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Abstract. Ferroptosis is a type of non‑apoptotic controlled cell 
death triggered by oxidative stress and iron‑dependent lipid 
peroxidation. Ferroptosis is regulated by signalling pathways 
that are associated with metabolism, including glutathione 
peroxidase 4 dysfunction, the cystine/glutamate antiporter 
system, lipid peroxidation and inadequate iron metabolism. 
Ferroptosis is associated with renal fibrosis; however, further 
research is required to understand the specific molecular 
mechanisms involved. The present review aimed to discuss the 
known molecular mechanisms of ferroptosis and outline the 
biological reactions that occur during renal fibrosis that may 
be associated with ferroptosis. Further investigation into the 
association between ferroptosis and renal fibrosis may lead to 
the development of novel treatment methods.
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1. Introduction

Regulated cell death (RCD) is a key biological mechanism 
in the body that is required for healthy development, homeo‑
stasis maintenance and disease prevention. RCD primarily 
includes apoptosis, necroptosis, autophagy and ferroptosis (1). 
Ferroptosis is fuelled by oxidative stress and iron‑dependent 
lipid peroxidation, which differs from apoptosis, necroptosis 

and autophagy morphologically, biochemically and geneti‑
cally (2). It is characterized by increased intracellular free 
iron and accumulation of toxic lipid peroxides, leading to cell 
death  (3,4). Previous research has demonstrated that renal 
fibrosis, which is defined by the breakdown of healthy kidney 
architecture, fibroblast proliferation and excessive extracellular 
matrix deposition, is a common pathological state of almost 
all types of chronic and progressive kidney disorder (5,6). 
Ferroptosis is closely associated with the pathological 
process of numerous renal diseases and plays a key role in 
numerous fibrotic diseases; however, the specific mechanisms 
underlying development of renal fibrosis remain to be fully 
elucidated. Ferroptosis serves a key role in the development 
of renal fibrosis, and a comprehensive understanding of this 
involvement may identify novel targets and approaches for the 
development of disease prevention and therapy.

2. Ferroptosis

Ferroptosis is an iron‑dependent and lipotoxic RCD. Erastin 
is a cell‑permeable substance that was discovered by 
Dolma et al (7) in 2003 using a high‑content screening assay. In 
that study, it was demonstrated that erastin selectively inhibits 
genetically engineered cells with oncogenic RAS mutations 
without harming healthy cells. In 2012, Dixon  et  al  (2) 
named erastin‑induced iron‑dependent non‑apoptotic RCD as 
‘ferroptosis’. Ferroptosis is characterized by high levels of lipid 
peroxidation at the cytoplasmic membrane and/or intracellular 
locations, such as the mitochondria, endoplasmic reticulum 
or lysosome, and is a caspase‑independent type of cell 
death (2,8‑10). Morphologically, ferroptosis is characterized 
by decreased mitochondrial density, decreased or absent 
mitochondrial cristae and rupture of the outer mitochondrial 
membrane. Moreover, these features are accompanied by 
intact membranes, normal nuclear size and non‑condensed 
chromatin (11). Biochemically, ferroptosis is characterized by 
accumulation of reactive oxygen species (ROS), increase of 
lipid peroxides and the deposition of intracellular iron ions (2). 
Ferroptosis is regulated by factors associated with metabolism, 
including glutathione peroxidase 4 (GPX4) dysfunction, the 
cystine (Cys)/glutamate (Glu) antiporter system (system Xc‑1), 
lipid peroxidation and iron metabolism dysfunction  (12). 
It is also associated with signalling pathways, such as 
p53 (13), ferroptosis suppressor protein 1 (FSP1)/coenzyme 
Q10 (COQ10)/NAD(P)H  (14), PI3K/Akt/mTOR  (15), 
sequestosome 1 (p62)/Kelch‑like ECH‑associated protein 1 
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(Keap1)/nuclear factor erythroid 2‑related factor 2 (NRF2) (16) 
and autophagy‑related (ATG)  5/ATG7/nuclear receptor 
coactivator (NCOA) 1 (17).

GPX4. The antioxidant enzyme GPX4 is a member of the 
GPXs family and a key target in the regulation of ferrop‑
tosis  (18). GPX4 interrupts the lipid peroxidation chain 
reaction by reducing complex hydroperoxides (including 
phospholipid hydroperoxides and cholesterol hydroperoxides) 
to their corresponding Sub‑units (19). GPX4 is a selenoprotein 
with selenocysteine (Sec) in its active site, and its active state 
requires the catalysis of glutathione (GSH). GPX4 activity 
is reduced or inactivated when GSH is depleted, and GPX4 
also converts GSH to glutathione disulfide (GSSG), thereby 
reducing esterified oxidized fatty acids and cholesterol 
hydroperoxide, and reducing lipid hydroperoxide (L‑OOH) 
to a nontoxic lipid hydroxy derivative (L‑OH), thus resisting 
oxidative damage (13). During GPX4 maturation, Sec‑tRNA 
is mediated by mevalonate, one of the key regulatory factors 
in positive regulation of the pathway product, isopentenyl 
pyrophosphate  (13). Both erastin and RAS‑selective lethal 
3 (RSL3) compounds induce ferroptosis via inactivation 
of GPX4, according to Dixon et al (20). A recent study also 
demonstrated that erastin upregulates the expression of ATF3, 
which inhibits expression of GPX4, in addition to inactivating 
GPX4 and inhibiting its expression (21).

System Xc‑. System Xc‑ is an antioxidant system located on the 
cell membrane and an amino acid antiporter that is broadly 
distributed in the phospholipid bilayer. It is a heterodimer 
consisting of two subunits and primarily consists of solute 
carrier family 7 member 11 (SLC7A11) and solute carrier 
family 3 member 2 (22). System Xc‑ regulates the 1:1 ratio 
of Cys and Glu entering and leaving cells (23). The primary 
antioxidant in cells is the reducing agent GSH and GSH 
biosynthesis is limited by cysteine  (2,24). Cys is reduced 
to cysteine in the cell and then synthesized into GSH. GSH 
impacts intracellular redox homeostasis and activates GPX4. 
Inhibiting activity of system Xc‑ reduces the uptake of Cys, 
therefore impacting the synthesis of GSH. In turn, this 
decreases activity of GPX4 and the antioxidant capacity of 
cells and accumulates ROS, ultimately leading to oxidative 
damage and ferroptosis (25,26). Erastin impairs cellular anti‑
oxidant defenses by inhibiting system Xc‑ mediated cystine 
uptake, thereby promoting the accumulation of ROS and thus 
ferroptosis (7). Embryonic fibroblasts derived from SLC7A11 
knockout mice have ferroptotic cell death due to SLC7A11 
gene deletion (27). And deletion of SLC7A11 gene in mice 
can lead to ferroptotic‑like impairment (28). Chang et al (29) 
found that the increase of SLC7A11 significantly inhibited the 
occurrence of ferroptosis. This shows that system Xc‑ plays an 
important role in the occurrence of ferroptosis.

Lipid peroxidation. Lipid metabolism is key in the process 
of ferroptosis and is a typical free radical chain reaction. 
Polyunsaturated fatty acids (PUFAs) are involved in almost 
all pathways of ferroptosis because they are susceptible to 
lipid peroxidation due to the presence of easily extractable 
hydrogen atoms at bis‑allylic carbon positions  (30). Any 
free radical that can extract hydrogen atoms from oxidizable 

substrates can initiate the lipid peroxidation process, and the 
abundance and location of intracellular lipid peroxidizable 
substrates determines the extent of lipid peroxidation and 
ferroptosis (8). Free PUFAs are substrates for synthesis of 
lipid signal transduction mediators, and these are esterified 
into membrane phospholipids during lipid metabolism and 
oxidized into ferroptosis signals  (13). Lipidomic analysis 
has revealed that phosphatidylethanolamines (PEs) are key 
membrane phospholipids that drive ferroptosis by oxidizing 
phospholipid hydroperoxides [arachidonic acid (AA) and 
adrenic acid (AdA)‑hydroperoxides‑PE] via a non‑enzymatic 
process (13,16). Acyl‑CoA Synthetase is a long‑chain family 
member 4 (ACSL4) and lysophosphatidylcholine acyl‑trans‑
ferase 3 (LPCAT3) are two enzymes involved in the biosynthesis 
and remodeling of PE, which activate PUFA and affect its 
transmembrane properties (12). Therefore, blocking expres‑
sion of ACSL4 and LPCAT3 inhibits the esterification of AA 
or AdA to PE and decreases accumulation of intracellular lipid 
peroxidative substrates, thereby inhibiting ferroptosis (13). As 
enzymatic effectors, lipoxygenases, of which free PUFAs are 
the preferred substrates, mediate the peroxidative reaction of 
ferroptosis (31). SLC38A1 is a regulator of glutamate uptake 
and metabolism in lipid peroxidation (32). Yang et al  (33) 
found that lncRNA ZFAS1 could regulate the expression of 
SLC38A1 through miR‑150‑5p and activate the conversion of 
fibroblasts into myofibroblasts in lung tissue with the develop‑
ment of cytosolic iron death.

Iron metabolism dysfunction. Iron can form iron (Fe3+) ions and 
ferrous (Fe2+) ions, which are one of the essential trace elements 
for the human body and are involved in a variety of biological 
processes (like the formation of hemoglobin from proteins, the 
transport of oxygen, and the formation of enzymes necessary 
for the human body) (34). One of the primary characteristics 
of ferroptosis is accumulation of iron ions (2). Under normal 
conditions, intracellular iron is balanced by the iron trans‑
port system, while extracellular iron is taken into the cell by 
transferrin (TF) and transferrin receptor (TFR) and stored and 
transported as ferritin complexes (mainly ferritin) (35). Ferritin 
is mainly composed of ferritin light chain (FTL) and ferritin 
heavy chain (FTH1), which has iron oxidase activity and can 
catalyze the conversion of Fe2+ to Fe3+, promote iron binding to 
ferritin and reduce free iron levels (36). Ferroportin 1 (FPN1) 
is the only protein known to control iron export in mammalian 
cells and serves an important role in iron metabolism (FPN1 is 
a target molecule of hepcidin. FPN1, in the action of hepcidin, 
controls the amount of dietary iron, circulating iron and 
stored iron released into the plasma by altering its distribu‑
tion across the cell membrane to maintain iron homeostasis 
in the body.) (2,3). Fe2+ is the form involved in the reaction 
during iron death, and when the body's iron metabolism is 
upset, intracellular iron stores are reduced and excess Fe2+ is 
involved in the Fenton reaction catalyzing the production of 
large amounts of ROS and hydroxyl radicals, which leads to the 
occurrence of ferroptosis (24). Alvarez et al (37) demonstrated 
that iron‑sulphur cluster biosynthetic enzyme could resist the 
onset of iron death by inhibiting the elevation of intracellular 
iron levels. Fang et al (38) and Chang et al (29) observed that 
heme oxygenase 1 (HO‑1) induces ferroptosis via promotion 
of heme decomposition to release Fe2+ ions. Serine/threonine 
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protein kinase ataxia‑telangiectasia mutated protein, a crucial 
DNA damage response regulator, promotes ferroptosis by 
preventing nuclear translocation of metal regulatory transcrip‑
tion factor 1, a transcription factor that triggers production of 
FTH1 and FTL to decrease iron toxicity (39).

Other molecular mechanisms. Results of a recent study 
demonstrated that p53 is essential for inducing ferroptosis (13). 
p53 responds to different stress signals via the coordination 
of specific cellular responses and the corresponding cell cycle 
arrest and apoptosis play important roles in inhibiting develop‑
ment of cancer (13). It was found that p53 could inhibit the 
uptake of System Xc‑ to Cys by suppressing the expression of 
SLC7A11, which resulted in a large decrease in GSH produc‑
tion and affected the activity of GPX4, leading to reduced 
antioxidant capacity and ROS accumulation, thus promoting 
cellular iron death (40). The communication between mito‑
chondria and other organelles is aided by voltage‑dependent 
anion channels (VDACs), channel proteins located in the 
outer mitochondrial membranous layer (41). Yagoda et al (42) 
demonstrated that erastin alters the permeability of the mito‑
chondrial outer membrane via direct binding to VDAC2/3, 
thereby decreasing the oxidation rate of NADH and inducing 
ferroptosis. FSP1 is a potent ferroptosis‑resistance factor (43). 
Doll et al (14) demonstrated that myristoylation of FSP1 inhibits 
lipid peroxidation via NAD(P)H reduction of COQ10, thereby 
inhibiting ferroptosis. Moreover, methionine is converted to 
Cys under oxidative stress via the sulphur transfer pathway to 
create GSH, which exerts its antioxidant action (44). In addi‑
tion, the PI3K/Akt/mTOR (15), p62/Keap1/NRF2 (16) and 
ATG5/ATG7/NCOA4 (17) signalling pathways serve regula‑
tory roles in the occurrence of ferroptosis.

3. Ferroptosis and renal fibrosis

Oxidative stress. When the redox system is damaged, ROS 
and reactive nitrogen species are excessively produced and 
oxidative stress occurs (45). Well‑established mechanisms of 
oxidative stress‑mediated renal injury include production of 
ROS and the ensuing disruption of the antioxidant system, 
which result in apoptosis, ferroptosis and necrosis (46,47). 
There are numerous causes of renal fibrosis, including oxida‑
tive stress  (48). Specific inhibitors, including ferrostatin‑1 
(Fer‑1), which is characterized by lipid‑dependent peroxi‑
dation, prevent ferroptosis  (2). Roxadustat is an emerging 
therapeutic option for treatment of anaemia in patients with 
chronic kidney disease (CKD). It is an oral inhibitor of 
hypoxia‑inducible factor (HIF) prolyl hydroxylase, which 
stimulates erythropoiesis and regulates iron metabolism. 
Using a folic acid‑induced kidney injury model, Li et al (49) 
demonstrated that roxadustat pre‑treatment decreases 
ferroptosis and inhibits inflammation by stabilizing HIF‑1α 
and activating the nuclear factor erythroid 2‑related factor 2 
(Nrf2) signalling pathway, thereby inhibiting renal fibrosis. 
Ide et al  (50) demonstrated that lipid peroxidation induces 
ferroptotic stress and ferroptosis. Following injury, renal 
proximal tubule (PT) cells may exhibit a pro‑inflammatory 
state and genes involved in high ferroptosis stress may trigger 
accumulation of inflammatory PT cells, thereby enhancing 
inflammation and fibrosis. Feng et al (51) demonstrated that 

diabetes increases HIF‑1α and HO‑1 in the kidney of mice, 
resulting in increased lipid peroxidation due to increased 
ROS production and tubular iron deposition. This leads to 
renal tubular damage and fibrosis in mice. In a diabetic mouse 
model, inhibition of ferroptosis prevents lipid peroxidation by 
decreasing ROS production in the kidneys and reducing iron 
deposition in the renal tubules (51). This alleviates diabetes 
mellitus, renal tubular injury and renal fibrosis progression 
in mice (51). Nobiletin (Nob), an important active flavonoid 
found in citrus fruits, exhibits antioxidant, anti‑inflammatory, 
antifibrotic and antiapoptotic properties (52). Lo et al  (53) 
demonstrated that Nob partially decreases oxidative stress 
and ferroptosis or apoptosis in unilateral ureteral obstruction 
(UUO) mice, which decreases inflammatory responses and 
subsequently inhibits development of renal fibrosis. In conclu‑
sion, the inhibition of ferroptosis via regulation of oxidative 
stress may represent a novel method for treatment of renal 
fibrosis.

Inflammation. Inflammation is an immune response to exog‑
enous or endogenous injury and contributes to the maintenance 
of tissue homeostasis under stressful conditions (54). A high 
inflammatory burden is associated with kidney damage. Results 
of a clinical study on type 2 diabetes demonstrated that the ratio 
of C‑reactive protein expression to serum albumin is increased 
in patients with diabetic nephropathy compared with those 
without diabetic nephropathy (55). Using an adenine‑induced 
mouse model of aging, the model group demonstrated increased 
levels of extensive tubular damage and fibrosis, as well as 
increased inflammatory responses, compared with groups 
of control  (56). Inflammation is the main pathogenesis of 
diabetic kidney injury (DKI), and the monocyte to lymphocyte 
ratio (MLR) is considered a marker of inflammatory disease. 
microalbuminuria (MA) is the Microalbuminuria (MA) is the 
last reversible stage of DKI treatment, and in type 2 diabetic 
patients, MLR expression levels are significantly higher in 
the MA group compared to the normoalbuminuria (NA) 
group (57). Monocyte chemoattractant protein‑1, macrophage 
colony‑stimulating factor and neopterin levels are markedly 
increased in patients with chronic renal disease compared with 
controls (58). Moreover, numerous inflammatory cytokines, 
such as neuregulin (59), kidney injury molecule‑1 (KIM‑1) (60) 
and omentin (61) are associated with degree of kidney damage. 
In addition, interleukin (IL)‑10 exerts anti‑inflammatory 
effects. In a renal ischemia‑reperfusion injury model, IL‑10 
knockout mice demonstrated decreased levels of renal function, 
upregulation of renal injury biomarkers, such as KIM‑1, and 
increased expression of certain pro‑inflammatory cytokines, 
compared with the control group (62). Therefore, renal damage 
is associated with inflammation.

Damage to renal tissue induces the inflammatory and 
fibrotic processes that aid in regeneration and repair  (63). 
Results of previous studies demonstrated that macrophages 
are a potential therapeutic target for renal injury and fibrosis 
and play a significant role in the pathophysiology of kidney 
disease (64‑66). Notably, renal fibrosis may be reversed as 
different subpopulations of macrophages in the kidney can 
either promote or inhibit deposition of extracellular matrix in 
the kidney (64). Inflammatory cell infiltration is a key charac‑
teristic of renal fibrosis (67). Renal tubular injury is considered 
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a proinflammatory driving force in fibrosis. Following renal 
tubular injury, renal tubular epithelial cells (TECs) produce 
immune responses and release inflammatory mediators. The 
aggravation of inflammation leads to cell death, while cell 
death also has a strong pro‑inflammatory effect, further wors‑
ening tubular injury, and continued inflammation and injury 
can lead to tubulointerstitial fibrosis (68). In conclusion, renal 
fibrosis and inflammation are associated with renal damage.

Due to increased permeability and rupture of the cell 
membrane during ferroptosis, associated contents, including 
damage‑associated molecular pattern (DAMP) may be 
released, causing an inflammatory response and activation of 
the innate immune response. However, the specific mecha‑
nism requires further investigation (69). Necroinflammation 
associated with ferroptosis is observed acute kidney injury 
model in mice, as well as in GPX4‑deficient knockout mouse 
models  (70,71). In the kidneys of GPX4 knockout mice 
induced by tamoxifen, a large number of renal tubular cells 
died, and the release of cellular debris, mitochondria and even 
nuclei from ruptured cells into the tubular lumen could be 
observed at the histological level; this may be associated with 
DAMP (72). In ferroptotic tissues, F4/80 immunofluorescent 

staining has demonstrated that macrophages are markedly 
activated (73), releasing pro‑inflammatory substances, thus 
triggering inflammatory responses.

However, to the best of our knowledge, the interac‑
tion between ferroptosis and inflammation in renal fibrosis 
remains unclear. Tectorigenin, a compound derived from the 
iris plant Belamcanda chinensis, is an active ingredient used 
in Traditional Chinese Medicine (74). Tectorigenin exhibits 
numerous pharmacological activities, such as anti‑inflamma‑
tory and antioxidant properties, liver protection and diabetes 
control (75,76). Li et al  (77) demonstrated that tectorigenin 
inhibits ferroptosis and fibrosis induced by external stimuli 
in primary TECs. Moreover, Fer‑1, a ferroptosis inhibitor, 
inhibits the pro‑fibrotic effect of TGF‑β1‑stimulated TECs, 
suggesting that tectorigenin may alleviate renal fibrosis via 
inhibition of ferroptosis in TECs (77). Results of a recent study 
also demonstrated that Fer‑1 attenuates oxalate‑induced TEC 
damage and renal fibrosis via inhibition of ferroptosis (78). 
Zhang et al (79) demonstrated that ferroptosis of TECs may be 
induced following UUO in mice, while liproxstatin‑1 (Lip‑1), a 
ferroptosis inhibitor, inhibits downregulation of GPX4 expres‑
sion and ferroptosis in TECs and attenuates expression of 

Figure 1. Principal mechanism of ferroptosis‑mediated renal fibrosis. Ferroptosis occurs through various pathways including GPX4, System Xc‑, lipid peroxi‑
dation, and iron metabolism dysfunction. Ferroptosis may be involved in the process of renal fibrosis through multiple pathways such as oxidative stress, 
inflammation and autophagy. 
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pro‑fibrotic factors in UUO mice. These results suggested that 
Lip‑1 alleviates renal fibrosis in UUO mice via inhibition of 
ferroptosis in TECs. Moreover, Luo et al (80) demonstrated that 
obesity induces ferroptosis in the kidney while Fer‑1 inhibits the 
development of high‑fat diet‑induced inflammation and fibrosis 
in renal tissue. Tocilizumab is an emerging interleukin‑6 (IL6) 
receptor‑targeting drug Yang  et  al  (81) demonstrated that 
tocilizumab attenuates renal fibrosis in mice via inhibition of 
ferroptosis. Renal fibrosis is a common pathological process 
in diabetic nephropathy (82). Results of previous studies have 
demonstrated that expression levels of ACSL4 are increased in 
diabetic nephropathy mice and expression levels of GPX4 are 
decreased (83). Using the ACSL4 inhibitor rosiglitazone, both 
ferroptosis and production of pro‑inflammatory cytokines are 
inhibited in TECs, preventing development of diabetic nephrop‑
athy (83). Zhou et al (84) confirmed that inhibiting ferroptosis 
in TECs reduces interstitial inflammation and renal fibrosis. 
Collectively, these results suggested that attenuating cellular 
inflammation development via inhibition of ferroptosis may be 
a novel approach for the treatment of renal fibrosis.

Autophagy. Autophagy refers to self‑phagocytosis of cells, which 
removes misfolded proteins and damaged organelles in cells 
awaiting degradation, thereby maintaining cell homeostasis (85). 
Autophagy is a self‑protection mechanism of eukaryotic 
cells  (85). A previous study demonstrated that changes in 
autophagy activity are associated with renal fibrosis (86). The 
regulatory function of autophagy in fibrosis is associated with 
coordinated regulation of tubular cell death, interstitial inflam‑
mation and, in particular, production of pro‑fibrotic secretory 
proteins (87). Results of a previous study demonstrated that, as 
a relatively recently discovered regulatory mode of cell death, 
ferroptosis differs from other regulatory modes such as autophagy, 
apoptosis, necrosis (2). Nonetheless, a more recent study demon‑
strated that ferroptosis and autophagy exhibit common regulators 
such as SLC7A11, GPX4, Nrf2 and heat shock protein β‑1 (88). 
The autophagy‑related protein beclin 1 (BECN1) inhibits the 
function of system Xc‑ via formation of the BECN1/SLC7A11 
complex and induces ferroptosis under the action of erastin and 
RSL3 (84). Ferritinophagy is a type of cell‑selective autophagy 
mediated by NCOA4. To facilitate the movement of intracellular 
ferritin to autophagy lysosomes and liberate free iron, NCOA4 
functions as a selective autophagy receptor and binds to FTH1 
of ferritin (89). Overexpression of NCOA4 increases ferritin 
degradation in cancer cells and fibroblasts, thereby promoting 
ferroptosis (90). Wang et al (91) demonstrated that expression 
of NCOA4 is increased in a 5/6 nephrectomy‑induced CKD rat 
model Following the addition of ferroptosis inducer cisplatin or 
the ferroptosis inhibitor desferrioxamine mesylate, expression of 
NCOA4 is enhanced or attenuated, respectively. This treatment 
alters the progression of renal fibrosis. Therefore, ferritinophagy 
may induce ferroptosis in CKD and promote development of 
renal fibrosis. Consequently, inhibition of ferroptosis via regu‑
lation of autophagy may act as a novel therapeutic method in 
treatment of renal fibrosis.

4. Conclusion

Renal fibrosis is a common pathological state in almost 
all chronic and progressive kidney diseases, but effective 

measures for its clinical prevention and treatment are still 
not available. Ferroptosis is a novel regulatory cell death 
modality, and by summarizing the association between renal 
fibrosis and ferroptosis, we found that ferroptosis is involved in 
various biological processes such as oxidative stress, inflam‑
mation, and autophagy during renal fibrosis (Fig. 1). However, 
the specific molecular mechanism is still unclear, and further 
research is needed to investigate the role of ferroptosis in the 
development of renal fibrosis and to explore effective and 
highly targeted therapeutic measures against ferroptosis to 
provide new targets and more valuable therapeutic approaches 
for renal fibrosis research.
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