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Higher risk for long-term cognitive and behavioral impairments is one of the hallmarks of extreme prematurity (EP)
and pregnancy-associated fetal adverse conditions such as intrauterine growth restriction (IUGR). While
neurodevelopmental delay and abnormal brain function occur in the absence of overt brain lesions, these conditions
have been recently associated with changes in microstructural brain development. Recent imaging studies indicate
changes in brain connectivity, in particular involving the whitematter fibers belonging to the cortico-basal ganglia-
thalamic loop. Furthermore, EP and IUGR have been related to altered brain network architecture in childhood, with
reduced network global capacity, global efficiency and average nodal strength. In this study, we used a connectome
analysis to characterize the structural brain networks of these children, with a special focus on their topological or-
ganization. On one hand, we confirm the reduced averaged network node degree and strength due to EP and IUGR.
On the other, the decomposition of the brain networks in an optimal set of clusters remained substantially different
among groups, talking in favor of a different network community structure. However, and despite the different com-
munity structure, the brain networks of these high-risk school-age children maintained the typical small-world,
rich-club and modularity characteristics in all cases. Thus, our results suggest that brain reorganizes after EP and
IUGR, prioritizing a tight modular structure, to maintain the small-world, rich-club and modularity characteristics.
By themselves, both extreme prematurity and IUGR bear a similar risk for neurocognitive and behavioral impair-
ment, and the here defined modular network alterations confirm similar structural changes both by IUGR and EP
at school age compared to control. Interestingly, the combination of both conditions (IUGR + EP) does not result
in aworse outcome. In such cases, the alteration in network topology appearsmainly driven by the effect of extreme
prematurity, suggesting that these brain network alterations present at school age have their origin in a common
critical period, both for intrauterine and extrauterine adverse conditions.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

It is now commonly accepted that risk factors such as early exposure
to extra-uterine environment or antenatal adverse conditions such
as intrauterine growth restriction (IUGR) affect the brain structure.
Extreme prematurity (EP) and IUGR have both been associated with
regional changes in brain structures such as the cerebellum
(Limperpoulos et al., 2005) and with reductions in gray matter (GM)
and white matter (WM) volumes, specifically in the thalamus,
tory (LTS5), EPFL-STI-IEL-LTS5

. This is an open access article under
hippocampus, orbitofrontal lobe, posterior cingulate cortex, and centrum
semiovale (Ball et al., 2012; Padilla et al., 2011; Lodygensky et al., 2008).
Other studies report further diminutions in cortical gray matter volume
(Inder andHüppi, 1999; Borradori-Tolsa et al., 2004), as well as in cortical
surface gyrification (Dubois et al., 2008), proving the high susceptibility of
the human brain to the consequences of altered fetal environment and/or
premature birth. Yet, the structural reorganization of the brain following
premature birth is striking and illustrates the functional and structural
plasticity of the developing brain (Kostović et al., 2014).

These brain changes in the neonatal period have been linked to
altered neurodevelopmental outcome later in life (Kwon et al., 2014;
Jaekel et al,. 2013; Ment et al., 2009). They have been associated with
developmental disabilities such as cerebral palsy, mental retardation
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Box 2
∣Network segregation

Ability for specialized processing to occurwithin densely intercon-
nected groups of brain regions. Measures of segregation are relat-
ed with clustering around individual nodes.
Local efficiency: quantifies a network's resistance to failure on a
small scale. That is, the local efficiency of a node characterizes
how well its neighbors exchange information when it is removed.
Clustering coefficient: Quantifies the number of connections that
exist between the nearest neighbors of a node as a proportion of
the maximum number of possible connections. It reflects pres-
ence of highly interconnected groups of nodes.
Betweenness centrality: is an indicator of a node's centrality in the
network. It is equal to the number of shortest paths from all verti-
ces to all other that pass through that node. A node with high be-
tweenness centrality has a large influence on the transfer of items
through the network.

Box 3
∣Network topology

Arrangement of the various elements of a network (links, nodes,
etc). Human brains are characterized by ‘small-world’ network to-
pology that combines high levels of local clustering among nodes
and short paths linking nodes of a network.
Hubs: nodeswith high degree. They are seen as central nodes that
demonstrate a large proportion of shortest paths. This measure is
closely related to the modularity of the network. Hubs can be de-
scribed in terms of their roles in different network communities.
Provincial hubs are connected mainly to nodes in their own mod-
ules,whereas connector hubs are connected to hub nodes in other
modules.
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and a wide spectrum of learning disabilities and behavior disorders
present in infancy and childhood (Ure et al., 2015; Ullman et al., 2015;
Johnson S. and Marlow N., 2011 Woodward et al., 2006). Detailed neu-
ropsychological studies prove that in adolescence, children born very
preterm show executive function impairments in tasks involving re-
sponse inhibition, visual-perceptual tasks and mental flexibility
(Johnson et al., 2011). In children born preterm,WM abnormalities par-
ticularly in the frontal lobe have been associated with impaired
neurocognitive function (Duerden et al., 2013). Interestingly,moderate-
ly preterm infants with IUGR show the same incidence of about 40% of
cognitive deficits as EP children (Guellec et al., 2011), leading to a
large societal burden of neurocognitive under-achievement.

In this context, and since the development of functional connec-
tions is clearly dependent on the establishment of cerebral fiber
pathways, their maturation and myelination (Supekar et al., 2012;
Smyser et al., 2010;), we hypothesized that the extremely preterm
born children (b28 weeks gestation), and children born moderately
preterm (28–37 weeks gestation) with IUGR will show different brain
structural abnormalities depending on at what time in development
the insult takes place, predisposing them to specific cognitive and be-
havioral deficits distinct from control preterm infants.

DiffusionMRI (dMRI) allows studyingwhitematter tracts in-vivo and
non-invasively by means of connectivity matrices (or connectomes)
(Hagmann et al., 2012, 2008; Sporns and Zwi, 2004). A brain connectome
can be seen as a network (equivalently, a graph), representing pairwise
relations between interregional ensembles of neuronal elements
(nodes), where the links represent anatomical connections formed
by white-matter fiber paths (Meskadji et al., 2013; Sporns O., 2012;
Bullmore and Basset, 2011). This abstract representation of a com-
plex system such as the brain makes graph theory a suitable frame-
work for mathematical analysis. Indeed, this network model allows
looking at the brain as an integrative complex system, and enables
quantifying rates of brain structural variability in terms of measures
of network integration, segregation and topology (some basic notions
on network measures are resumed in Boxes 1, 2 and 3).

Connectomics has beenmainly used in adult populations in the study
of a broad spectrum of brain disorders such as epilepsy (Lemkaddem
et al., 2014), schizophrenia (Griffa et al., 2015) andmild cognitive impair-
ment (MCI), among others (see Griffa et al., 2013 for a review). In pediat-
ric populations, connectomics has been used to study brain development
beginning at its early stages and continuing through adolescence and
adulthood (Pannek et al., 2014; Dennis and Thompson, 2014; Kim et al.,
2014; Tymofiyeva et al., 2013; Hagmann et al., 2012; Fan et al., 2011).
From this point of view, the human brain network can be considered to
be a small-world network that is organized according to a hierarchical
modular architecture, composed by communities of nodes highly inter-
connected between them, but sparsely connected with other modules
(Bullmore and Sporns, 2009). This modular structure of brain networks
Box 1
∣Network integration

Ability to rapidly combine specialized information from distributed
brain regions.
Path length: number of steps required for moving from a given
node to another. Generally, only the shortest path is considered,
i.e. the average shortest distance between any two nodes.
Global efficiency: quantifies the exchange of information across
the whole network where information is concurrently exchanged.
Node degree: represents the number of connections of a given
node.
Node eccentricity: the greatest (geodesic) distance between this node
at any other node in the network. It can be thought of as how far a
node is from the node most distant from it in the graph.
is thought to be a crucial characteristic in terms of brain evolution and de-
velopment (Meunier et al., 2009).

Prenatal (neuro)development is a highly dynamic process, with an
initial phase of abundant formation of new connections, followed by a
phase of selection and pruning of connections (Innocenti and Price,
2005). The major axonal projections are formed mainly between mid-
gestation and term birth, leading to the establishment of all major mac-
roscopic white matter tracts as early as birth. A recent global brain net-
work study demonstrates that even early in development, human brain
already exhibits an adult-like structural network organization, showing
both small-world characteristics (Ratnarajah et al., 2013) and rich-club
organization (Ball et al., 2012). Indeed, it has been shown that full-term
Small-world network: characterized by the presence of abundant
clustering of connections combined with short average distances
between neuronal elements. In such networks, most nodes are
not neighbors of one another, but can be reached from every other
by a small number of hops or steps. These networks maximize in-
formation processing while minimizing wiring costs, support seg-
regated and integrated information processing, and present
resilience against pathology.
Modularity: measure of the structure of networks or graphs.
Roughly, it quantifies the ease with which whole-brain network
can be divided into distinct subnetworks or “modules” (also called
groups, clusters or communities). Networks with high modularity
have dense connections between nodes within modules but
sparse connections between nodes in different modules.
Rich-club index: is a metric on networks designed to measure the
extent to which well-connected nodes also connect to each
others.
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newborns demonstrate already modular brain network architecture,
even though this is subject to substantial changes across development.
Yet, at birth, these tracts are in an immature state, supporting only
limited, immature, functional interactions (Collin and Van den Heuvel,
2013).

Early postnatal development is characterized by a phase of exuber-
ant axonal removal, which has been suggested to be roughly completed
by the age of 2 years (Lamantia and Rakic, 1990). Following the first
postnatal months, the surviving connections are strengthened by in-
creases in axon diameter and myelination. From the connectome
point of view, this phase translates to the connectome development
being mainly driven by modulations in connection strength, involving
specialization of the connectivity profile of regions. Indeed, Hagmann
and colleagues demonstrated that node strength and efficiency is in-
creased from 2 to 18 years, while the clustering coefficient decreases
(Hagmannet al., 2010), showing an increasingly integrated connectome
topology with development. In fact, across childhood, adolescence, and
early adulthood, the connectome reorganizes into amore integrated to-
pology, with increased segregation of anatomically clustered regions
and increased integration between cortical regions that are spatially
distributed, but functionally connected, into a subnetwork (Fair et al.,
2009).

Both EP and IUGR conditions have been associated with alterations
in the large-scale brain network structural topology and organization
(Zubiaurre-Elorza et al., 2012; Esteban et al., 2010). These alterations
have been further linked to abnormal scores in neurodevelopmental
and socio-cognitive performance. Batallé and colleagues (Batalle et al.,
2012) used diffusion-MRI based network analysis to describe quantita-
tive differences in global brain connectivity in IUGR one-year-old chil-
dren and associated these differences with impairments in
neurodevelopmental outcome at two years of age. Long-term brain or-
ganization following EP and IUGR, and its relationwith higher cognitive
skills and social cognition at 6 years of age, has been further assessed by
means of regional connectomics (Fischi-Gómez et al., 2014). At school
age, longer gestational age has been associated with improved brain to-
pological organization (Dae-Jin et al., 2014).

However, while EP and IUGR effects in brain connectivity have been
studied independently, little is known about the effect of the combina-
tion of both factors. Moreover, network-based analyses in such popula-
tions mainly focus on the segregation and integration principles of their
brain networks, neglecting, to some extent, the overall topological brain
network organization. Yet, as assessed by Pessoa in (Pessoa, 2014):
“while the number of connections is important in determiningwhether
a region will operate as a hub, its structural topology is relevant, too”. In
other words, while the connectivity strength of a certain brain region
should be considered if we want to understand its impact on behavior,
knowing the topology of this connectivity pattern is essential, too. Ac-
cordingly, a region that connects to just a few others will have much
less of an impact than one that ismore richly connected. That is, a region
with local connectivity will contribute to local computations, whereas a
region with more widespread connectivity will have a broader effect.

This study builds on our previous work, where the structural con-
nectivity of preterm children and moderate preterm children with
IUGRwas compared and related to higher order cognitive and behavior-
al skills (Fischi-Gómez et al., 2014). However, rather than analyzing the
regional structural connectivity by itself, here we used a connectome
analysis to characterize the structural brain networks of these children,
with a special focus on the topological organization. First, the modular
topology of structural brain networks of these high-risk children is
assessed and the similarity of their brain communities' structure com-
pared using information theory derived metrics. Their brain network
substrate is then analyzed bymeans of network organizational features
and measures of network integration and segregation. The main goal is
to globally study the brain network as an ensemble in order to find pos-
sible patterns of topological organization that may explain the similar
incidence of neurocognitive and neurobehavioral impairment seen in
these children at school age. Moreover, we explicitly explore the effect
of the combination of extreme prematurity and IUGR on the overall
brain network organization (i.e. topology), based on the hypothesis
that the combination of these conditionswould lead to a completely dif-
ferent brain network organization.
2. Material and methods

2.1. Subjects

51 premature born children at 6 years of age were recruited from
the Child Developmental Units at the University Hospitals of Geneva
and Lausanne. Perinatal data was prospectively recorded for all sub-
jects, including birth weight (BW), gestational age at birth (GA) and
gender. Childrenwere classified as: (i) children bornmoderately preterm
with normal growth (controls), (ii), children born at GA b28 weeks
(extremely preterm, EP), (ii) children born moderately preterm with
additional IUGR (IUGR only, IUGR) and (iv) children born at GA
b28 weeks with additional IUGR (IUGR + EP) (see Table 1).

IUGRwas defined as an estimated fetalweight below10th percentile
(confirmed at birth) and on criteria of placental insufficiency according
to abnormal umbilical artery pulsatility index and/or cerebroplacental
ratio and/or mean uterine artery pulsatility index as described in an
earlier study (Borradori-Tolsa et al., 2004).

None of the children had any sign of prematurity-associated brain
lesions on MRI at term equivalent age, as assessed by preterm brain
injury scores (Woodward et al., 2006). At 6 years of age, their MRI
scans were read as normal by experienced neuroradiologists. All of the
recruited children were free from medication and from psychiatric or
neurological diseases. Parental socio-economic status (SES) and mater-
nal education was also recorded and assessed using the Largo scale
(Largo et al., 1989).
2.2. Neurodevelopmental assessment

Infants' cognitive assessment was carried out using the French
version of the Kaufman Assessment Battery for Children 1 (K-ABC
1) (Kaufman and Kaufman, 1983). More specifically, children were
mainly tested for the overall cognitive outcome using the sequential
and the simultaneous K-ABC scales and the mental processing compos-
ite score (MPC). The sequential processing scale primarily measures
short-term memory and consists of subtests that measure problem-
solving skills where the emphasis is on following a sequence or order.
The simultaneous processing scale examines problem-solving skills
that involve several processes at once. The sequential and simultaneous
processing scales are combined to comprise themental processing com-
posite. The mental processing composite score is considered the global
estimate of a child's level of intellectual functioning (Sattler, 1992).
2.3. MRI data acquisition

Children underwent MRI examinations on a 3T Siemens TrioTim
system (Siemens Medical Solutions, Erlangen, Germany). For each sub-
ject, high-resolution T1-weighted (T1w) images were acquired using a
3DMagnetization Prepared Rapid Acquisition Gradient Echo (MPRAGE)
protocol, with TE = 2.91 ms, TR = 2500 ms, TI = 1100 ms. Diffusion
weighted images (DWI) were acquired using a diffusion sensitized
single echo planar imaging (SE-EPI) sequence covering 30 diffusion
directions (b = 1000 m/s2), and an additional image without
diffusion-weighting (b0), with TR = 1020 ms and TE = 107 ms. The
resolution of both scans was 1.8 × 1.8 × 2 mm3. All acquired images
were visually inspected for apparent artifacts, and 2 subjects excluded
accordingly. DWIs were corrected for eddy currents effects and simple
head motions using FMRIB's diffusion toolbox (www.fmrib.ox.ac.uk).

http://www.fmrib.ox.ac.uk


Table 1
Sample characteristics of the study participants according to gestational age (GA) and presence of intrauterine growth restriction (IUGR). Caseswith severe neurological impairmentwere
not included in the study.

Control (n = 8) EP (n = 22) IUGR (n = 11) IUGR + EP (n = 10)

Gender (male/female) 3/5 9/13 5/6 7/3
GA [weeks] 32 (2.5) 26.7 (1) 32.5 (1.5) 26.7 (0.8)
BW [g] 1652.5 (402.4) 960.9 (193.5) 1181.8 (260.5) 657 (117.3)
BW z-score −0.3 (0.8) 0.3 (1) −2.1 (0.4) −1.5 (0.7)

Data is presented as mean (standard deviation) for continuous variables and count for categorical variables.
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2.4. Data processing

2.4.1. Structural connectome construction
The extraction of the whole brain structural connectivity matrices

(connectomes) for each subject was performed using the Connectome
Mapping Toolkit, a python-based open-source software that imple-
ments a full diffusion MRI processing pipeline, from raw diffusion/T1/
T2 data to multi-resolution connection matrices (www.cmtk.org,
(Daducci et al., 2012)). The high-resolution T1w volume is first regis-
tered to the diffusion space using the bbregister tool from Freesurfer
software (http://surfer.nmr.mgh.harvard.edu/). From there, the whole
processing pipeline can be sequentially divided in (i) WM-GM surface
extraction and cortical and subcortical parcellation (again, using
Freesurfer), (ii) streamline tractography (done by an in-house devel-
oped method implemented in the cmtk pipeline and (iii) connectome
construction, by estimating the connection density between each pair
of regions of interest (ROI). The connection density between two corti-
cal or subcortical ROIs is calculated as the sum of all streamlines
connecting these two ROIs divided by the length of the streamlines.
This value is normalized by the size of the ROIs.

2.4.2. Brain network construction: defining nodes and edge weights
Brain network's nodes were defined as the cortical ROI centroids.

Edge weights were characterized as the structural connectivity (SC)
between each pair of cortical regions. Following (Fischi-Gómez et al.,
2014), the SC was modeled as the product of 2 components. The first
component is the group connection density (gCD), computed as the
mean connection matrices in a given group. Since the mean is non-
null if at least one of the elements is non-null, these group average con-
nectivity matrices consist a support of the connectivity in each group
and represent the maximum grid of connections for each group. The
gCD matrices did not show any statistically significant differences
between groups in terms of average strength and network density.
This fact was expected due to the absence of gross brain pathology.
The second component is the so-called connection efficacy, considered
to be subject-dependent. It is computed as themean fractional anisotro-
py (FA) value of the bundle connecting two cortical ROI. Thus, each in-
dividual participant contribution is considered to be the product of the
group mean connection density and the individual connection efficacy.

2.4.3. Network features
Brain networks can help to understand the large-scale structural

topology of brain connectivity (Bullmore and Sporns, 2009). They can
be analyzed using graph theory measures, characterizing network
structure (topology) and function, and measuring changes related to
the refinement in specific metrics of networks topology (see Boxes 1,
2 and 3 in the introduction section). Global description of the brain net-
work includesmeasures of topological organization (modularity, small-
world and rich-club indices), integration and segregation (Rubinov and
Sporns, 2010).

2.4.3.1. Organizational measures
2.4.3.1.1. Small-world and rich-club attributes. The human brain

connectome proved to be a small-world and rich-cub network (i.e.
characterized by the presence of abundant clustering of connections
combined with short average distances between neuronal elements
(Sporns and Zwi, 2004)), favored by the presence of a rich-club set
of tightly connected nodes (van den Heuvel and Sporns, 2011). It
is organized according to a hierarchical modular architecture com-
posed by communities of nodes highly interconnected between
them but sparsely connected with other modules (Bullmore and
Sporns, 2009). This modular structure of brain networks is thought
to be a crucial characteristic of brain evolution and development
(Meunier et al., 2009). In this study, we computed the normalized
rich-club coefficients Φnorm(k) for several degree values k as in
Van den Heuvel and Sporns (2011). These coefficients describe the
exceeding level of connectedness between high degree nodes com-
pared to a randomized reference network. A value above 1 indicates
a rich-club network architecture.

Small-world indices were computed with respect to the random
equivalent network with same degree distribution of each subject (see
(Bullmore and Sporns, 2012) for a comprehensive description of these
measures).

2.4.3.1.2. Brain network modular architecture. In order to disentangle
the existence of a network communities structure, for each brain net-
work we computed its optimal modular decomposition, i.e. the com-
plete subdivision of the network in non-overlapping modules. A large
variety of conceptually different and competingmethods for communi-
ty detection in graphs have been proposed. However, in the context of
brain network analysis, the modularity index Q is the preferred choice,
as it is a popular and effective measure of network decomposability
and quality of the partitions.

The modularity index Q, was originally introduced by (Newmann,
2006) and defined as the number of edges connecting nodes belonging
to the same community, minus the expected value of interconnecting
edges in absence of any community structure, i.e. in an equivalent ran-
dom graph. Formally, Q can we expressed as (Newmann, 2006):

Q ¼ 1
2

Aij−Pij
� �

δ Ci;C j
� �

with A the binary or weighted adjacency matrix of network G (Aij

being an element of A), m the total number of edges in the graph, and
the δ function expressing the co-occurrence of two nodes (i;j) in the
same cluster, i.e. δ (Ci,Cj) = 1 iff Ci= Cj, with Ci community assignment
of node i. Pij expresses the expected number of edges between nodes i
and j, in an equivalent random network. This probability of connection
between two nodes is proportional to the product of their degree k:

Pij ¼
kik j

2m
:

2.4.3.1.3. Optimal modular decomposition of brain networks. In
this work, the optimal modular decomposition was determined
using the Brain Connectivity Toolbox (BCT) https://sites.google.
com/site/bctnet/) by selecting the partition with the highest Q
value from 100 runs of the Louvain algorithm (Blondel et al., 2008).
Besides its computation efficiency, the choice of the Louvain algo-
rithm was done based on the fact that it incorporates a notion of

http://www.cmtk.org
http://surfer.nmr.mgh.harvard.edu
https://sites.google.com/site/bctnet/
https://sites.google.com/site/bctnet/


Table 2
Mean value and standarddeviation (mean/std) for theneurocognitive scores for all groups
under analysis.

Cognitive scores CONTROL EP IUGR IUGR + EP

K-ABC sequential 99.37/9.59 94.5/15.36 100.81/16.43 95.18/13.21
K-ABC
simultaneous

109/7.25 96.90/9.99 (*) 101.45/8.86 (*) 95.54/15.87 (*)

K-ABC composite 105.12/8.90 95.04/11.75 101.18/13.11 93.54/16.86
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modular hierarchical structure that is well suited for brain analysis
questions. The algorithm is composed of two steps iteratively repeat-
ed until convergence to a modularity maximum. First, each node is
placed in a separate module, and all possible node moves between
modules are evaluated in terms of modularity gain (step 1). When
no individual move can further improve the Q value, nodes belong-
ing to the same community are agglomerated (step 2) in order to
form new ‘super-nodes'. Step one (moves evaluation) is repeated
on the new ‘super-nodes' network. The two steps are repeated
until convergence.

Following (Rubinov and Sporns, 2011), the partitions obtained with
the Louvain algorithm were compared using the mutual information
(MI) and variation of information (VI) indices described in Meila
(2007). These two measures, based on the concept of entropy, quantify
similarities and differences between graphs partitions. The mutual in-
formation (MI) quantifies how much information is shared by the two
(different) partitions Ci and Cj of a given network G. Roughly speaking,
MI tells how much we learn about Ci if we know Cj, and viceversa.
Nevertheless the most commonly used measure of similarity in
graph is the normalized mutual information (MIn), introduced by
(Danon et al., 2005). This measure equals 1 if the two partitions are
identical, whereas it has an expected value of 0 is the two partitions
are independent.

The variation of information (VI) expresses the quantity of informa-
tion intrinsic to the two partitions, corrected by the information shared
by the two partitions. VI is up-bounded by the logarithm of the number
of nodes (log n) and can be therefore normalized by this value, giving a
rescaled value of VI to the range [0,1].

In short, one can assume that a partition effectively represents a
group if the distance between subjects of the same group in terms of
MIn and VIn is small (in other words, if MIn values are high and VIn
values are small). These twomeasureswere used to quantify the consis-
tency of the brainmodular architecture for the subjects belonging to the
same group and to study the variability of the brain modular decompo-
sition of EP, IUGR and IUGR+ EP subjects when compared to the rest of
the cohort.

2.4.3.1.4. Network community structure. In order to understand the
organization of connectivity networks, it is important to determine
the community structure underlying these complex networks. In-
deed, considering that the study of brain networks is confounded
by the fact that analysis consists of data collected from multiple sub-
jects, it is important to identify communities representative of all
subjects in a group. The consensus clustering provides a method to
represent the consensus across multiple runs of a clustering algo-
rithm, to determine the number of clusters in the data, and to assess
the stability of the discovered clusters. In other words, this approach
finds, the partition most representative of the actual community
structure of a group.

In this study the representative brain network partition (or com-
munity structure) for each groupwas computed bymeans of the con-
sensus clustering algorithm (CC) (Lancichinetti and Fortunato, 2012;
Monti et al., 2003) (with a threshold value of the consensusmatrix of
tau = 0.3 and n = 100 iterations).

2.4.3.2. Brain network segregation and integration characteristics.
The overall network connectivity and topology was examined by
commonly used integration and segregation measures. From the
structural connectome, we computed 3 global (average shortest
path length, global efficiency and transitivity), and 6 average
nodal (average node degree, efficiency, strength, clustering coeffi-
cient (clustering index), betweenness centrality and eccentricity)
network measures. The final goal was to characterize network
structure and function by measuring changes related to the refine-
ment in specific metrics of networks topology (see (Rubinov and
Sporns, 2010) for definitions and detailed information of the net-
work measures).
2.5. Statistical analysis

Statistical case–control and case–case comparisons between groups
were performed for (i) cognitive scores and (ii)measures of network in-
tegration and segregation using a Wilcoxon rank-sum test.

The optimal modular decomposition of each individual brain
network was compared to the rest of the cohort in terms of MIn and
VIn indices, using a Wilcoxon ranksum test. We tested three different
settings: (i) intra-group comparison, where each subject's modular
decomposition was compared to the rest of the subjects belonging to
the same group, (ii) case–control comparison, where each of the EP,
IUGR + EP and IUGR subjects were compared to the control subjects
and (iii) case–case comparison, where EP, IUGR+EP and IUGR subjects
were compared between them.

3. Results

In this study, connectome analysis was used to characterize the
structural brain networks of children born extreme and moderately
premature (with or without additional growth restriction, IUGR).
Here, results are presented separately for the four groupswith themod-
erately preterm children with normal intrauterine growth acting as
control group.

3.1. Cognitive scores group differences

Table 2 shows the mean K-ABC scores for all groups, together with
the standard deviation. In all K-ABC scales, higher scores are related to
higher cognitive skills. Whilst the mental processing composite score,
considered as the global estimate of a child's level of intellectual func-
tioning, did not show any significant difference for any case group
when compared to controls, all case groups (EP, IUGR and IUGR + EP)
showed significantly reduced K-ABC simultaneous score compared to
controls, with p = 0.0051 (EP), p = 0.03 (IUGR) and p = 0.0337
(IUGR + EP), respectively after FDR correction. No other statistical
differences were found. No significant differences were found for the
case–case comparisons (EP vs. IUGR, EP vs. IUGR + EP and IUGR vs.
IUGR + EP).

For assessment of the cognitive outcome, we used the KABC se-
quential, simultaneous and composite scores. Higher K-ABC scores
indicate higher cognitive performance. Significant differences
(when compared to controls) are marked with (*). Statistical signif-
icance was declared at level 0.05 and the resulting p-valueswere FDR
corrected.

3.2. Network features: group differences

3.2.1. Organizational measures

3.2.1.1. Small-world and rich-club attributes. For all groups, small-
world characteristics of the networks were detected, with no signif-
icant differences (see Table 3). In the same line, for all subjects the
presence of a rich-club of interconnected cortical and subcortical



Fig. 1.Matrices representing respectively the normalized (a)MI (Min) and (b) VI (Vin) values between each pair of optimalmodular decompositions. Each row of thematrix corresponds
to a single subject. Each cell of thematrix depicts theMin and Vin values obtainedwhen comparing each subject's optimal modular decomposition to the rest of the cohort (see color bars
next to each matrix). White lines separate the subjects in the 4 different groups. Blocks in the diagonal of each matrix correspond to the intra-group comparison. Off-diagonal blocks
correspond to the inter-groups comparison. CTRL: control subjects; IO: IUGR subjects; IE. IUGR + EP subjects; EP: EP subjects. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

Table 4
Min and Vin average and standard deviation values for the intra-group optimal modular
decomposition comparison.

MIn (mean ± std) VIn (mean ± std)

CTRL–CTRL 0.81613 ± 0.081501 0.18418 ± 0.081337
EP–EP 0.86198 ± 0.056419 0.13186 ± 0.054544
IUGR–IUGR 0.82578 ± 0.050917 0.1818 ± 0.052754
IUGR + EP–IUGR + EP 0.85195 ± 0.049577 0.14386 ± 0.047798

For each subject, its modular decomposition was compared to the rest of the subjects in
the same group by means of the normalized MI and VI indices. These indices were
compared statistically using a Wilcoxon ranksum test. No differences were found in
these indices among subjects of the same group.

Table 3
Mean small world indices for all groups and group-averaged number of clusters, modularity indices (mean± standard deviation) for subject-wise brain networkmodular decomposition
for the four groups.

CTRL EP IUGR IUGR + EP

Small-world index (swi) 2.9 ± 0.22 2.39 ± 0.42 3.03 ± 0.27 3.21 ± 0.51
Number of modules (n) 10.12 ± 0.64 9.35 ± 0.71 10.82 ± 0.75 9.7 ± 0.67
Modularity index (Q) 0.6868 ± 0.0102 0.7034 ± 0.0110 0.6990 ± 0.0225 0.6975 ± 0.0067
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hubs was found. Again, the comparison of rich-club coefficients did
not show conclusive differences among groups.

3.2.1.2. Brain network modular architecture. All subjects presented a
modular architecture of their brain network, with overall compara-
ble mean number of modules (or clusters) and mean modularity
index (Q). Interestingly, and although the comparison showed no
significant difference, EP children tended towards a smaller number
of brain network modules (see Table 3), while IUGR children had a
higher number.

Number of modules (n), modularity index (Q) and small world
index (swi) for all case subjects (EP, IUGR and IUGR + EP) were com-
pared to controls using a Wilcoxon ranksum test. No significant differ-
ences were found.

3.2.1.3. Optimal modular decomposition of brain networks. The optimal
modular decomposition of each brain network was computed. The
resulting network's decompositions were compared between subjects
using the normalized mutual information (MIn) and variation of infor-
mation (VIn) indices. Fig. 1 reports the MIn and VIn values between
each pair of subjects' optimal modular decompositions. Each row of
the matrix represents the MIn (resp. VIn) values of one subject
network's decompositionwith respect to the rest of the cohort. For visu-
alization purposes, each matrix is divided in different blocks by white
lines. The diagonal blocks represent the resulting MIn and VIn indices
within the same groups of subjects (intra-group comparison), while
the off-diagonal blocks characterize these values for the inter-group
comparison. HigherMIn values togetherwith lower VIn values in the di-
agonal blocks indicate similar modular topologies among subjects be-
longing to the same group. In this case, no statistical differences were
foundwhen comparing subjects belonging to the same group (repeated
2-sample Wilcoxon ranksum test). On the contrary, MIn and VIn distri-
butions for subjects belonging to different groups (off-diagonal blocks)
appeared significantly different in all cases (p b 0.05, FDR corrected),
talking in favor of different, group-specific modular brain network
structure.

It bears noting that EP and IUGR + EP subjects showed a relative-
ly high inter-group similarity (maximumMIn average/minimum VIn
average, see Fig. 1 and Table 5), which reflects a close modular
structure.

Tables 4, 5 and 6 report the MIn and VIn mean and standard
deviation values for both intra-group and inter-group comparisons.
Statistically significant differences are marked with (*). When compar-
ing subjects within the same group, the relatively high MIn values
together with the lower VIn values prove the similar overall network
structure of all subjects belonging to the same group, with no significant
differences (see Table 4).

As seen in Table 5, for EP, IUGR+EP and IUGR subjects, themodular
structure of the brain networks when compared to controls appeared
significantly different.

Table 6 shows that the EP and IUGR+ EP subjects have a close brain
network modular structure. Even if in all cases the resulting network
decomposition was significantly different, the higher MIn values



Table 7
List of abbreviations for the cortical and subcortical regions of interest (from Freesurfer
parcellation). (source: http://neurolex.org/wiki/ and Atlas of the human brain, J.Mai.AP
3rd Edition).

Label Anatomical region Label Anatomical region

LOF Lateral orbito frontal gyrus PCAL Pericalcarine cortex
PORB Pars orbitalis, orbital part of the

inferior frontal gyrus
LOCG Lateral occipital gyrus

FP Frontal pole LgG Lingual gyrus
MOF Medial orbito frontal gyrus FG Fusiform gyrus
PTRI Pars triangularis, triangular part of

the inferior frontal gyrus
PHG Parahippocampal gyrus

POPE Pars opercularis, inferior part of the
inferior frontal gyrus

EC Enthornial cortex

rosMFG Middle frontal gyrus, rostral TP Temporal pole
SFG Superior frontal gyrus ITG Inferior temporal gyrus
caMFG Middle frontal gyrus, caudal MTG Middle temporal gyrus
PrG Precental gyrus bnkST Superior temporal

sulcus, banks region
PaG Paracentral lobule STG Superior temporal gyrus

Table 5
Min and Vin average and standard deviation values for the case–control optimal modular
decomposition comparison.

MIn (mean ± std) VIn (mean ± std)

CTRL–EP 0.79988 ± 0.056778 (*) 0.1955 ± 0.055527 (*)
CTRL–IUGR 0.76813 ± 0.04112 (*) 0.23726 ± 0.042292 (*)
CTRL–IUGR + EP 0.81224 ± 0.061895 (*) 0.1955 ± 0.055527 (*)

For each EP, IUGR and IUGR+EP subjects, resp. Itsmodular decompositionwas compared
to the control subjects by means of the normalized MI and VI indices. These indices were
compared statistically using a Wilcoxon ranksum test. Significant differences are marked
with (*). Min and Vin indices for all case subjects were significantly different when com-
pared to controls. Statistical significance was declared at level 0.05 and the resulting p-
values were FDR corrected.
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together with the lower VIn values talk in favor of a relatively similar
modular structure.
rosACG Anterior cingulate gyrus, rostral trTG Transverse temporal
gyrus

caACG Anterior cingulate gyrus, caudal Th Thalamus
PCG Posterior cingulate gyrus Cd Caudate
ICG Isthmus cingulate gyrus PUT Putamen
PoG Postcentral gyrus Pall Pallidum
SMAR Supramarginal gyurs, inferior part of

the parietal lobule
Ac Accumbens

SPaG Superior parietal gyrus sTh Sub-thalamus
IPaG Inferior parietal gyrus Hi Hippocampus
PCUN Precuneus Amg Amigdala
Cun Cuneus BS Brain stem
3.2.1.4. Network community structure. Network community structure
for each group is shown in Figs. 2–5. After running the consensus
clustering algorithm, the four group-representative community
structure partitions counted 11 clusters for control and IUGR sub-
jects, 9 for EP and 10 clusters for IUGR + EP subjects. With the con-
sensus clustering algorithm we obtained the partition the most
representative of the actual community structure of each group,
which do not necessarily match the averaged number of modules
among subjects of the same group.

The 4 connectograms were constructed using the Circos visualiza-
tion tool, a visualization tool originally used for genomics data but
adapted for brain analysis (see Irimia et al., 2012). In the connectograms
shown in Figs. 2–5, each cortical structure is assigned a unique RGB
color, depending on the brain region they belong to (frontal: red-
maroons; limbic: greens; parietal: pinks; temporal: blues; occipital:
yellows and subcortical: purples). Clusters are named from C1 to C*
(9, 10 or 11 depending on the group). Right hemisphere clusters are
clusters composed by regions from the right hemisphere only. Left
hemisphere's clusters, indicate clusters containing regions from the
left hemisphere only. Inter hemisphere clusters contain regions from
both hemispheres. Gray lines indicated connections between different
clusters. The values close to each cluster connection indicate the num-
ber of clusters to which each cluster connects to, divided by the total
number of clusters. The inner colored circles (known as heatmaps)
represent, for each node of the network, different nodal measures;
node degree in red, node strength in blue, node clustering index
in green and node efficiency in purple (see legend below the
connectograms). The scale of each measure is determined by the mini-
mum and maximum values of these respective measures. The tables
below the images indicate, for each cluster, the mean values of the
network measures used in the analysis.

The visual inspection of the consensus clustering configurations
corroborates the numerical results, and indicates that the main
Table 6
Min andVin average and standarddeviation values for case–case optimalmodular decom-
position comparison.

MIn (mean ± std) VIn (mean ± std)

EP–IUGR 0.74954 ± 0.038688 (*) 0.2502 ± 0.038781 (*)
EP–IUGR + EP 0.81904 ± 0.048115 (*) 0.17442 ± 0.047043 (*)
IUGR–IUGR + EP 0.76368 ± 0.04176 (*) 0.23821 ± 0.040862 (*)

For eachEP, IUGR+EP and IUGRsubjects, resp., itsmodular decompositionwas compared
to the rest of the subjects by means of the normalized MI and VI indexes. These indexes
were compared statistically using a Wilcoxon ranksum test. Significant differences are
marked with (*). Min and Vin were significantly different in all cases. Statistical signifi-
cance was declared at level 0.05 and the resulting p-values were FDR corrected.
differences in modular structure among groups are found in the fron-
tal and limbic regions. Indeed, while in the temporal, parietal and oc-
cipital regions nodes tend to cluster in a similar way in all cases, the
frontal and limbic regions show higher dissimilarities between
groups.

More specifically, for control subjects, temporal (blue), occipital
(yellow) and parietal areas (pink) cluster almost symmetrically (C4,
C5 and C6 clusters are equal to C7, C8 and C9, with the exception of
the posterior cingulate giyrus (PCG-l) in the left hemisphere, C9). Fron-
tal areas (red) also showed a symmetric pattern of clustering. The big-
gest differences between hemispheres are found in the limbic (in
green) and central areas (precentral, paracentral and postcentral gyri,
respectively PrG, PaG and PoG), which form two independent clusters
in the right hemisphere (C2 and C3), but clusterwith the frontal regions
(C10) and subcortical regions (C11) respectively in the left hemisphere
(see Fig. 2).

Concerning the EP subjects, temporal (blue), occipital (yellow)
and parietal (pink) areas cluster symmetrically again (C2, C3 and
C4 clusters are equal to C5, C6 and C7). Compared to controls, the
main differences are found in the clusters composed by the frontal
(red) and limbic areas (in green) (see Fig. 3). In this case, limbic
areas cluster with the frontal areas (C1 and C8 clusters) in both
hemispheres. Right hemisphere's central areas (PrG, PaG and PoG)
cluster with some subcortical areas from both right and left hemi-
spheres (C9), while left central areas cluster with left hemisphere's
frontal and limbic areas (C8).

IUGR subjects' show the most different network community struc-
ture compared to the rest of subjects (see Fig. 4). On the right hemi-
sphere, IUGR network community structure is practically equal to the
control subjects, apart from the central regions that cluster with the
supramarginal gyrus (SMAR) also (C2). On the left hemisphere the dif-
ferences are more apparent. C6 and C7 (temporal and some limbic re-
gions, namely the parahippocampal gyrus (PHG), the enthornial
cortex (EC) and the hippocampus (Hi), maintain the same pattern as
EP and control subjects (clustering together and being almost symmet-
rical in both hemispheres). However, for this group of subjects the

http://neurolex.org/wiki/


Table 8
Mean and standard deviation (mean ± std) values for the network integration and segregation measures for all groups under analysis.

CTRL EP IUGR IUGR + EP

g_eff 6.9464 ± 0.2546 6.0749 ± 0.4717 5.9041 ± 0.4866 5.8670 ± 0.5428
trans 4.6149 ± 0.7814 4.6485 ± 0.7680 4.3738 ± 1.1838 4.1926 ± 0.9210
lambda 0.2024 ± 0.0077 0.2465 ± 0.0311 0.2510 ± 0.0432 0.2526 ± 0.0321
n_eff 6.4881 ± 1.3822 6.2962 ± 1.4447 5.9560 ± 1.4475 5.7657 ± 1.4045
n_str 213.0258 ± 14.7313 193.3104 ± 17.9609 182.1350 ± 23.0682 184.6044 ± 19.3097
CI 5.9477 ± 1.9507 5.9070 ± 2.0848 5.6234 ± 2.1106 5.3877 ± 2.0741

g_eff: global efficiency; trans: transitivity; lambda: average shortest path length; n_eff: averaged nodal efficiency; n_str: averaged nodal strength; CI: clustering index.

Table 9
Network integration and segregation measures differences in the case–control compari-
sons for all subjects under study. Arrows indicate the sense of the difference (↓ indicates
decreased values and ↑ increased). Thep-value of the comparison is shown inparentheses.
Statistical significance was declared at level 0.05 and the resulting p-values were FDR
corrected. EP and IUGR subjects have similar network changes when compared to con-
trols, except for the averaged path length that is increased for EP and IUGR+ EP subjects.
This is not the case for IUGR subjects.

g_eff trans lambda n_eff n_str CI

EP (vs CTRL) ↓
(0.00079)

n.s ↑
(0.0025)

n.s ↓
(0.0051)

n.s

IUGR (vs CTRL) ↓
(0.0089)

n.s n.s n.s ↓
(0.017)

n.s

IUGR + EP (vs CTRL) ↓
(0.0033)

n.s ↑
(0.034)

n.s ↓
(0.015)

n.s

g_eff: global efficiency; trans: transitivity; lambda: average shortest path length; n_eff: av-
eraged nodal efficiency; n_str: averaged nodal strength; CI: clustering index. n.s: not
significant.

Table 10
Network integration and segregation measures differences in the case–case comparisons
for all subjects under study. Arrows indicate the sense of the difference (↓ indicates de-
creased). The p-value of the comparison is shown in parentheses. Statistical significance
was declared at level 0.05 and the resulting p-values were FDR corrected.

g_eff trans lambda n_eff n_str CI

IUGR (vs EP) n.s n.s n.s n.s ↓
(0.056)

n.s

IUGR + EP (vs EP) ↓
(0.032)

↓
(0.007)

n.s ↓
(0.0043)

↓
(0.01)

↓
(0.014)

IUGR + EP (vs IUGR) ↓
(0.046)

n.s n.s n.s ↓
(0.018)

n.s

g_eff: global efficiency; trans: transitivity; lambda: average shortest path length; n_eff: av-
eraged nodal efficiency; n_str: averaged nodal strength; CI: clustering index. n.s: not
significant.
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cuneus (CUN), pericalcarine cortex (PCAL) and lateral occipital gyrus
(LOCG) (occipital regions, in yellow) together with the lingual gyrus
(LgG) (temporal, in blue) cluster this time with the parietal regions
(in pink) and the isthmus cingulate gyrus (ICG), (see C8), instead of
clustering with the fusiform gyurs (FG), the temporal pole (TP) and
the PHG, EC and HI, as for the rest of the groups. Other striking differ-
ences are found, again, in the limbic regions (more precisely, the
cingular regions) that cluster interhemispherically (C10), and the
central regions, that cluster with subcortical structures from both hemi-
spheres (C11), such as in the control case (not the EP).

IUGR+ EP subjects displayed a network community structure close
to the EP one. Indeed, on the right hemisphere, IUGR + EP network
community structure is almost equal to the EP subjects' structure. As
shown in Fig. 5, C1 and C3–C5 clusters in the IUGR+EP case are exactly
the same as clusters C1–C4 in the EP case (see Fig. 3). The only difference
on the right hemisphere clusters are found for the central regions (PrG,
PaG and PoG) that form an independent cluster (C2) for the IUGR+ EP
case, instead of clustering with some subcortical structures as in the
EP case (see Fig. 3, cluster C9). For these subjects, as for controls and
EP, temporal (blue), occipital (yellow) and parietal regions (in pink)
cluster symmetrically in both hemispheres (C3–C5 are equal to C6–C8,
except for the PCG in C8). In the same line, C9 cluster of IUGR + EP
subjects is similar to C9 cluster for EP subjects (see Fig. 3), except for
the central regions of the left hemisphere (PrG, PaG, PoG) and the left
pallidum (Pall) and accumbens (Ac), that in the IUGR + EP case cluster
with some subcortical structures interhemispherically (C10).

These results allows us to hypothesize that IUGR + EP subjects are
closer in modular brain structure to EP subjects, while IUGR subjects
appear to have the most different structure with on average a higher
number of modules.

Cluster-averaged network measures did not show clear differences
among groups and clusters, albeit a slightly reduced degree, clustering
index and local efficiency (on average) for all the case groups compared
to controls (see tables below each connectogram, Figs. 2–5). What re-
mains clear, though, is that all case groups display an overall reduction
in the node strength when the nodes are considered independently. In-
deed, a closer look to the degree heatmap (in green), and specially to its
respective legend, reflects that, while the minimum nodal strength for
each groups range in between 7.5 and 8.7, the maximum values are
clearly reduced in the case groups, being the IUGR subjects the ones
that show the smallest maximum value. This finding is further support-
ed by the statistical analysis, shown in the next section (Section 3.2.2,
Integration and segregation measures).

3.2.2. Integration and segregation measures
In Table 8 we resume themean and standard values for the network

integration and segregation measures for all groups under analysis. As
we can see from the table, for all cases, the averaged path length is in-
creased while the global and local networks efficiencies are decreased,
as well as the averaged nodal strength and the averaged clustering
coefficient.

3.2.2.1. Case–control differences. As seen in Table 9, when compared to
controls, EP children showed increased network averaged path length
(p = 0.0025), and decreased global network efficiency (p = 0.00079)
and averaged node strength (p=0.0051). For IUGR subjects, significant
decreased global network efficiency (p = 0.0089) and reduced
averaged node strength (p = 0.017) was also found. IUGR + EP
children showed, as EP children, increased network averaged path
length (p = 0.034), and decreased global network efficiency
(p = 0.0033) and averaged node strength (p = 0.015).
3.2.2.2. Case–case differences. IUGR subjects showed smaller averaged
node strength (p = 0.056) when compared to EP, while IUGR + EP
children showed (compared to EP) a statistically significant decrease
in global network efficiency (p = 0.032), global network transitivity
(p = 0.007), and averaged node strength (p = 0.01), efficiency (p =
0.0043) and clustering index (p = 0.014). When comparing IUGR
and IUGR + EP subjects, differences were found in global network
efficiency, decreased for IUGR + EP subjects (p = 0.046) and in
averaged node strength, increased in IUGR + EP children (p = 0.018).
These results are summarized in Table 10.



Fig. 2.Network community structure for control subjects after running the consensus clustering algorithm. Controls' representative partition counts of 11 clusters (C1–C11). Cortical and
subcortical regions are color-coded as follows: frontal regions: reds–maroons; limbic regions: greens; parietal regions: pinks; temporal regions: blues; occipital regions: yellows;
subcortical regions: purples. Node list of abbreviations are found in Table 7 (r- and l- stand for right and left hemisphere, resp.). Right hemisphere clusters are composed by regions
from the right hemisphere only. Left hemisphere's clusters contain regions from the left hemisphere only. Inter hemisphere cluster (C11) contains regions from both hemispheres.
Gray lines indicated connections between different clusters. The inner values indicate the number of cluster to which each cluster connects to divided by the total number of clusters.
Inner circles (heatmaps) show the network measures for each node: red: node degree; blue: node strength: green: node clustering index; purple: node local efficiency (see legend
below for the respective values). The table below the image indicates for each cluster, the mean values of the network measures. For control subjects, temporal, occipital and parietal
areas cluster almost symmetrically (C4, C5 and C6 clusters are equal to C7, C8 and C9, with the exception of the PCG-l in the left hemisphere, C9). Frontal areas also showed a
symmetric pattern of clustering. The biggest differences between hemispheres are found in the limbic (in green) and central areas (PrG, PaG and PoG), which form two independent
clusters in the right hemisphere (C2 and C3), but cluster with the frontal regions (C10) and subcortical regions (C11) respectively in the left hemisphere. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 3. Network community structure for EP subjects after running the consensus clustering algorithm. EP subjects' representative partition counts of 9 clusters (C1-C9). Cortical and
subcortical regions are color-coded as follows: frontal regions: reds–maroons; limbic regions: greens; parietal regions: pinks; temporal regions: blues; occipital regions: yellows;
subcortical regions: purples. Node list of abbreviations are found in Table 7 (r- and l- stand for right and left hemisphere, resp.). Right hemisphere clusters are composed by regions
from the right hemisphere only. Left hemisphere's clusters contain regions from the left hemisphere only. Inter hemisphere cluster (C9) contains regions from both hemispheres. Gray
lines indicated connections between different clusters. The inner values indicate the number of cluster to which each cluster connects to divided by the total number of clusters. Inner
circles (heatmaps) show the network measures for each node: red: node degree; blue: node strength: green: node clustering index; purple: nodal local efficiency (see legend below
for the respective values). The table below the image indicates for each cluster, the mean values of the network measures. Here again, temporal (blue), occipital (yellow) and parietal
(pink) areas cluster symmetrically among (C2, C3 and C4 clusters are equal to C5, C6 and C7), and the main differences are found in the frontal and limbic areas. In this case, limbic
areas (green) cluster with the frontal areas (C1 and C8 clusters) in both hemispheres with central areas (PrG, PaG and PoG) clustering together also in the left hemisphere (C8), and
with some subcortical areas from both right and left hemispheres (C9) in the right hemisphere. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
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4. Discussion

This study complements our previous study on preterm infants
brain networks at school age (Fischi-Gómez et al., 2014). We have
detected specific alterations in brain topology and structural orga-
nization after early exposure to extra-uterine environment (pre-
mature birth), following antenatal adverse conditions (such as
IUGR).



Fig. 4. Network community structure for IUGR subjects after running the consensus clustering algorithm. IUGR subject's representative partition counts of 11 clusters (C1–C11). Cortical
and subcortical regions are color-coded as follows: Frontal regions: reds-maroons; Limbic regions: greens; Parietal regions: pinks; temporal regions: blues; occipital regions: yellows. Node
list of abbreviations are found in Table 7 (r- and l- stand for right and left hemisphere, resp.). Right hemisphere clusters are composed by regions from the right hemisphere only. Left
hemisphere's clusters contain regions from the left hemisphere only. Right–Left hemisphere clusters (C10 and C11) contain regions from both hemispheres. Gray lines indicated
connections between different clusters. The inner values indicate the number of cluster to which each cluster connects to divided by the total number of clusters. Inner circles
(heatmaps) show the network measures for each node: red: node degree; blue: node strength: green: node clustering index; purple: nodal local efficiency (see legend below for the
respective values). The table below the image indicates for each cluster, the mean values of the network measures. On the right hemisphere, IUGR network community structure is
practically equal to the control subjects, apart from the central regions that cluster with the SMAR also (C2). On the left hemisphere, C6 and C7 (temporal and some limbic regions —
PHG, EC and Hi-) maintain the same pattern as EP and control subjects (clustering together and being almost symmetrical in both hemispheres). The only differences in this case are
the occipital regions (CUN, PCAL, LOCG) and the LgG that cluster to the parietal regions in these subjects (C8). The main differences are found, again, in the limbic regions (cingular
regions) that cluster interhemispherically (C10), and the central regions, that cluster with subcortical structures from both hemispheres (C11), such as in the control case (not the EP).
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 5.Network community structure for IUGR+ EP subjects after running the consensus clustering algorithm. IUGR+ EP subjects representative partition count of 10 clusters (C1–C10).
Cortical and subcortical regions are color-coded as follows: frontal regions: reds–maroons; limbic regions: greens; parietal regions: pinks; temporal regions: blues; occipital regions:
yellows. Node list of abbreviations are found in Table 7 (r- and l- stand for right and left hemisphere, resp.). Right hemisphere clusters are clusters composed by regions from the right
hemisphere only. Left hemisphere's clusters, indicate clusters containing regions from the left hemisphere only. Right–Left hemisphere cluster (C10) contain regions from both
hemispheres. Gray lines indicated connections between different clusters. The inner values indicate the number of cluster to which each cluster connects to divided by the total
number of clusters. Inner circles (heatmaps) show the network measures for each node: red: node degree; blue: node strength: green: node clustering index; purple: nodal local
efficiency (see legend below for the respective values). The table below the image indicates for each cluster, the mean values of the network measures. On the right hemisphere,
IUGR + EP network community structure is equal to the EP subjects' structure (C1, C3, C4 and C5) except for the central regions (PrG, PaG and PoG) that form an independent cluster
(C2) instead of clustering with some subcortical structures as in the EP case (see Fig. 3, cluster C9). For these subjects, as for controls and EP, temporal, occipital and parietal regions
cluster symmetrically in both hemispheres (C3–C5 are equal to C6–C8, except for the PCG in C8). In the same line, C9 cluster of IUGR + EP subjects is similar to C9 cluster for EP
subjects (see Fig. 3), except for the central regions of the left hemisphere (PrG, PaG, PoG) and the left pallidum and accumbens, that in the IUGR + EP case cluster with some
subcortical structures interhemispherically (C10). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Lancichinetti and Fortunato wrote: “network system typically
display a modular organization, reflecting the existence of special af-
finities among nodes in the same module, which may be a conse-
quence of their having similar features or the same roles in the
network” (Lancichinetti and Fortunato, 2012). Relying on the work
of Lancichinetti and Fortunato, we have decomposed each individual
brain network in consistent modules and compared themwithin and
between groups using several measures of clustering similarity. Both
theMIn and VIn indices used in this study delivered an agreement on
the degree of consistency between individuals' partitions in the same
group. Thus, as the normalized mutual information (MIn) indices be-
tween partitions were high whereas the normalized variation of infor-
mation (VIn) indices were relatively low, we can assume that one
subject's partition is similar to another one in the same group. On the
other hand, the significant differences found in both case–control and
case–case comparisons (such as lower MIn indices and higher VIn
indices) confirmed our hypothesis that modular brain network struc-
ture is group-specific (for EP, EP–IUGR, IUGR and controls). Although
all four groups displayed very similar modularity index (see Table 4),
the differences between partitions among groups were substantial
(Tables 5 and 6, inter-group comparison), leading to the conclusion
that each group of subjects possesses a specific global brain network or-
ganization in order to maintain the same level of modularity (Table 3).
Indeed, our results suggest that the consensus clustering partition effec-
tively represents the actual network community structure of each
group.

The visual inspection of the group representative consensus cluster-
ing partitions (Figs. 2–5) corroborates our analytical results. The most
striking difference among groups is located in the frontal lobe and in
the brain limbic areas (gyrus fornicates). In EP subject limbic regions
(cingulate gyrus), left pallidum, and left thalamus are clustered with
frontal regions, whereas in controls they form an independent cluster.
This is in concordance with a recent study, which showed that alter-
ations in frontal lobe pathways are found in young children born pre-
term (Duerden et al., 2013). These results also support our prior study
(Fischi-Gómez et al., 2014), in which microstructural alterations in the
prefrontal cortico-basal–thalamo-cortical loop (CBTCL) were pres-
ent and correlated with socio-cognitive outcome in EP and IUGR
children.

Ball et al. demonstrated that a rich-club network of densely connect-
ed cortical hubs is established before the timeof normal birth (Ball et al.,
2014). In our study, all subjects under analysis showed an evident rich-
club organization of their brain networks with no significant differences
between groups. Likewise, the actual modularity characteristics of all
subjects were similar (all groups display roughly the same modularity
index). Interestingly, the small-world network design was also main-
tained in our groups of high-risk preterm children, unlike in populations
with neurological diseases such as Alzheimer's disease, ADHD,
schizophrenia or epilepsy (Zhao et al., 2012; Liao et al., 2010; Yao
et al., 2010). Taken all together, our results further prove that
rich-club organization after premature birth is maintained even at
school age and confirms the earlier findings of preserved rich-club
organization in the newborn period (Ball et al., 2014). Therefore,
we propose that altered maturation of prematurely born children
is less likely to be explained by rich-club brain organization chang-
es. A recent work from Karolis and colleagues, where the authors
tested the brains rich club architecture in EP born adults, led to a
similar conclusion (Karolis et al., 2016). Brain networks of extreme
premature born adults during adulthood retained their rich-club
organization.

In our analysis, network modular structure of EP, compared to
controls and IUGR subjects, displayed the smallest number of clusters
(9 clusters vs. 11 in controls). Yet, EP frontal clusters (i.e. the cluster con-
taining the frontal regions (C1 and C8 in Fig. 3)), are bigger that in the
rest of the subjects (C1 and C8 are formed by 14 and 20 regions, respec-
tively). Thus, concordant with the work of Karolis et al. our results
confirm their hypothesis that preterm brain disproportionately assigns
larger share of white matter resources to its rich-club (Karolis et al.,
2016).

Another striking difference in EP subjects' community structure is
the different clustering pattern of the majority of the subcortical
areas. In the EP, these areas cluster with the frontal and cingular re-
gions and did not form a single inter hemispheric cluster, as seen in
EP–IUGR, IUGR and controls. It is known that the role of the basal
ganglia in supporting a global exchange of information is altered
after premature birth (Fischi-Gómez et al., 2014). Our results are in
concordance with this finding. Indeed, we provide evidence that
structural connectivity and network topology appear altered after
premature birth and/or IUGR, suggesting that altered fetal environ-
ment and nutrition and/or premature birth has an impact in the de-
velopment of brain connectivity with an alteration in global network
topology.

In our previous work, the structural connectivity alterations after EP
and IUGR were already assessed. We have showed that the regional
microstructural alteration is similar in both cases with reduced connec-
tivity in the prefrontal cortico-basal ganglia-thalamo-cortical loop
(Fischi-Gómez et al., 2014). One could therefore hypothesize that the
combination of IUGR and EP would result in an additive alteration of
their brain network's structural connectivity. Nevertheless, we did not
found evidence to corroborate this hypothesis. On the contrary, our re-
sults allow us to hypothesize that IUGR + EP subjects are “closer” in
brain modular structure to EP subjects and more “distant” to controls.
While IUGR + EP subjects showed reduced network measures com-
pared to EP subjects (see Table 10), their representative network parti-
tion was similar to the EP subjects (see Figs. 3 and 5). Even if the nodal
networkmeasures for the IUGR+EP are closer to the IUGR (most likely
due to the effect of prenatal growth restriction) the cortical and subcor-
tical regions tend to cluster in the same way as they do in EP subjects.
This suggests that, albeit the relative paucity of white matter resources,
IUGR+EP subjects' brain reorganizes prioritizing a tightmodular struc-
ture as much as EP subjects' brain does. In other words, these results
may indicate that IUGR + EP structural connectivity appears to be
mainly affected by extreme prematurity. This is in accordance with
previous studies that conclude that the effect of extreme prematurity
prevails over the effect of fetal growth restriction (Yanney and
Marlow, 2004).

Preterm birth and adverse fetal conditions are associated not only
with altered brain development but also with cognitive and behavioral
deficits. Although the direct link between connectivity disruptions and
neurocognitive impairment is far from clinical consensus, there is
increasing evidence that regional connectivity abnormalities relate to
specific neurocognitive deficits (Fischi-Gómez et al., 2014; Batalle
et al., 2012). For instance, the fronto-parietal connectivity is known as
being heavily implicated in effective network communication and func-
tion (Ball et al., 2014), and alterations in the frontal networks have been
directly correlated with socio-cognitive impairments in these children
(Fischi-Gómez et al., 2014). Indeed, even if the global brain organization
remains intact after EP and IUGR, we show a significant reduction in
brain network efficiency and in averaged node strength, suggesting
that both EP and IUGR are, by themselves, risk factors for structural con-
nectivity development, which lead to limited communication efficiency
between brain network nodes.

Our previous work suggests that alterations in the structural brain
substrate due to EP and IUGR are important factors that may affect
neurobehavioral and cognitive performance (Fischi-Gómez et al.,
2014). Although altereddevelopment offiber bundlesmight play an im-
portant role in socio-cognitive outcome, network characteristics such as
segregation and function integration might better characterize higher
order cognitive impairments seen in these children. Brain segregation
is referred to as specialized processing ability that occurswithin densely
interconnected groups of brain regions, while functional integration is
considered as the ability of the brain to rapidly combine specialized
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information from distributed brain regions. Finally, higher values of
global efficiency are thought to contribute to a better ability to
transfer information between brain regions. When compared to con-
trols EP, EP–IUGR and IUGR subjects showed significant reduction of
global efficiency and nodal strength. This leads to conclusion that inte-
grative pattern (i.e., the speed at which the information from different
brain regions is combined once it has been processed in specialized
regions) of their brain networks is disrupted. However, the direct link
between altered integrative pattern and the cognitive task performance
is still missing. Our results show that both groups show similar allitera-
tions in network integration and segregation patterns. Thismay indicate
that network integration might be particularly vulnerable to insults
independently from intra-uterine (IUGR) or extra-uterine conditions
(EP) and would confer with the similar risk in cognitive deficits in EP
and moderately preterm IUGR infants, as previously shown (Guellec
et al., 2011).

As a matter of fact, (Vertes and Bullmore, 2014) demonstrate that
DTI networks gradually mature from local, proximity-based connectivi-
ty patterns designed to support primary functions to amore distributed,
integrative topology thought to be favorable for supporting higher cog-
nitive functioning. Particularly, during development brain communities'
topology would move from local sub-networks partially overlapping
with brain lobes, to more spatially distributed circuits (Collin and Van
den Heuvel, 2013). Indeed, Ball et al. (2014) showed that during the
third trimester of pregnancy, the number of connections between
rich-club regions and the rest of the cortex increases significantly,
speaking in favor of progression towards more efficient networks in
order to support global and local exchange of information. In a normal
population, themacro-structural network architecture required for nor-
mal brain function is already present at birth (Collin and Van den
Heuvel, 2013). Thus, onemight hypothesize that an abrupt interruption
of previouslymentioned processmay lead to a structural reorganization
of the available resources in order to adapt to the anatomical con-
straints. In simple terms, the reorganization of the brain connections
would be directed towards the maintenance of global connectivity
patterns. Our results are in agreement with this hypothesis, as EP,
IUGR and IUGR+ EP subjects all present a different network communi-
ty structure but with similar network modularity. Indeed, the differ-
ences seen in the network community structure of our groups of
subjects may reflect a different remodeling of the anatomical networks
due to EP and IUGR or both.

The remodeling of anatomical networks over the course of post-
natal development is thought to predominantly reflect the fact that
myelination and maturation occur asynchronously across various axo-
nal tracts (Vertes and Bullmore, 2014). From birth to pre-adolescence
age the brain network's organization shows a decrease of the modular-
ity index and an increase of the mean number of modules. These
processes are suggested to be associated with pruning of short-range
(intra-modular) connections, and strengthening of long-range associa-
tive tracts (inter-modular links) during development. Yet, despite hav-
ing a relative shortage of white matter resources (Fischi-Gómez et al.,
2014), EP and/or IUGRS maintain similar levels of modularity, rich-
club architecture, and small-world design compared to controls. In
summary, our results corroborate the hypothesis by Karolis and col-
leagues, that the modularity and rich-club organization is prioritized
over peripheral connectivity after EP and/or IUGR.
5. Conclusion

In conclusion we provide evidence that, although brain networks of
high-risk childrenmaintain their modularity, small-world and rich-club
attributes at school age, the underlying network community structure
of these networks is differently affected by extreme prematurity and in-
trauterine growth restriction, indicating a particular vulnerability of
processes underlying network integration.
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