 are coding strategies that are sufficient to account for the
properties of V1 neurons. The outputs of the coding strategies are
with sparseness and a high degree of statistical independence. There
are two types of neurons in area V1: excitatory neurons and the
inhibitory ones48. Inhibition and suppression functions between
these two kinds of neurons are important mechanisms in the
cortex49. Spiking rates of excitatory neurons can form a sparse
representation of the input image patch. The learning framework
of connecting matrixes (i.e. RFs) for inhibition and excitatory
neurons are given in the Methods section. The neuron responses
for a specific stimulus are determined after the connecting weights
among the neurons have been learned.

The number of spikes generated by each excitatory neuron repre-
sents a feature of the input stimuli with the well-learned connecting
weights. The dynamic neuron spiking activities can be decoded to
recover the input stimuli approximately. An image reconstruction
experiment is conducted to verify the performance of the dynamic
spiking layer and the results are presented in Figure 2.

As shown in Figure 2, patches sampled from the input image are
adopted as stimuli to neurons with the trained connection weights.
The original image can be reconstructed with a production of the
neuron responses and the learned connection weights. The simu-
lation verifies the preciseness of neuron responses. Sampled neuron
responses to three different scenes are shown in Figure 3, to invest-
igate the statistical properties of the neuron responses.

All the three scenes are reconstructed accurately, which demon-
strates the correctness of neuron responses. As shown in Figure 3 (d),
(h), and (m), responses of most neurons are around zero and the
numbers of larger responses decline quickly. Patches with more
details such as edges of the building, car, and flower generally cause
higher responses, while patches of smooth background such as the
ground, sky, and road arouse lower ones. For example, almost all the
neuron responses to the road in Figure 3 (g) are zero. By analyzing
one dimension of the responses, it can be found that responses to
similar stimuli are similar, while those to different stimuli are dis-

tinct. Furthermore, different dimensions of the neuron responses
reflect distinct information. For instance, the 65th dimension of
responses for all the three scenes emphasizes horizontal information
while the 97th dimension emphasizes vertical information.
Therefore, the properties of neuron responses indicated by our
investigations are consistent with the real neuron responses of area
V118,37,40,48. The probability distributions of responses with high
peaks near zero and long tails can be approximately described with
the Generalized Gaussian Distribution (GGD) in addition to statist-
ical histograms.

Saliency extraction. The visual attention mechanism is suggested to
be implemented by modifying the connectivity in specific cortex areas
or by conducting particular temporal patterns of activities50,51.
However, there are many factors that influence the conformation of
visual attention. Low level features extracted from the input image
are always employed to measure saliency52. The proposed bottom-up
model adopts the information of features extracted by the excitatory
neurons. Objects that differ from the rest of the scene maximally
are regularly focuses of attention in a free view. Thus, we make a
hypothesis that responses of the excitatory neurons are rare when the
stimuli patch is a salient object. In other words, the saliency value
of a patch is supposed to be high when the corresponding neuron
responses appear with low probabilities. According to this hypothesis,
the computation of a saliency map can be built on the basis of
statistical probabilities of the corresponding neuron responses.
Statistical probabilities can be computed with statistical histograms
or with fitted GGD curves. A saliency map is computed as a linear
combination of the salient values calculated by the response of each
neuron as responses of all the excitatory neurons are approximately
independent. Self-information can measure the likelihood that a
random variable appears. Therefore, the saliency value of an input
image can be calculated with the self-information of the corres-
ponding neuron responses.

Color information is ignored since the RFs are trained with whiten
images in gray scale. Twelve separate channels of four color spaces
(i.e., RGB, CIELAB, HSI, and YIQ) are employed to provide different
information for color images. Visual attention aims at extracting
regions with high preciseness and suppress background and disturb-
ance automatically. A valuable saliency map is supposed to be with
low entropy as the contrast between the attentional focus and the
background should be maximized. Thus, saliency sub-maps of dif-
ferent color channels can be selected and combined according to
their entropies.

Several traffic images are employed to test the performance of the
proposed method together with SVO41, Goferman’s model42, CBsal43,

Figure 2 | Image reconstruction with dynamic spiking activities of neurons. Patches are sampled from the retina image and imported to the learned

encoding neural network. A patch can be reconstructed with a production of the excitatory neuron responses and the learned connection weights (see

Method). The retrieve of the whole image can be obtained with each patch reinstated. The original image is taken by X.H. Wang with a digital camera

Canon IXUS 125HS.
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AIM46, SR44, and ITTI’s model14. Experimental results of three
instances are presented in Figure 4. The experiments are all con-
ducted in Matlab R2012b running on a 3.2 GHz Intel Core i5 PC
equipped with a 4 Gb RAM. Comparative results illustrate the dif-
ferences among the seven different models. SVO and CBsal obtain
object-level saliency as they take objectness information into consid-
eration. Other methods attain pixel-level saliency. For the first case
CBsal could not extract the object accurately since the white car is
relatively small. For the second case with a red car whose size is larger,
almost all the methods can make good performances. However, the
performance of CBsal gets worse when the object becomes smaller.
Additionally, for the last instance, the plants are highlighted in the
saliency maps obtained by SVO, Goferman’s model, AIM, SR, and
ITTI’s model. Moreover, Goferman’s model, AIM, SR, and ITTI’s
model are short of inhibiting the redundant background. The atten-
tional focuses in the saliency maps obtained by these four methods
are not very compact. On the contrary, the proposed model can make
the attentional focuses centralized at the regions of targets. The cars
are intently highlighted by the proposed method as shown in
Figure 4. But in the saliency maps obtained by other methods the
plants are also turned out to be highlighted. Therefore, the proposed

model reveals superiority in evidence. Images modulated by corres-
ponding saliency maps that are obtained by the proposed model are
also shown in Figure 4. In modulated images the most salient regions
are reserved while the backgrounds are abandoned.

Furthermore, all the seven visual attention models are quantita-
tively evaluate using four public image saliency datasets: the dataset
derived by Achanta R. et al.53, the DUT-OMRON dataset54, the
Extended Complex Scene Saliency Dataset (ECSSD)55, and the
THUS 10000 dataset56. The first dataset contains 1000 images
together with fixation maps for all the images. The second one has
5168 images, the third one has 1000 images, and the last one contains
10000 images. The later three datasets all have manually segmented
salient object masks for all the corresponding images. Human fixa-
tions in the fixation maps of the first dataset and salient objects in the
manually segmented masks of the later three datasets are considered
as the positive set and other pixels are in the negative set. Afterwards,
several scores to quantitatively evaluate the visual attention models
can be computed.

The saliency map of each image can be considered as a binary
classifier which divides pixels in the original image into salient pixels
versus not salient ones. A Receiver Operating Characteristic (ROC)

Figure 3 | Statistical properties of neuron responses to retina images. (a), (e), (i) are original retina images; (b), (f), (g) are reconstructions of the original

retina images; (c), (g), (l) from top to down are the 17th, 33th, 49th, 65th, 81st, and 97th dimensions of neuron responses projected to corresponding

pixels of the original retina images, respectively; (d), (h), (m) from top to down are statistical histograms of the 17th, 33th, 49th, 65th, 81st,

and 97th dimensions of neuron responses with their outlines fitted by red curves. The horizon rows represent values of the neuron responses and the

vertical ones are numbers of neurons with corresponding responses. The original images given in (a), (e), (i) are taken by X.H. Wang with a digital camera

Canon IXUS 125HS.

www.nature.com/scientificreports
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curve5 can be generated for each visual attention model by choosing
several different thresholds for classification and plotting True
Positive Rate (TPR) vs. False Positive Rate (FPR). ROC curves for
all the models are shown in Figure 5. Afterwards, Areas Under the
ROC Curves (AUC) can be calculated. The perfect saliency predic-
tion corresponds to an AUC score of 1 and a higher AUC score
represents a better visual attention model. AUC score has an admir-
able property of transformation invariance in that this measure does
not change when applying any monotonically increasing function to
the saliency values5. Moreover, the Linear Correlation Coefficient
(CC)5 and Normalized Scanpath Saliency (NSS)5 scores are also cal-
culated and the results are given in Figure 5. The CC score measures
the strength of a linear relationship between two variables. A CC
score closed to 11/21 indicates a perfect linear relationship between
the ground-truth mask and the saliency map. NSS is defined as the
average of the values at human eye positions in a normalized saliency
map with zero mean and unit standard deviation. A NSS score lager
than 1 indicates that the saliency values at human fixated pixels are
significantly higher than other locations.

As shown in Figure 5, the AUC, CC and NSS scores obtained by
the proposed model are all larger than those gained by AIM, SR, and
ITTI’s model. These results reveal the significant superiority of the
proposed model on all the four datasets. The scores obtained by
ITTI’s model are mostly greater than those obtained by SR, but it
is lower than those obtained by AIM. SVO acquires best experi-
mental results on Achanta’s dataset and the DUT-OMRON dataset.
The proposed model performs significantly better than almost all the
compared algorithms on the ECSSD dataset and the THUS 10000
dataset. The four scores calculated on the Achanta’s dataset are gen-
erally lower than those calculated on other three datasets. The reason
could be that the ground-truth images in this dataset are given as
fixation maps, while those in the other three datasets are given as
manually segmented salient object masks. Furthermore, results pre-
sented in Figure 5 show that the tendencies of ROC and AUC are
more consistent. Since the CC and NSS scores are sensitive to center-
preference, ROC and AUC are mainly considered to draw conclu-
sions. Thus, SVO, the proposed method, and CBsal rank as the top
three in order according to the average AUC score.

Figure 4 | Experimental results of the seven models tested with traffic images. The first column shows the original images; the second to eighth columns

present the saliency maps obtained by SVO, Goferman’s model, CBsal, AIM, SR, ITTI’s model, and the proposed model, respectively. Images modulated

by the corresponding saliency maps obtained by the proposed method are given in the last column. The original images are all taken by X.H. Wang with a

digital camera Canon IXUS 125HS.
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Discussion
In this study we proposed a novel visual attention model based on
statistical properties of neuron responses to test the hypothesis that
area V1 is a potential structure for bottom-up visual attention. The
statistical regularity of neuron responses is investigated. We found
that the responses of different neurons are independent and the
responses for similar stimuli are approximate while those for differ-
ent stimuli are distinct. The neuron responses in these regions are
suggested to be rare as interesting regions are appear special and
distinct from the background. Self-information is adopted to cal-
culate the saliency map. Additionally four different color spaces
(i.e., RGB, CIELAB, HSI, and YIQ) are utilized. The saliency sub-
map with the lowest entropy is selected from the three channels in
each color space. The four selected saliency sub-maps of the color
spaces together with the saliency map of the gray-scale image are
combined. The corresponding reciprocals of entropies are adopted as
weights for combination.

The distinctive aspects of the proposed model can be generalized
as follows. Firstly, our model considers about both current scene
and an ensemble of natural scenes, which is different from the
models that only use information of current scene. Neuron res-
ponses are computed based on current image together with an
ensemble of natural scenes in our model as RFs of neurons are
learned from a set of patches sampled from natural images.
Therefore, the computation of neuron responses is in accordance
with human experience during evolution and development.
Secondly, several different color channels are utilized in the pro-
posed model differing from most models that merely conduct fea-
ture extraction in one color space. We used four color spaces to
exploit color information as color perception in the visual system is
uncertain. Thirdly, the utilization of entropy and the combination
method are also unique. The saliency sub-maps with the lower
entropies are selected and combined with the corresponding reci-
procals of their entropies.

Figure 5 | ROC, AUC, CC, and NSS scores of the seven models on four datasets. It should be mentioned that the number of tested images is set as 300 for

each dataset, i.e. 300 images are randomly selected from each dataset to calculate the four scores for each model. Therefore, the scores might be somewhat

different from those caculated with the whole datasets. The gray diagonal line in each ROC figure is the baseline, which presents the ROC curve of a

random classification.

www.nature.com/scientificreports
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The proposed model is compared with several state-of-the-art
visual attention models including SVO, Goferman’s model, CBsal,
AIM, SR, and ITTI’s model. Experimental results show that the focus
regions defined by Goferman’s model, ITTI’s model, SR, and AIM
models are not always concentrated on the target and the back-
grounds are not notably inhibited. The contrast between targets
and backgrounds in the saliency maps obtained by SVO is relatively
low. The CBsal model cannot highlight salient regions accurately
when the target is tiny. The proposed method gives prominence to
the valuable regions with high preciseness and restrains disturbances
in the environment powerfully. The ROC, AUC, CC, and NSS scores
of the seven visual attention models are calculated on four popular
datasets and the experimental results quantitatively certificated the
superiority of the proposed model.

Some theoretical arguments are given in the Supplementary dis-
cussion section, the section after Methods.

Methods
Connecting matrix learning. The connecting matrix of V1 neurons is trained before
the computation of neuron responses. The E-I Net model48 is adopted in this process.
1000 patches randomly sampled from gray-scale natural images are whitened and
normalized to learn Gabor-like RFs. The sparseness of neuron responses together
with the error between the original and recovered images are the main factors to be
considered as training rules. The size of patches is set as 14*14 (i.e., the dimension of
input stimuli is 196) and 128 weight matrixes are learned finally. More details about
the processing of the E-I Net model can be found in Ref. 48. An example of the learned
RFs is presented in Figure 6. Neuron responses can be calculated using the learned
RFs. The error between the original image and the image recovered with the
corresponding neuron responses is minimized (see Result).

Color space transformation. Different color spaces including RGB, CIELAB, HSI, and
YIQ are utilized for color image processing. We have to transform the original images
from RGB into other spaces. The conversions among them are given as follows.

1) Conversion from RGB to CIELAB. In the CIELAB color space L is the luminance
channel, A is the red-green channel, and B is the yellow-blue channel. Firstly,
the RGB space is converted to the XYZ space with the formula shown as follows.
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Then the XYZ space is converted to the CIELAB space with the following
formula.
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2) Conversion from RGB to HSI. In the HSI color space H is hue, which describes a
pure color. S is saturation, which gives the degree to which a pure color is
diluted by white light. I is intensity. The conversion can be achieved as follows.

H~
h BƒG
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3) Conversion from RGB to YIQ. In the YIQ color space, Y represents luminance or
intensity, while I and Q (in phase and quadrature) represent the chrominance
or color information of an image. The relationship between RGB and YIQ is
given as follows.

Y

I

Q

0
B@

1
CA~

0:299 0:587 0:114

0:596 {0:275 {0:321
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0
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0
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1
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Saliency detection and combination. Statistical histograms are built for each
dimension of neuron responses. The number of bins in the histogram is set as 1000,
which can be modified. With the histograms, likelihoods of the responses can be
obtained. Afterwards, saliency is computed with self-information40 shown as:

S x,yð Þ~
X

k

{ log P Rk~rk x,yð Þð Þ, ð6Þ

Figure 6 | Well-trained connecting weight matrixes. We selected 126 connecting weight matrixes (i.e., RFs) randomly. Each square describes an oriented

and localized Gabor-like RF of a specified V1 neuron. The gray pixels in each square represent zero, the lighter pixels correspond to positive values, and the

darker ones indicate negative values. The localized, oriented, and band-pass RFs of neurons are somewhat like Gabor filters which is consist with that of

accurate predictions of V1 RFs.
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where S (x, y) is the saliency value of pixel (x, y), rk (x, y) is the k th dimension of
neuron responses to pixel (x, y). Images in all separate channels of the four color
spaces together with the gray-scale image are imported to the saliency detection part.
The saliency sub-map with the lowest entropy is selected from each color space. The
entropy of a saliency sub-map is defined as follows.

E Sð Þ~{
Xm

i~1

pi log pi, ð7Þ

where i g[1, m] are all values in the saliency sub-map, m is the maximum value. pi is
the probability of value i and it is computed with the histogram.

Afterwards, four selected saliency sub-maps together with the saliency sub-map
obtained by the gray-scale image are linearly combined with their coefficients com-
puted as:

Oj~
TjP5

i~1
Ti

, Ti~
1

entropyi
, ð8Þ

where i 5 1, ...,5 representing the saliency maps extracted by four color channels and
the gray-scale image. entropyi is the entropy of the i th saliency sub-map, and Oj is the
weight of the j th channel, j 5 1, ..., 5.

Theoretical arguments
Theoretical arguments of the proposed visual attention model are
presented in three major aspects: the color information utilization,
the saliency measuring principle, and the explanation for entropy
adoption. The proposed model uses four different color spaces to
ensure approximate perceptual uniformity or invariance to different
conditions. We assume that all original images are stored in the RGB
color space. Unfortunately, the RGB color space does not fully corre-
spond to the space in which the human brain processes colors. In
addition, illumination and colors are nested in the RGB space, which
makes the processing in this space inconvenient. Therefore, other
color spaces are considered in the proposed model. However, the best
color space for saliency extraction is still uncertain. Distinct results
can be obtained for different scenes in spite of using a certain color
space. Thus, Three other color spaces together with RGB are used to
extract saliency simultaneously.

There are many kinds of color spaces that can be classified into
three categories according to the color perception57: the mixture-
type color space, the luminance/chrominance-type color space,
and the hue/saturation/luminance-type color space. Three color
spaces in different categories are considered to make comprehens-
ive use of color information. Thus the RGB color space in the first
class, the CIELAB color space belonging to the second class, and
the HSI color space in the last class are chosen. RGB is a color
space in which original images are generally stored and it can be
converted into other spaces conveniently. CIELAB is independent
from the equipment and it is flexible to deal with the illumination
changes. The intensity component and color information (hue and
saturation) are decoupled in the HSI space. The YIQ color space
takes advantage of human eye58 and it is more sensitive to intensity
changes than to saturation or hue changes. Therefore, these four
color spaces are chosen to compute saliency parallelly. Conversion
relationships among RGB and the other three color spaces are
given in the section of Methods in detail.

In free-viewing natural scenes, the saliency value of a pixel is
related to the appearance and location of it. The prior knowledge
of the obsever has influence on attention allocation59. The interesting
probability of a pixel (x, y) can be computed with the Bayes theorem:

Ps x,yð Þ~P S x,yð Þ~1jF~f x,yð Þ,L~ x,yð Þð Þ, ð9Þ

where S (x, y) 5 1 indicates that the pixel (x, y) is salient. F is features
of the pixel and L is the location of the pixel. As the features of a pixel
are generally independent from the location of it, the computation of
Ps (x, y) can be rewritten as follows.

Ps x,yð Þ~P S x,yð Þ~1jF~f x,yð Þ,L~ x,yð Þð Þ

~
P F~f x,yð Þ,L~ x,yð Þ S x,yð Þ~1jð ÞP S x,yð Þ~1ð Þ

P F~f x,yð Þ,L~ x,yð Þð Þ

~
P F~f x,yð Þ S x,yð Þ~1jð ÞP L~ x,yð Þ S x,yð Þ~1jð ÞP S x,yð Þ~1ð Þ

P F~f x,yð Þð ÞP L~ x,yð Þð Þ :

~
P F~f x,yð Þ S x,yð Þ~1jð ÞP L~ x,yð Þ,S x,yð Þ~1ð Þ

P F~f x,yð Þð ÞP L~ x,yð Þð Þ

~
P F~f x,yð Þ S x,yð Þ~1jð Þ

P F~f x,yð Þð Þ
:P S x,yð Þ~1jL~ x,yð Þð Þ

ð10Þ

The log probability is estimated to compare this probability across
different locations in an image. Therefore, logPs (x, y) is used to
present the saliency value of the pixel (x, y), which is given as follows.

S x,yð Þ~ log Ps x,yð Þ~

{ log P F~f x,yð Þð Þz log P F~f x,yð Þ S x,yð Þ~1jð Þ:

z log P S x,yð Þ~1jL~ x,yð Þð Þ

ð11Þ

The first term in (11) represents the self-information of the random
variable F. It is independent of any prior knowledge about the target
class and depends only on the visual features observed at the point.
The second term favors features that are consistent with the prior
knowledge of the target features. The last term describes the prior
location in which the target is likely to appear and it is independent of
visual features. We suppose that all information is from current
image and there is no prior guide information in bottom-up visual
attention processing. Thus, the second and third terms in (11) are
ignored in the proposed bottom-up visual attention model. The sali-
ency map of an image is computed based on the neuron responses of
it as the features of pixels are represented by neuron responses in the
proposed model. Neuron responses in area V1 are approximately
independent. The self-information of neuron responses at pixel
(x, y) can be presented as:

P F~f x,yð Þð Þ~P R~r x,yð Þð Þ

~P R1~r1 x,yð Þ,R2~r2 x,yð Þ, � � � ,Rn~rn x,yð Þð Þ,

~P R1~r1 x,yð Þð ÞP R2~r2 x,yð Þð Þ � � � P Rn~rn x,yð Þð Þ

ð12Þ

where R denotes neuron responses and rk (x, y), k 5 1, ..., n represents
the k th response at pixel (x, y). n is the dimension of neuron res-
ponses. The saliency value at pixel (x, y) can be computed as follows.

S x,yð Þ~{ log P F~f x,yð Þð Þ~
X

k

{ log P Rk~rk x,yð Þð Þ: ð13Þ

There should be a criterion to evaluate the quality of the saliency sub-
maps computed in each channel of all color spaces, and combine
them into the final saliency map. Entropy of a saliency sub-map is
employed as an evaluation criterion. Entropies are also used to com-
pute combining weights of the saliency sub-maps, which is distinct
from the use of entropy in other visual attention models60. A saliency
map can be considered as a probability map. Entropy is a measure of
the uncertainty in the outcome of a random variable. Generally,
regions of interest in an expected saliency map should be strength-
ened largely while the background should be suppressed. Values in
the histogram of a desired saliency map would cluster around certain
values. Under this circumstance, the entropy of a saliency map would
be very low. Therefore, the saliency sub-map with the lowest entropy
is selected from the three channels of each color space. Finally the
saliency sub-map extracted from the gray-scale image and the
saliency sub-maps chosen from four color spaces are combined.
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The combining weights are computed as the reciprocals of
corresponding entropies. Additionally, the combining weights are
normalized.
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