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Abstract: Currently, researchers use modern analytical techniques in a unique perspective of phys-
ical pharmacy to analyze the phase composition of traditional Chinese medicine (TCM) and have
discovered that natural nanoparticles commonly exist in decoctions. This study aims to isolate
and characterize the structure and composition of nanoparticles in Naoluo Xintong (NLXT) and
investigate whether the brain protection effect of NLXT is closely related to NLXT-Nanoparticles
(NLXT-NPs). Firstly, the dialysis-centrifugation method was used to separate the nanoparticles and
then their size distribution, potential, and morphology were characterized. In addition, infrared
spectroscopy and ultra-high performance liquid chromatography-quadrupole-time of flight-mass
spectrometer (UPLC-Q-TOF-MS) technology were used to analyze the composition of nanoparticles.
As for the pharmacodynamic experiment, Sprague Dawley (SD) rats were randomly divided into
sham, Middle cerebral artery occlusion (MCAO) model, NLXT, NLXT with nanoparticles removing
(NLXT-RN), NLXT-RN+Nanoparticles (NLXT-RN+NPs), and NLXT-NPs groups. After administra-
tion, the neurological function, histopathological changes, oxidative stress, and apoptosis level were
measured. Our research showed that NLXT-NPs are mainly composed of polysaccharides, proteins,
and saponins, with typical characteristics of two hundred-nanometer size and negatively loaded.
NLXT can improve nerve function, reduce oxidative stress, and inhibit cell apoptosis. However,
removing nanoparticles can significantly reduce the brain-protective effect of NLXT, which indicates
that NLXT-NPs play an essential role in the efficacy of NLXT.

Keywords: ischemic stroke; naoluo xintong; nanoparticles; brain protection

1. Introduction

Stroke is one of the three high mortality diseases in China. According to a report,
about 2.3 million people died of this disease in 2020 [1]. Ischemic stroke (IS) is the main
form of stroke, characterized by high disability and recurrence [2]. The clinical treatment of
IS primarily uses recombinant-tissue plasminogen activator (r-tPA) drugs for intravenous
thrombolysis [3]. However, this method is often accompanied by bleeding risks; more
importantly, intravenous thrombolysis has strict indications and contraindications, and
most patients do not meet these standards. On the contrary, as a natural product, traditional
Chinese medicines (TCM) such as Astragali radix and Notoginseng radix generally have the
dual effects of curing diseases and health care [4,5]; further developed preparations of
corresponding TCM often show high biocompatibility [6]. TCM has been used in treating
stroke for over a thousand years and generally has the characteristics of multi-component
and multi-target action [7,8]. Using modern analytical methods to clarify the material basis
and efficiency mechanism is the focus of TCM research [9,10].

The decoction is one of the most ordinarily used clinical dosage forms in TCM [11].
Bioactive ingredients in TCM decoction (TCMD) are tied for the therapeutic effects. Pre-
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vious research on the pharmacodynamic material basis of TCMD focuses more on small
molecule active ingredients, and the research object is often the macro-integration [12,13].
At present, more and more researchers discovered that nano-scale particles such as nanopar-
ticles, micelle and lipid commonly exist in decoctions. The formation of these nano-scale
particles is closely related to the pharmacological effects of decoctions [14,15]. For example,
polysaccharide nanoparticles in the Coptis Chinensis decoction can encapsulate active
ingredients and produce solubilization and absorption promotion to enhance the curative
effect [16]. In the process of aconite licorice decoction, glycyrrhizin (a natural surfactant)
can be self-assembled into micelle particles and encapsulate toxic components, delaying or
inhibiting their absorption and reducing toxic side effects [17]. Moreover, ginger-derived
lipid particles can target the delivery of siRNA for the treatment of colitis and has a syner-
gistic anti-inflammatory effect [14]. In conclusion, TCM-derived nano-scale particles have
lower cytotoxicity and possess attenuating and synergistic effects. Research on decoction
nano-scale particles has attracted more and more attention. These studies mainly revolve
around chemical composition, structure characterization [18,19], formation mechanism [20],
improving the bioavailability of co-existing compounds, and their pharmaceutics appli-
cation [21]. Clarifying the role of nano-scale particles in decoction is of great innovative
significance for revealing the material basis of TCMD.

NLXT is a clinically proven prescription used by Xin’an Medicine to treat ischemic
stroke [22]. It consists of six herbs and one animal medicine: Astragali radix, Chuanxiong
rhizome, Noto-ginseng radix et rhizome, Gastrodiae rhizome, Chilopoda Scolopendra, Carthami Flos,
and Angelicae Sinensis Radix in the ratio of 15:5:3:5:2:5:5. The prescription relies on Astra-
galus as the monarch medicine, which played a fundamental role in the pharmacological
effect of NLXT. Chuanxiong and Panax Notoginseng act as ministerial medicines; Gastro-
diae rhizome and Scolopendra play an assistant role due to their function in regulating
meridians; Carthami Flos and Angelicae Sinensis radix are regarded as “guide herbs” with
their harmonious function [23,24]. Previous studies reported that NLXT could improve
brain blood circulation, anti-apoptosis, pro-angiogenesis, and nerve regeneration [25,26].
The small molecule active ingredients in NLXT decoction play a crucial role in treating IS
and have been explored previously [27]. However, the active components of the TCMD are
not only small and molecular; the presence of nanoparticles in the decoction can also show
certain pharmacological activities. In this study, we found that there are nano-scale particles
with a size distribution of 200 nm~400 nm that existed in the NLXT decoction after dialysis-
centrifugation. In order to characterize the structure and composition of NLXT-NPs and
investigate whether the brain protection effect of NLXT is related to NLXT-NPs, this study
constructed an MCAO rat model to simulate an ischemic stroke. After administration with
NLXT, NLXT-RN, NLXT-RN+NPs, and NLXT-NPs, the neurological function score (NFS),
cerebral infarction volume, histopathological changes, oxidative stress, and apoptosis level
were measured and analyzed.

2. Results
2.1. The Particle Size, Potential, and Morphology of NLXT-NPs

In this research, we chose a gentle way to separate the nanoparticles: high-speed cen-
trifugation combined with dialysis, which can better maintain the natural state of nanoparti-
cles. In our research, the size distribution and potential of nanoparticles were closely related
to the solution concentration. The particle size and potential of the NLXT-NPs solution
at 0.95, 1.90, and 3.80 mg·mL−1 are respectively (185.50 ± 18.93 nm, −16.07 ± 0.46 mV),
(239.80 ± 19.44 nm, −19.33 ± 0.62 mV), and (353.13 ± 21.12 nm, −20.57± 0.60 mV). The
infrared absorption spectrum of the nanoparticles showed a remarkable characteristic of
polysaccharides. As shown in Figure 1B, the absorption peak of NLXT-NPs at 3359.7 cm−1

belongs to the stretching vibration of -OH, and the peak at 2926.4 cm−1 is due to the stretch-
ing vibration of γ-CH2 and C-H. Furthermore, the peak of 1620.5 cm−1 is attributed to the
vibration of the C-O bond, and the peaks of 1417.7 cm−1 belong to the bending vibration
of δ-CH2. The above results suggest that the majority components of NLXT-NPs may be
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polysaccharides. Therefore, we used a phenol-sulfuric acid method and the Coomassie
brilliant blue method [28] to determine the polysaccharide and protein content of the
nanoparticles. The results show that the polysaccharide content in the nanoparticles is
82.75% ± 2.16%, and the protein content is 6.20% ± 0.14%. Besides, TEM and SEM were
used to observe the morphology of nanoparticles, and it was found that NLXT-NPs had
uneven particle size distribution, relatively regular shapes, and were mostly clustered. It is
worth mentioning that the morphology of the nanoparticles obtained after dialysis for 10 h
and 12 h was significantly different. As shown in Figure 2C, the morphology of the particles
after dialysis for 12 h can be observed to be broken and showed loss of particle integrity,
which indicates that long-term dialysis may destroy the aggregate state of nanoparticles.
Therefore, in this study, the separation of nanoparticles was performed by dialysis for 10 h.
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Figure 1. (A) The particle size distribution diagram of nanoparticles with different concentrations
(NPs−1 3.80 mg·mL−1, NPs−2 1.90 mg·mL−1 and NPs–3 0.95 mg·mL−1); (B) Representation of the
potential of nanoparticle solutions with different concentrations, values are the mean± SD (n = 6),
and the infrared spectra of NLXT-NPs; Compared with NPs-1, ** p < 0.05, *** p < 0.01; (C) The TEM
and SEM picture of NLXT-NPs dialysis in 10 h (up) and 12 h (down); (D) The chemical composition
of NLXT-NPs dialysis in 10 h (up) and 12 h (down).
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Figure 2. The MS/MS spectrum and possible fragmentation pathway of Ginsenoside Rg1 (A),
Ginsenoside Rb1 (B), and Astragaloside IV (C).

2.2. Chemical Composition of NLXT-NPs

UPLC-Q-TOF-MS has proven to be a powerful technique for qualitative analysis
of multi-components in a complex system due to its satisfactory UPLC separation effi-
ciency and powerful structural characterization of Q-TOF-MS. According to the result
of UPLC-Q-TOF-MS, ten chemical components were detected and determined by UNIFI
and Masslynx 4.1 based on the accurate mass, fragment ions, neutral losses, mass error,
reference substance, isotope information, the intensity of fragments, and retention time.
The ten components were mostly Astragaloside and Notoginsenoside, besides Citric acid,
Parishin E, and Hydroxysafflor yellow A can also be determined. At the same time, we
analyzed the chemical composition of the nanoparticles obtained by dialysis for 12 h, and
only three active ingredients were detected. This result may relate to the precipitation of
the active ingredients caused by the depolymerization of the nanoparticles.

Furthermore, the MS/MS stands for secondary mass spectrometry, which can frag-
ment the ions detected by the first mass spectrometry and then perform the secondary
mass spectrometry detection to more accurately characterize the compound. In this study,
the Ginsenoside Rg1, Ginsenoside Rb1, and Astragaloside IV were used as examples to
illustrate the cleavage pattern of saponins and Astragaloside in NLXT-NPs. As shown in
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Figure 2, Ginsenoside Rg1 displayed the parent ion at low collision energy at m/z 845.4960
[M+HCOO]−. Ginsenoside Rb1 displayed the parent ion at low collision energy at m/z
1153.6115 [M+HCOO]−, and the major fragment ions in the secondary mass spectrum at
m/z 1107.6088 [M-H]−. Astragaloside IV displayed parent ion at low collision energy at
m/z 829.4570 [M+HCOO]−. These results were consistent with previous research that [29]
the precursor ions of the saponins and Astragaloside exist mainly as [M+HCOO]−. There-
fore, combined with previous research and structural screening, we can make further
identification of the compounds in NLXT-NPs.

2.3. NLXT-NPs Can Improve the Neural Protective Effects of NLXT on MCAO Rats

As shown in Table 1, the NFS of modeling rats was notably decreased compared
with the sham group (p < 0.05). It was gradually restored following treatment with NLXT-
NPs (9.33 ± 1.86), NLXT-RN (10.17 ± 1.17), NLXT-RN+NPs (12.83 ± 0.75), and NLXT
(13.17 ± 1.17). This finding suggested that NLXT could promote the recovery of neurolog-
ical function in MCAO rats; however, removing NLXT-NPs may significantly reduce its
protective effect (p < 0.05). Interestingly, the impact of NLXT-RN+NPs showed no signifi-
cant difference compared with the NLXT group (p > 0.05), which indicates that NLXT-NPs
may have a non-negligible function on the neuroprotection effect of NLXT. Furthermore,
the results of cerebral infarction volume assessment showed a similar trend. There was
no infarction in the sham group, and the cerebral infarction volume in the MCAO group
was the highest (47.83 ± 5.31)%. Compared with the model group, the NLXT group could
significantly reduce the cerebral infarction volume (p < 0.05). Importantly, there was no
significant difference between NLXT and NLXT-RN+NPs (p > 0.05), but the removal of
nanoparticles will reduce the protective impact of NLXT (p < 0.05). Moreover, compared
with the MCAO group, NLXT-NPs also significantly reduced infarct volume (p < 0.05).

Table 1. Neurological scores and cerebral infarction volumes of rats (x ± s, n ≥ 6).

Group NFS/Score Infarction Volume/%

Sham 17.17 ± 0.98 0.00 ± 0.00
MCAO 6.67 ± 0.82 # 47.83 ± 5.31 #

NLXT 13.17 ± 1.17 * 19.00 ± 3.35 *
NLXT-RN 10.17 ± 1.17 *N 27.50 ± 5.01 *N

NLXT-RN+NPs 12.83 ± 0.75 * 22.67 ± 4.41 *
NLXT-NPs 9.33 ± 1.86 *N 31.17 ± 3.97 *N

Note: Compared with the sham group, # p < 0.05; Compared with MCAO group, * p < 0.05, compared with MCAO
group; N p < 0.05, compared with NLXT group.

2.4. Pathological Changes of Ischemic Brain Tissue

As shown in Figure 3, The morphology of neurons in the sham group was normal,
with dense tissues, neatly arranged cells, and the nucleus located in the center of the cells;
after modeling, brain tissue appeared loose and with noticeable swelling, reduced cell
numbers, disordered cell arrangement, and constriction of the neuronal nucleus. Each
administration group can reduce brain tissue damage caused by MCAO. Among them,
the improvement degree of NLXT and NLXT-RN+NPs groups were the most obvious; the
brain tissue morphology is similar to the sham group. Although NLXT-NPs and NLXT-RN
showed a certain improvement effect, there is still a gap compared with the NLXT and
NLXT-RN+NPs groups.
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Figure 3. Histopathological changes in the cerebral cortex of rats in each group were observed by
HE staining (×200). (A) Sham group; (B) MCAO group; (C) NLXT-group; (D) NLXT-RN group;
(E) NLXT-RN+NPs group; (F) NLXT-NPs group.

2.5. Oxidative Stress Level Regulation

As shown in Figure 4, after modeling, the enzyme activity of superoxide dismutase
(SOD) and glutathione peroxidase (GSH-PX) decreased obviously (p < 0.001), and the
malondialdehyde (MDA) level increased (p < 0.001), compared with the sham group.
In addition, each administration group could improve the scope of SOD and GSH-Px
and reduce the content of MDA. Among these, the effect of the NLXT group was the
best one (p < 0.01), and there was no significant difference between NLXT and NLXT-
RN+NPs groups. Consistent with the previous results, the effect of the NLXT-RN group
was weakened more than NLXT. More critically, NLXT-NPs also had a significant regulatory
impact on the content of the three indicators compared with the MCAO group (p < 0.05).
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Figure 4. Effect of administration groups on the level of SOD (A), GSH-Px (B), and MDA (C) of
MCAO rat models (n = 8). ### p < 0.001, compared with sham group; * p < 0.05, ** p < 0.01, *** p < 0.001,
compared with MCAO group; ns: no significant difference, N p < 0.05, NN p < 0.01, compared with
NLXT group.

The above results indicate that NLXT can promote the activity of SOD and GSH-PX
and inhibit the production of MDA; NLXT-NPs may be one of its pharmacological material
bases for regulating oxidative stress.
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2.6. NLXT-NPs Can Improve the Inhibition Effects of NLXT on Cell Apoptosis

As shown in Figure 5, The cell apoptosis rate increased to (58.65 ± 14.60)% af-
ter modeling. In contrast, the apoptotic rate of NLXT (14.28 ± 13.54)% and NLXT-
RN+NPs (21.00 ± 11.85)% groups were significantly decreased (p < 0.01). Furthermore, the
apoptotic rate of NLXT-RN and NLXT-NPs were (37.09 ± 14.40)% and NLXT-RN+NPs
(33.43 ± 9.95)%, respectively. Moreover, each administration group can reduce the activa-
tion of caspase-3/9 (p < 0.05) compared with the MCAO group. The NLXT group showed
the most apparent inhibitory effect (p < 0.001), and there was no significant difference be-
tween NLXT and the NLXT-RN+NPs groups. In addition, compared with the NLXT group,
the inhibitory effect of NLXT-RN was declined. These results showed that in addition to
regulating oxidative stress, NLXT might also protect MCAO rats from brain damage by
inhibiting abnormal neuronal apoptosis. And NLXT-NPs may affect its anti-apoptotic effect
in various mechanisms.
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Figure 5. (A) The apoptosis of rat brain tissue after TUNEL staining was observed under 200-fold
magnification (×200, n = 8). Effect of administration groups on the brain cells’ apoptosis rate (B) and
caspase-3/9 (C,D) level of MCAO rat models (n = 8). ## p < 0.01, ### p < 0.001, compared with sham
group; * p < 0.05, ** p < 0.01, *** p < 0.001; compared with MCAO group; ns: no significant difference,
N p < 0.05, NN p < 0.01, compared with NLXT group.
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2.7. Regulation Effect of NLXT on Bax/Bcl-2 Apoptosis Signal Pathway and the Influence of
NLXT-NPs

As shown in Figure 6, the western blot results showed that, compared with the MCAO
group, the Bax protein expression level was significantly reduced after NLXT intervention
(p < 0.001), and Bcl-2 was significantly increased (p < 0.01). Treatment with NLXT and
NLXT-RN+NPs was associated with greater Bcl-2 and attenuated Bax expression, but the
effect had an inevitable decline after removing nanoparticles. Consistent with the above
results, NLXT-NPs can also reduce the expression of Bax and promote Bcl-2.
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3. Discussion
3.1. Self-Assembly Mechanism of NLXT-NPs

Polysaccharide, one of the primary active ingredients in the TCM, showed high anti-
oxidant and immune activity [30]. As a hydrophilic polymer, when we introduce hydropho-
bic groups into polysaccharides, it can self-assemble into nanoparticles under the influence
of system hydrophobic interaction and temperature [20]. The hydrophilic polysaccharide
chain exists outside the nano-particle, and the hydrophobic groups are wrapped in the
inner core. The system temperature is one of the main factors affecting the morphology of
nanoparticles, which is closely related to the particle size and shape [31,32]. In the process of
NLXT decoction, polysaccharides and proteins gradually precipitate out and recognize each
other to form glycoprotein structures [33]. Then, under thermal induction and hydrophobic
action, the hydrophilic polysaccharide and the protein hydrophobic group self-assemble
into a nanoparticle structure, the hydrophilic polysaccharide constitutes the shell of the
nanoparticle, and the hydrophobic group of the protein constitutes the core [34]. During
the self-assembly process, small-molecule active ingredients in the decoction can be ad-
sorbed on the surface of nanoparticles or be encased inside through electrostatic adsorption,
Van-Der-Waals force, π-π bonds, or other non-covalent interactions [19]. The surfactant has
strong amphiphilicity, and it can be adsorbed on the surface of nanoparticles during the
preparation process, which plays an essential role in maintaining the structural stability of
nanoparticles [35]. Saponins have natural surface activity and are widely used as natural
surfactants [36]. In this study, we have proved that some saponins were also detected;
their molecular weights were all less than 3500 Da, and they can theoretically pass through
the dialysis bag and be dialyzed out. Therefore, we speculated that during self-assembly,
saponins adsorbed on the surface of nanoparticles by non-covalent means to maintain
the structural stability of NLXT-NPs. Furthermore, similar to glycyrrhizin, saponins also
have the potential to self-assemble into micelle particles. However, in this study, we can’t
observe the existence of micelle particles under TEM and SEM, which further indicates that
the saponins exist in the form of binding to glycoprotein nanoparticles.
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3.2. Influence of Dialysis Conditions on the Stability of NLXT-NPs

The dialysis method is widely used to separate and purify nanoparticle solutions
because of its mild reaction conditions, and it can prevent the extrusion of particles caused
by external force [37]. However, Prusky [38] and Li [39] separated the green tea nanopar-
ticles with different dialysis times, causing a significantly different result. The catechins
and alkaloids in green tea nanoparticles can only be detected with dialysis less than 24 h
in duration. It concluded that long-term pure water dialysis could result in the release
of components loaded in nanoparticles. Therefore, in the separation of NLXT-NPs, the
nanoparticle solution system was gradually purified but the saponins adsorbed on the
particle surface may also slowly precipitate. When the saponins were not sufficient to main-
tain the stability of the nanoparticles, the structure of the NLXT-NPs gradually dissociated,
which may explain the significant differences in morphology and composition between the
NLXT-NPs dialyzed for 10 h and 12 h.

3.3. NLXT-NPs Can Improve the Anti-Oxidant Activity of NLXT

The occurrence of ischemic stroke can lead to an imbalance of the inherent anti-oxidant
capacity of brain tissue, which in turn causes secondary reactions such as lipid peroxidation
and inflammation. MDA is a product of lipid peroxidation. Its content reflects the level of
oxygen free radicals in the body and the degree of lipid peroxidation. SOD can scavenge
oxygen free radicals in the body, inhibit the formation of peroxides, and play an essential
role in anti-oxidative stress damage. GSH-Px can promote the decomposition of H2O2,
thereby maintaining the integrity of cell membrane structure and function. The activity
of SOD, GSH-Px, and MDA levels are vital signs that reflect the level of oxidative stress
in the body [40,41]. In this study, we compared the effects of each administration group
on MCAO-induced oxidative stress. The NLXT-RN group was established as a negative
control to investigate the influence of removing nanoparticles on the anti-oxidation efficacy
of NLXT. Furthermore, to exclude the removal of non-nanoparticle components caused
by dialysis, we established the NLXT-RN+NPs group to verify that the addition of NLXT-
NPs can improve the anti-oxidation efficacy of NLXT-RN. Our result showed that NLXT-
NPs could play an essential role in the anti-oxidant stress effect of NLXT, which did not
exceed our expectations. The composition of NLXT-NPs, including polysaccharides and
saponins, are all bioactive ingredients for regulating nerve function recovery and improving
microcirculation in the central nervous system. These ingredients may be the material basis
for NLXT-NPs to anti-oxidative stress damage.

3.4. NLXT-NPs Can Improve the Inhibition Effects of NLXT on Cell Apoptosis

Apoptosis refers to programmed cell death regulated by multiple genes, which in-
volves Caspase activation, mitochondrial transmembrane potential drop, phosphatidylser-
ine eversion, and regular DNA breaks [42,43]. It is important for the body to maintain
homeostasis under physiological conditions. After ischemic stroke, the body will further
induce oxidative stress and inflammatory hierarchical response due to ischemia and hy-
poxia, which will cause the pathological apoptosis of brain tissue cells and aggravate brain
damage [44]. Therefore, it is imperative to inhibit pathological cell apoptosis to prevent and
treat ischemic stroke. It has been reported that the Caspase-3/9 signaling pathway serves
as a potent effector in promoting cell death and apoptosis. Caspase-3, the primary executor
of apoptosis, can cause apoptosis by specifically lysing its substrate; Caspase-9 can activate
Caspase-3 to initiate the Caspase cascade reaction [45]. Besides, the Tunel method is one
of the commonly used methods to detect apoptosis. Our research combines the enzyme
activity of Caspase-3/9 and Tunel staining to evaluate the apoptosis level of each group.
Moreover, Bcl-2 and Bax are two classic anti-apoptotic and pro-apoptotic proteins that can
regulate cell apoptosis by forming homodimers or heterodimers. Bax and Bcl-2 directly
determine the permeability of various channels in the outer mitochondrial membrane
through the formation of homologues or heterodimers, thereby determining the survival
of cells [46]. The above experimental results show that NLXT and NLXT-NPs can reduce
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the level of apoptosis; their mechanisms were all related to the regulation of Caspase3/9
and Bax/Bcl-2. Notably, removing NLXT-NPs can significantly decrease the anti-apoptotic
effect of NLXT. Therefore, NLXT-NPs can be regarded as one of the pharmacodynamic
material bases for NLXT to regulate the Caspase3/9 and Bax/Bcl-2 pathways. The results
of pharmacological experiments showed that research on the TCM pharmacodynamic
material basis needs to consider the direction of nanoparticles.

4. Materials and Methods
4.1. Materials

NLXT consists of six herbs and one animal material. The crude slices of Astragali
radix (No: 200,601), Chuanxiong Rhizoma (No: 200,601), Notoginseng radix et rhizome (No:
200,601), Gastrodiae rhizome (No: 200,601), Scolopendra (No: 160,801), Angelicae Sinensis
radix (No: 200,601) and Carthami Flos (No: 200,601) were purchased from herb companies in
Bozhou (Anhui). The primary antibodies of Bcl-2 (cat. no. bsm-33047M), and Bax (cat. no.
bsm-33283M) were purchased from Bioss (Beijing, China). Elisa Kit of SOD (cat. no. A001-3-2),
MDA (cat. no. A003-1-2), GSH-Px (cat. no. A005-1-2), Caspase-3 (cat. no. G015-1-3), Caspase-9
(cat. no. G018-1-3), and Tunel apoptosis detection kit (cat. no. G002-1-2) were purchased from
Nanjing Jiancheng Bioengineering Institute (Nanjing, China).

4.2. Preparation of NLXT

Firstly, the herbs of NLXT were weighed in proportion (Astragali radix: Chuanxiong
rhizome: Notoginseng radix et rhizome: Gastrodiae rhizome: Chilopoda Scolopendra:
Carthami Flos: Angelicae Sinensis Radix = 15:5:3:5:2:5:5) and soaked for thirty minutes. The
mixture was boiled twice with 10- and eightfold volume deionized water for an hour. Next,
the first decoction was merged with the second decoction, and the powdered medicine of
scolopendra was immediately added to the decoction.

4.3. Isolation of NLXT-NPs

After preparation, NLXT was centrifuged at 3500 rpm for 10 min to remove the dregs,
then rotary evaporated and concentrated to 1.0 g·mL−1. The supernatant was filtered and
then centrifuged at 13,000 rpm·min−1 for 30 min to remove micron particles. Additionally,
40 mL of the supernatant was added it to 1/2 of the dialysis bag (3500 Da), put the dialysis
bag into a beaker with 2000 mL deionized water, and dialyzed for 10 h in a water bath
magnetic stirrer at 600 r·min−1. We collected and replaced the external dialysis fluid every
2 h. Finally, the dialysate was freeze-dried to obtain the freeze-dried powder of NLXT-NPs.
The dialysis external fluids were combined and concentrated by rotary evaporation to
40 mL; after being mixed with micron particles, the NLXT-RN solution was then obtained.
Then, according to the yield of NLXT-NPs (0.19% ± 0.01%), 76.0 mg of NLXT-NPs freeze-
dried powder was added to the NLXT-RN solution after magnetic stirring at 37 ◦C in a
water bath for1 h, the NLXT-RN+NPs solution was obtained (Figure 7) .

4.4. Size Distribution, Surface Charge, and Morphology of NLXT-NPs

The size distribution and surface charge of NLXT-NPs were measured using a laser
particle analyzer (ZEN 3690 Laser Scatter particle analyzer, Malvern Panalytical, UK). The
morphology of the NLXT-NPs was observed by transmission electron microscopy (TEM,
HT7700, Hitachi, Tokyo, Japan) and scanning electron microscope (SEM, Regulus8100,
Hitachi, Tokyo, Japan). In addition, Fourier infrared spectroscopy was used to analyze the
structural characteristics of NLXT-NPs.
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4.5. Chromatography and Mass Spectrometry Conditions

The chromatography separation was performed on a Waters AcquityTM UPLC system
(Waters Corporation, MI, USA). The analysis of samples was carried out on a Waters
ACQUITY-CSH-C18 (2.1 mm × 100 mm, 1.7 µm) column with a gradient elution using
0.1% formic acid (solvent A) and acetonitrile (solvent B). The gradient elution was set
as follows: 0–5 min, 10–15% B; 5–15 min, 15–20% B; 15–30 min, 20–30% B; 30–40 min,
30–40% B; 40–45 min, 40–60% B; 45–47 min, 60–10% B. In addition, the flow rate, column
temperature and injection volume were set to 0.2 mL/min, 30 ◦C and 2 µL, respectively.

A Waters Xevo G2 Q/TOF mass spectrometer (Waters Corporation, Milford, CT, USA)
equipped with an ESI source was used for mass spectrometric detection. All samples were
detected in negative mode. The complete scan data were acquired from 50 to 1200 Da,
using a capillary voltage of −2.5 kV for negative ion mode, sampling cone voltage of
50 V for negative ion mode, extraction cone voltage of 4.0 V, source temperature of 110 ◦C
(ESI−), cone gas flow of 50 L/h, desolvation gas (N2) flow of 600 L/h and desolvation
gas temperature of 350 ◦C. The collision voltage was set as 6.0 eV for low-energy scan and
20–80 eV for the high-energy scan. To ensure the mass accuracy and spectral reproducibility
of the MS condition, leucineenk ephalin ([M-H] − (m/z 554.2615) in negative ion mode),
consisting of a 200 pg/mL solution, was set as an external reference (Lock-SprayTM) at a
flow rate of 10 µL/min via a lockspray interface.

4.6. Preparation of Sample Solutions

NLXT-NPs was dissolved into methanol solution. It was then ultrasonically dispersed
for 2 h to completely release the small molecule ingredients contained in the nanoparticles,
and then centrifuged at 13,000 r·min−1 for 10 min to remove the glycoprotein precipi-
tate. Before UPLC-Q-TOF-MS analysis, the supernatant was filtered through a 0.22 µm
filter membrane.

4.7. Animals and MCAO Model Construction

Male Sprague-Dawley rats (220~240 g) were purchased from the Experimental Animal
Center of Anhui Province. All animals were kept in a pathogen-free environment and fed
ad-lib. The procedures for care and use of animals were approved by the Ethics Committee
of the Anhui University of Chinese Medicine, Anhui (AHUCM-rat-2020051), China and
all applicable institutional and governmental regulations concerning the ethical use of
animals were followed. In our research, 48 rats were randomly divided into six groups,
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respectively, the sham group, the MCAO model group, the NLXT group (8.54 g/kg), the
NLXT-RN group (8.54 g/kg), the NLXT-RN+NPs group (8.54 g/kg), and the NLXT-NPs
group (81.15 mg/kg). The MCAO model construction method is as follows (28): rats were
anesthetized with 3% sodium pentobarbital intraperitoneally (1 mL/100 g) and maintained
at core temperature by placement on a heating pad, and then the neck was sliced in the exact
center, separating a left side common carotid artery, external carotid artery and internal
carotid artery a ligature was placed in the carotid artery near the heart and at the branch of
the external carotid artery. It was sliced to shear 1 in the carotid artery branch to have a pure
paint of diameter for 0.20 mm, fishing thread carries to insert toward internal carotid artery,
continuing to push forward until a slight resistance was felt, then about an additional after
2 h, the fishing thread was slowly promoted, and then reperfusion was implemented. In
addition, to remove the influence of surgical factors on the experimental results, the sham
operation group was set as the reference of the MCAO model. In the sham operation group,
we only performed anesthesia and vascular separation, and no fishing thread was used
in the middle artery. Compared with the normal control, the sham operation group can
more reasonably reflect the effects of cerebral ischemia on various biochemical indicators
in rats, making the experimental results more convincing. After modeling, rats were scored
according to the Garcia JH scoring rules, and scores of 1 to 2 were selected for follow-up
experiments. Each administration group was given intragastric administration twice a
day for seven days. The sham and the MCAO model groups were given normal saline
(1 mL/100 g).

4.8. Evaluation of Neurological Function Score (NFS) and Infarct Volume

After administration, rats were scored again according to their autonomous movement,
symmetry of posture, forelimb extension, screening experiment, tactile reflex on both sides
of the body, and tactile reflex on both sides of the beard. The rats were then anesthetized
and sacrificed, and the brains were quickly removed and frozen at −20 ◦C for 30 min before
slicing. The slices were stained with 2% TTC (RS4130, G- clone, Beijing, China) for 30 min
at 37 ◦C in the dark. After being fixed with 4% paraformaldehyde at 4 ◦C for 24 h, photos
of each slice were taken, and the infarct volume was calculated by Image J software.

4.9. Histopathological Changes in Cerebral Cortex

After being dehydrated, embedded in paraffin and sectioned, the rat brain tissues
were stained with hematoxylin for 5 min and 1% water-soluble eosin staining solution for
2 min, then pictures were taken under the 200× field of view of the inverted microscope.

4.10. Oxidative Stress Level Measurement

The activity of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and the
level of malondialdehyde (MDA) were determined using the corresponding kits, according
to the manufacturers’ instructions. Subsequently, the absorbance was determined at 450 nm
(SOD), 532 nm (MDA), or 422 nm (GSH-Px) using a microplate reader (Thermo Fisher,
Multiskan Spectrum, Fremont, CA, USA).

4.11. Cell Apoptosis Measurement

After intracardiac perfusion was performed as described above, the brains were
removed, fixed, dehydrated, and sectioned. The sections were then subjected to TUNEL
staining according to the operation manual. Furthermore, the level of Caspase-3/9 was
also measured by the corresponding kits.

4.12. Western Blot Analysis

Approximately 100 mg of cortical tissue from the infarcted area was taken, rapidly
ground with liquid nitrogen, and added to 900 µL of RIPA (Servicebio, Wuhan, China).
A Lysis Buffer contained the protease inhibitor PMSF in a 100:1 ratio of RIPA to PMSF.
After lysis on ice for one hour, the mixture was centrifuged at 12,000 rpm for 10 min at
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4 ◦C. The supernatant was then collected and added with 1/4 volume of the loading buffer.
After being heated at 100 ◦C for 10 min to denature the protein, the mixture was cooled,
divided, and frozen for use. Protein concentrations were determined using a sensitive
BCA protein assay kit (Servicebio, Wuhan, China). The protein samples (40 µg/lane) were
then separated by 10% SDS-PAGE and transferred onto a PVDF membrane ((Servicebio,
Wuhan, China)). Subsequently, the membrane was blocked with 5% skimmed milk for 2 h
at room temperature, washed with Tris-buffered saline containing 0.2% Tween-20 (TBST;
Servicebio, Wuhan, China), and incubated with the primary antibodies at 4 ◦C overnight.
After washing with TBST, the membrane was incubated with a goat anti-rabbit horseradish
peroxidase (HRP)-conjugated secondary antibody (1:3000) at room temperature for 2 h.
Finally, protein bands were visualized using an ECL Chemiluminescence Kit (Servicebio,
Wuhan, China) on an ultra-sensitive multi-function imager (Amersham Image 600). The
proteins bands were quantified using the ImageJ software. The gray value of the target
protein was normalized to that of β-actin (Bioss, Beijing, cat. no. bsm-33036M).

4.13. Statistical Analysis

Each experiment was separately performed at least three times. The data were ex-
pressed as the mean ± standard deviation (SD). A one-way analysis of variance (ANOVA)
with post hoc Bonferroni was performed. Differences were considered significant at p < 0.05.
Statistical analysis was performed using SPSS 23.

5. Conclusions

In this study, we used high-speed centrifugation combined with dialysis to separate
the na-noparticles in NLXT. Bioactive compounds such as Ginsenoside Rg1, Ginsenoside
Rb1, and Astragaloside IV were demonstrated to be carried by the NLXT-NPs, which
may have a profound impact on their in vivo transport, bioavailability and therapeutic
effects. In addition, our research also found that the neural protection effect of NLXT was
closely related to these nanoparticles; the removal of NLXT-NPs can significantly reduce
its oxidative stress protection and anti-apoptotic effects. Our research provides a novel
addition TCM compatibility theory in that the nanoparticles isolated from decoction play
an essential role in the efficacy of compound prescriptions.
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