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Abstract Introduction: Our aim was to investigate if the accuracy of diagnosing mild cognitive impairment
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(MCI) using the Mini–Mental State Examination (MMSE) and logical memory (LM) test could be
enhanced by adding MRI data.
Methods: Data of individuals with normal cognition and MCI were obtained from the National Alz-
heimer Coordinating Center database (n 5 386). Deep learning models trained on MRI slices were
combined to generate a fused MRI model using different voting techniques to predict normal cogni-
tion versus MCI. Two multilayer perceptron (MLP) models were developed with MMSE and LM test
results. Finally, the fused MRI model and the MLP models were combined using majority voting.
Results: The fusion model was superior to the individual models alone and achieved an overall ac-
curacy of 90.9%.
Discussion: This study is a proof of principle that multimodal fusion of models developed usingMRI
scans, MMSE, and LM test data is feasible and can better predict MCI.
� 2018 The Authors. Published by Elsevier Inc. on behalf of the Alzheimer’s Association. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/
4.0/).
Keywords: MRI; MMSE; LM test; Mild cognitive impairment; Deep learning; Convolutional neural network; Multilayer per-
ceptron; Majority voting
1. Introduction

Cognitive decline is one of the most concerning behav-
ioral symptoms associated with Alzheimer’s disease (AD).
Seamless changes in the AD continuum take years if not de-
cades to progress from normal cognition (NC) to mild cogni-
tive impairment (MCI), with gradual evolution of clinically
thor. Tel.: 1617-358-7253; Fax: 1617-414-3292.

ola@bu.edu

/j.dadm.2018.08.013

e Authors. Published by Elsevier Inc. on behalf of the Alzhe

commons.org/licenses/by-nc-nd/4.0/).
probable AD to confirmed AD [1–3]. Early detection and
accurate diagnosis of AD require careful medical
assessment, including patient history as well as physical
and neurological examinations. The Mini–Mental State Ex-
amination (MMSE), which is a 30-point questionnaire [4–6],
is a brief cognitive assessment tool commonly used to screen
for dementia, and the Wechsler Memory Scale Logical
memory (LM) test is widely used to assess verbal memory
and is considered a sensitive test of AD [7].
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Table 1

Characteristics of the study population

Label NC MCI

Number of patients 303 83

Number of MRI scans 303 83

Age—median (range) 60 (43–89) 75 (56–87)

Percent male 34.3 61.4

Education—median (range) 16 (8–25) 16 (8–20)

LM test—median (range) 14 (3–22) 7 (0–16)

Total MMSE score—median (range) 30 (24–30) 27 (17–30)

Abbreviations: MRI, magnetic resonance imaging; LM, logical memory;

MMSE, Mini–Mental Status Examination; NC, normal cognition; MCI,

mild cognitive impairment.

NOTE. Data were obtained from the National Alzheimer’s Coordinating

Center (NACC) database. Both individuals with MCI (83) and the ones with

NC (303) were considered. Both the MMSE and LM test results were also

obtained and reported. Note that few individuals underwent MRI scanning

more than once. Only one MRI scan was selected from each patient. The

MMSE and LM test were conducted closer to the scan time.
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Neuroimaging modalities such as magnetic resonance
imaging (MRI) have shown to provide biologic evidence
that cognitive decline is neurodegenerative [8–22], as they
contain detailed information regarding the subcortical
structures, good contrast of the gray matter, and the
integrity of the brain tissue. Specifically, it is known that
changes including cortical damage, focal lesions, and gray
matter loss in the occipital, parietal, prefrontal, and
temporal lobes can be understood using MRI scans [23].
Cortical atrophy is closely related to dementia and cognitive
decline. For example, posterior cortical atrophy (PCA) is
considered as a variant of AD in some studies [24–27],
and this might spread to other brain regions that are
commonly damaged in AD patients [28]. Brain MRI scans
are characterized as complex, unstructured data structures
and thus require sophisticated means by which to perform
efficient, quantitative analysis. Although the diagnostic
and psychometric strengths and limitations of neuropsycho-
logical tests and MRI scans have been tried and tested, there
is a limited body of work that has attempted to understand
the cumulative impact of combining these data sets for diag-
nosis of MCI.

Machine learning techniques have been widely used over
the past few years for the analysis of biomedical imaging
data and nonimaging data. More recently, a machine
learning framework known as deep learning, which is based
on artificial neural networks, has received increased atten-
tion because of its remarkable success in predicting various
clinical outcomes of interest. In subspecialties that rely on
imaging data, scientists have developed convolutional neural
network (CNN) models, which are efficient deep learning
techniques for object recognition and classification [29].
CNN models have proven ability to detect patterns within
image data sets and predict corresponding outputs for com-
mon tasks such as classification with superior accuracy. In-
side a CNN, a series of filters, with a size equivalent to a
small image patch, automatically search through the whole
image to find similar spatial features of the image. These fil-
ters can be learned and independently updated, so that a
collection of them can detect critical information for a spe-
cific task and data set. Such approaches can be used in a rela-
tively straightforward fashion to train deep learning models
on 2D MRI scans. Other forms of deep neural networks
based on a multilayer perceptron (MLP) architecture can
be used to train nonimaging data sets such as the ones based
on the MMSE and LM test results. Although these models
can be informative on their own, a framework to combine
all these models and the information contained therein will
enhance their clinical utility. Fusion of similar forms of
data has been previously performed to improve the predic-
tion for the diagnosis of cognitive status. For example,
different image projections, for example, axial, sagittal,
and coronal, were combined to generate a unified model
that was associated with MCI [30]. Structural MRI was
also combined with positron emission tomography for
similar purposes [31–33]. However, there is a limited body
of work that has investigated how to efficiently combine
MRI data with other nonimaging data sets such as the ones
derived from the MMSE and LM tests.

The ability to efficiently distinguish individuals withMCI
from the ones who have NC is crucial within the realm of
early detection of AD, as the changes that need to be
captured may only be subtle. Our hypothesis is that
combining structural information derived from neuroimag-
ing data and functional information derived from well-
known screening tools and cognitive assessment methods
can result in a better combined metric of diagnosing MCI.

2. Methods

Our goal was to create a predictive model of MCI by
considering detailed structural and anatomic information
contained within the MRI images as well as cognitive func-
tion assessed using the MMSE and LM tests. We first devel-
oped three individual machine learning models, one using
MRI scans alone, another using only MMSE results, and
third using only LM test results. Later, we combined the pre-
diction of these models using majority voting, thus exempli-
fying multimodal data fusion.

2.1. Study participants and measures

Our proof-of-principle studywas conducted using the data
provided by the National Alzheimer’s Coordinating Center
(NACC), which was established by the National Institute on
Aging/NIH in 1999 to facilitate collaborative AD research.
Specifically, we selected a cross-sectional collection of indi-
viduals from the NACC data set (Table 1), with one MRI
scan from each participant based on the following criteria:
(1) participants were clinically diagnosed as either NC or
MCI; (2) participants had both LM and MMSE test scores;
(3) MRI scans with at least 20 slices were taken in the axial
plane; (4) type of MRI was either T1 weighted or FLAIR as
they both are fluid suppressed with dark cerebrospinal fluid
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and relative bright white and gray matter [15]; and (e) dimen-
sion of each cross-sectional slice of theMRI (height or width)
was about 256 pixels so as to make this slice amenable for
training the machine learning model. This search resulted in
the selection of 386 unique cases. Among them, there were
303 individualswhowere diagnosed asNCand 83 individuals
who were diagnosed as MCI (82 amnestic MCI and one non-
amnestic MCI).

Each of the 386 MRI scans had a variable number of 2D
cross-sectional images (or slices), and the location and
orientation of the brain within each scan were also different.
To utilize each of these scans, we first grouped all 2D slices
per participant in 20 bins and then selected the first 2D slice
from each bin. We then manually selected a “signature” slice
from the 20 slices for each scan merely based on highest sim-
ilarity of anatomical features without knowing any informa-
tion about clinical diagnosis that was going to be predicted.
This “signature” slice was considered as slice 1 for modeling
(Fig. 1) and largely covered cross-sections of the occipital
horn, frontal horn of lateral ventricle, and thalamus. The
next two adjacent slices in the superior direction were
selected as slice 2 and slice 3, respectively. As a result, the
selected slices covered various regions including lateral ven-
tricles, inferior temporal, and middle temporal cortices. All
these anatomic areas were previously reported as regions of
interest that correlated with AD and MCI [34].

We selected three features including MMSEORDA
(orientation subscale score—time), MMSEORLO (orienta-
tion subscale score—place), and NACCMMSE (total
MMSE score) to generate a model based on MMSE results
alone. A previous study has shown that MMSE orientation
Fig. 1. Axial slices from different locations for two individuals with NC and MCI,

ing the entire scans as they represented locations that have been shown to associa

cognition.
(e.g., time or place) was the domain with the largest extent
of change over time in AD patients [35], and two other
studies found that MMSE orientation is impaired early in
the disease process [36,37]. Also, we selected all the
features that are considered as part of the LM test to
generate an LM test–based model. This includes LOGI-
PREV (total score from the previous test administration),
LOGIMEM (total number of story units recalled from this
current test administration), MEMUNITS (total number of
story units recalled), and MEMTIME (time elapsed since
first recall to delayed recall). The numeric value of the
data was derived from the NACC Uniform Data Set Re-
searcher’s Data Dictionary (version 3.0, March 2015).
2.2. Training and validation of the MRI models

For each 2D MRI slice, we adapted the Oxford Univer-
sity’s Visual Geometry Group’s (VGG-11) model [38], pre-
trained on millions of images with 1000 object classes by
incorporating minor changes to fine-tune the framework
and to associate MRI image features with the clinical diag-
nosis of cognitive status (Fig. 2, Supplementary Table 1).
Specifically, we inserted the batch normalization layer after
every convolutional layer and a dropout layer after every
max pooling layer within the VGG-11 architecture. We
also added two fully-connected (FC) layers after the output
layer of VGG-11 to perform binary classification on the
output of VGG-11 that formed the deep neural network. Af-
ter the first newly added FC layer, we added a dropout layer
with rectified linear unit activation, and a softmax function
was applied on the second FC layer. A similar approach
respectively, are shown. The locations were carefully selected after process-

te MCI [34]. Abbreviations: MCI, mild cognitive impairment; NC, normal



Fig. 2. Schematic of the modeling architecture. Three deep neural network models (VGG-11) were independently trained and tested on three slices, respec-

tively. Max, mean, and majority voting were performed on the outputs of the three VGG-11 models. Predictions from the three voting methods were then com-

bined by majority voting again to generate a fused MRI model. Two MLP models were independently developed on MMSE and LM test results, respectively.

Finally, predictions from the three base models (MRI model, MMSE model, and LM model) were combined by applying another majority voting to generate a

final prediction of multimodal fusion model. Abbreviations: MLP, multilayer perceptron; MCI, mild cognitive impairment; NC, normal cognition; MRI, mag-

netic resonance imaging; LM, logical memory; MMSE, Mini–Mental Status Examination.
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was developed on another well-known CNN architecture
(VGG-16), where dropout layers were added to avoid model
overfitting [39].

The original data were split in 2:1:1 for training, valida-
tion, and testing. Care was taken to ensure that each split
had the same proportion of NC and MCI cases. The original
MRI slices were cropped to 224 ! 224 pixels and were
normalized to 0 to 1 to make them compatible with the input
requirements of the pretrained VGG-11 model. For
completeness, we performed model training and testing 5
different times. Mean and standard deviation were calcu-
lated for each performance metric over the five iterations
to demonstrate model behavior due to random splitting.
We set the class-specific weighted cross-entropy as the
loss function to be optimized through the stochastic gradient
descent algorithm [40]. The explicit form of the loss function
is as follows:
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th scan, which takes value 0 if the
ith scan is associatedwithNC and 1 if the ith scan is associated
with MCI. yi and 12yi are the probabilities, predicted by the
model, that the ith scan is associated withMCI or NC, respec-
tively. The class-specific weights, wMCI and wNC, can be
tuned as hyperparameters to alleviate the influence of data
imbalance. The value of wMCIand wNC was set at 4 and 1,
respectively, in our MRI models.

We performed model training using a transfer learning
strategy, which is a well-known approach to train image-
based classification problems [41,42]. We froze all the
pretrained VGG-11 parameters and trained the externally
added FC layers on the training data. During the training pro-
cess, the parameters of the FC layers were saved when the F1
score calculated on the validation set was atmaximum. Then,
we performed fine-tuning of the deep neural network after the
saved parameters of the two FC layers were loaded into the
model. The network with highest F1 score on validation set
was saved and used for testing. For the aforementioned two
stages of training (training the FC layers and full network
fine-tuning), we used a batch size of 20 using backpropaga-
tion with a gradient descent optimizer whose momentum
was set to 0.9 and the learning rate was set to 0.05.

Both dropout and batch normalization layers can effi-
ciently decrease the risk of overfitting and increase the
model generalizability. During training, nodes in front of
dropout layers were randomly deactivated by dropout ac-
cording to the probability “p” [43]. Thus, only part of the
model parameters selected randomly were updated by the
gradient descent algorithm. With batch normalization,
output from the previous layers of batch normalization was
scaled and shifted by
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where xi is the i
th element of the output, and mB and s

2
B are the

mean and variance of xi calculated over a batch [44]. The
scale parameter g and shift parameter b were learned
through the training process along with other parameters
within the model to reduce internal covariate shift and stabi-
lize training process.
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2.3. Training and validation of the MMSE and LM models

MMSE and LM cutoffs used in current AD clinical trials
and diagnostic studies have limited diagnostic accuracy,
particularly for distinguishing between normal cognition
and MCI, and MCI from AD dementia [45]. The total
MMSE score or delayed LM score does not contain all the
available information within the MMSE and LM test results.
Thus, we developed two independent MLP models taking
into account the subscores within the MMSE and LM test,
respectively, to predict MCI.

Because the input layer can have any number of nodes,
we can take all available features from the MMSE and LM
test to build MLP models for MMSE and LM. The combina-
tion of linear transformation and nonlinear activation func-
tions makes MLP a good choice that is capable of
exploring complex underlying relationships between
selected examination features and the diagnosis of MCI.

Both MMSE and LM models have one input layer in
which the MMSE model has 3 nodes and LM model has 4
nodes, one hidden layer with 20 nodes and one output layer
with two nodes. In addition, sigmoid and softmax nonlinear
functions were added at the hidden layer and output layer,
respectively. These models were trained using backpropaga-
tion with a gradient descent optimizer whose momentum
was set to 0.9 with learning rate 0.05. Loss function used
for training the models was the same as defined in Equation
2. The class-specific weights, wMCI and wNC, were set at 4
and 1 for LMmodel and was set at 5 and 1 for MMSEmodel,
respectively. The model with the highest F1 score on valida-
tion set was saved during the training process and used to
further evaluate performance on the testing set.
2.4. Model fusion and visualization of majority voting

The predictions from these trained VGG models were
then combined using a series of voting approaches. Specif-
ically, we performed majority voting, max voting, and
mean voting on three independent modified VGG-11 models
(Fig. 2). Majority voting was performed again on the predic-
tions of these voting approaches on the test data to finally
generate an image-based fusion model. Mean voting takes
the mean probabilities predicted from each modified
VGG-11 model trained on the three slices as the final predic-
tion defined as

Pmean
NC 5
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Here, Pi
NC and Pi

MCI are the probabilities predicted from
the ith model that one specific scan belongs to NC or MCI,
respectively. Max voting takes the prediction from the model
with the largest confidence as final prediction, where confi-
dence is defined as maxðPi

NC; P
i
MCIÞ, because the model can

predict either NC or MCI with high confidence. Majority
voting takes the label, NC or MCI, which was predicted
for equal or more than 2 times as the final prediction.
Then, using the fused MRI model based on the three inde-
pendent 2D scans along with the MLP models generated
with MMSE and LM test results, respectively, we performed
majority voting to generate a multimodal fusion model to
predict MCI.

To visualize and evaluate the performance of the multi-
modal fusion model, we also performed a subgroup analysis
where cases were split into eight categories defined based on
the predictions made by the fused MRI, MMSE, and LM
model, respectively. Within each subgroup, the accuracy of
the final prediction made from applying majority voting on
the fused MRI model, the MMSE model, and the LM model
were also visualized into eight clusters.
2.5. Model runs and performance metrics

Considering the small size of the data set, model runs for
each case (fused MRI model, MMSEmodel, LMmodel, and
fused multimodal model) were performed 5 times where the
data were split randomly into training, validation, and testing
for each run. Model performance was evaluated by aver-
aging various performance metrics across the 5 runs. Accu-
racy, precision, recall, F1 score, area under the curve (AUC
or c-statistic), and Matthews correlation coefficient (MCC)
were reported as mean values along with standard deviation.
3. Results

Data from the NACC database allowed us to develop a
fused multimodal machine learning model that had the abil-
ity to accurately perform diagnosis of MCI. This task
required extensive amount of preprocessing that involved
manually observing the appropriate cross-sectional MRI sli-
ces that were selected for developing the model.
3.1. MRI model

The performances of the three independent VGG-11
models that were trained and evaluated on 3 slices, respec-
tively, are shown in Table 2. The receiver operating charac-
teristic curves for each model, with mean AUC 0.833,
0.827, and 0.844, respectively, are shown in Fig. 3. Similar
model performances on the three slices indicate that the
VGG-11 architecture was able to capture the nuances of
the 2D image regions in a consistent fashion. Moreover,
each image represented a unique location within the brain
that presumably was able to correlate with the correspond-
ing diagnosis with high accuracy. A series of voting tech-
niques were performed to generate the consistent
prediction from the MRI scans. We can see that the fused
MRI model has similar performance as the model trained
on slice 1 and outperformed the rest of the two models
that were trained on slices 2 and 3 (Fig. 4, Table 2 &
Table 3).



Table 2

Performance metrics for the three modified VGG-11 models

Slice number Accuracy Precision Recall F1 Matthews correlation coefficient

Slice 1 83.3 6 4.1% 0.876 6 0.036 0.918 6 0.037 0.896 6 0.025 0.476 6 0.142

Slice 2 80.8 6 3.6% 0.844 6 0.023 0.929 6 0.059 0.883 6 0.025 0.378 6 0.116

Slice 3 82.1 6 2.2% 0.893 6 0.027 0.879 6 0.052 0.884 6 0.017 0.490 6 0.056

NOTE. We developed three modified VGG-11 models on three slices, respectively. Metrics are shown on the testing data set (n5 97) that was not used for

model training.
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3.2. MMSE and LM models

The performance metrics of the MMSE model and LM
model, constructed on the training data set and evaluated
on the testing data sets, are shown in Table 3. The receiver
operating characteristic curves for the MMSE model and
the LM model are shown in Fig. 5. We observed that the
LM model has better performance than the MMSE model
and MRI model in terms of accuracy, precision, F1, and
MCC. However, the MMSE and MRI models have their
own strengths, such as higher recall value than that of the
LM model. These differences highlight the power of each
test, and the models are developed using individual tests
alone. They also point to the importance of fusing these
models so as to be able to gain additional insight on cogni-
tive function.
3.3. Multimodal fusion model

Given the predictions from the three base models, that is,
the MRI model, the MMSE model, and the LM model, final
prediction of the fusion model was performed using majority
voting on the predictions of three base models (Fig. 6,
Table 3). Specifically, the accuracy of the multimodal fusion
model outperformed each base model by 7.8%, 6.6%, and
1.8%, respectively. The predictive performance of the fused
multimodal model outperformed that of the three base
models in accuracy, recall, F1 score, and MCC. The preci-
sion of the fused multimodal model is slightly lower than
that of the LM model.

We also performed a subgroup analysis to further eval-
uate the performance of the multimodal fusion model
(Fig. 7). All the cases in the test data were divided into eight
clusters, depending on predictionsmade by each base model.
To avoid any overlap, each case was assigned a random loca-
tion around the related cluster. To visualize the accuracy of
majority voting within each subgroup, the dot was presented
as a blue circle if majority voting on predictions from three
base models agreed with the true label, otherwise the dot was
represented as a red triangle. For example, cluster E denotes
all cases where both the MRI and the LM models predicted
the outputs as NC, but theMMSEmodel predicted the output
to be MCI. But after majority voting, the multimodal fusion
model predicted the NC label because 2 of 3 base models
voted NC. Among the 21 cases that belonged to this cate-
gory, majority voting made 18 right decisions by correcting
the mistakes made by the MMSE model and 3 wrong deci-
sions as both the MRI model and the LM model incorrectly
predicted that individual to have NC. Also, for the case of
cluster G, when the MMSE and LMmodels predicted the in-
dividual to have MCI, the MRI model, however, predicted
the individual to have NC. When majority voting was per-
formed, the multimodal fusion model predicted the MCI la-
bel because 2 of 3 base models voted MCI. Among the 29
cases that belonged to this category, majority voting made
24 correct decisions by correcting the mistakes made by
the MRI model and 5 wrong decisions as both MMSEmodel
and the LM model incorrectly predicted that individual to
have MCI. The accuracy of majority voting in each cluster
was computed as (A) 97.7%, (B) 82.8%, (C) 62.5%, (D)
90.5%, (E) 85.7%, (F) 42.9%, (G) 82.8%, and (H) 90.6%.
Taken together, these results indicate that majority voting
on the three base models enhanced the accuracy of the multi-
modal fusion model in terms of predicting MCI.

In summary, from the three basemodels developed onMRI
scans, MMSE, and LM test results, respectively, we observed
that the LM model outperformed the fused MRI model and
MMSE model, as revealed by most performance metrics.
However, theMMSE andMRImodels both have higher recall
value than the LM model based on our experiments. We then
performed the model fusion usingmajority voting on the three
base models, as this strategy carefully generated the best per-
forming model whose predictive performance had higher ac-
curacy, recall, F1 score, and MCC than what any of the
single models could achieve by themselves (Fig. 7).
4. Discussion

We explored the effectiveness of combining various
forms of data with the underlying assumption that additional
information can be gained from multiple data modalities to
better assess MCI. Although previous studies have focused
on combining different sources of imaging data such as
fusingMRI, fMRI, and positron emission tomography scans,
there is little body of work that focused on combining imag-
ing data with other sources of information that can be ob-
tained through well-established screening tests and
neuropsychological examinations (i.e., MMSE and LM
test). Our multimodal fusion model results demonstrate
that multiple neural network models can be trained and com-
bined together to generate a fused model to predict MCI.

The National Institute on Aging and the Alzheimer’s As-
sociation built a workgroup with the task of revising the



Fig. 3. ROC curves of three modified VGG-11 models. ROC curves of the

modified VGG-11 model developed on the first (A), second (B), and third

(C) slices, respectively. Each model was trained and evaluated on five

different data splits. ROC curves for the five random splits are shown as

five thin and transparent lines with different colors. The mean ROC curve

and the standard deviation were shown as the bold line and shaded region,

respectively. Abbreviations: AUC, area under the curve; MRI, magnetic

resonance imaging.

Fig. 4. Fusion of three modified VGG-11 models. Accuracies of each 2D

MRI models developed on single slice and MRI-fused model from a series

of voting methods for five random splits are shown. Mean and standard de-

viation over five splits for each model’s accuracy are also shown, respec-

tively.
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1984 criteria for AD dementia and MCI due to AD [46,47].
The core clinical criteria for AD andMCI will continue to be
the cornerstone of the clinical diagnosis, but biomarker
evidence is expected to improve the pathophysiological
accuracy of the diagnosis in the research setting. One
implication in the original criteria of AD dementia is that
memory impairment is always the primary cognitive
impairment in all patients. However, it is critical to
examine cognitive domains in addition to memory that
might be impaired. These cognitive domains include
language, visuospatial skills, executive functions, and
attentional control. Our motivation to combine the
predictions from the MMSE model with the LM model is
to comprehensively consider the cognitive impairment in
various domains. Biomarkers can be used to assist and
enhance the clinical diagnosis of AD and MCI. The
progress of the gradual cognitive decline can happen along
with a wide range of structural changes in the brain,
including frontotemporal lobar degeneration associated
with language disorder and posterior cortical atrophy
relevant to visual disability. However, considering MCI is
not biomarker confirmed, we designed the deep learning
model to explore the differences between participants with
NC and MCI automatically from the data set. We expected
the MRI model, carrying comprehensive structural
information of the brain, can further push the diagnostic
accuracy from MMSE and LM models to a superior level.

4.1. Data sets for model development

Compared with other brain MRI data sets, including Alz-
heimer’s Disease Neuroimaging Initiative (ADNI) and Open
Access Series of Imaging Studies (OASIS), the NACC has
its own strengths and limitations. The LM test provided
well-validated verbal memory data that were sufficient for
these proof-of-concept analyses. ADNI and OASIS use list
learning tests for their measure of verbal memory, but the
data present greater complexity for this type of analysis.
Thus, the NACC data set was chosen to achieve the goals



Table 3

Performance metrics for the 3 base models along with the multimodal fusion model

Model type Accuracy Precision Recall F1 MCC

MRI model 83.1 6 4.2% 0.878 6 0.031 0.913 6 0.050 0.894 6 0.027 0.481 6 0.132

MMSE model 84.3 6 2.3% 0.888 6 0.044 0.921 6 0.049 0.902 6 0.014 0.518 6 0.111

LM model 89.1 6 1.9% 0.951 ± 0.024 0.908 6 0.001 0.929 6 0.011 0.698 6 0.067

Majority voting 90.9 ± 2.7% 0.926 6 0.037 0.963 ± 0.015 0.944 ± 0.015 0.719 ± 0.101

Abbreviations: MRI, magnetic resonance imaging; LM, logical memory; MMSE, Mini–Mental Status Examination; MCC, Matthews correlation coefficient.

NOTE. Three base models were developed independently onMRI slices, MMSE features, and LM features, respectively. The multimodal fusion model com-

bined three base models using majority voting. Model performance was evaluated on testing set (n 5 97) that was not used in training.

NOTE. Bold font indicates the best value in that column.
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of this study. MRI scans included in ADNI and OASIS data
sets were collected with consistent MRI settings, so that the
size and contrast over different MRI scans are consistent.
However, MRI scans in NACC data sets were collected
from different NIA-funded Alzheimer’s Disease Centers
across the United States. The inconsistency of the MRI set-
Fig. 5. ROC curves for theMMSE (A) and LM test (B) models. Each model

was trained and evaluated on five different data splits. ROC curves for 5

random splits are shown as 5 thin and transparent lines with different colors.

The mean ROC curve and the standard deviation are shown as the bold line

and the shaded region, respectively. Abbreviations: AUC, area under the

curve; LM, logical memory; MMSE, Mini–Mental Status Examination.
tings in different centers made the procedure of analyzing
MRI scans more complicated. First, owing to the fact that
the dimensions of MRI are all different, we could not apply
automatic 3D brain registration techniques on those MRI
scans whose number of slices ranges from 20 to more than
200. In addition, the inconsistency made developing 3D
CNN on the NACCMRI data extremely challenging because
the CNN model used in classification task needs to take
fixed-sized data as input. To diagnose thosewith only limited
slices within an MRI scan, fusion of 2D CNN models can be
an interesting choice. Thus, we manually selected 3 slices
from each scan based on anatomical landmarks to decrease
the effect of misalignment, that is, inconsistent location
and orientation of brains within each scan. Future studies
are warranted to test our approach on other cohort studies,
such as ADNI and OASIS.
4.2. Role of deep learning

Biomedical image analysis is one of the successful benefi-
ciaries of the data science revolution over the past decade [48].
Sophisticated hardware along with cutting edge machine
learning algorithms including the deep learning frameworks
Fig. 6. Performance of majority voting on the 3 base models. Accuracy of

each base model (MRI model, MMSE model, and LM model) and multi-

modal fusionmodel for five random splits are shown.Mean and standard de-

viation over five splits for each model’s accuracy are also shown.

Abbreviations: MRI, magnetic resonance imaging; LM, logical memory;

MMSE, Mini–Mental Status Examination.



Fig. 7. Subgroup analysis of the multimodal fusion model. (A) Cases pre-

dicted by three base models as NC. (B) Cases predicted by theMMSEmodel

and LM model as NC but predicted as MCI by the MRI model. (C) Cases

predicted by the MRI model and MMSE model as NC but predicted as

MCI by the LM model. (D) Cases predicted by the MMSE model as NC

but predicted as MCI by the MRI model and LMmodel. (E) Cases predicted

by theMRImodel and LMmodel as NC but predicted asMCI by theMMSE

model. (F) Cases predicted by the LMmodel as NC but predicted as MCI by

the MRI model and MMSE model. (G) Cases predicted by MRI model as

NC but predicted as MCI by the MMSE model and LM model. (H) Cases

predicted by three base models as MCI. Note that “True” denoted by a

blue circle indicates that majority voting prediction matched with the true

label on that case, and “False” denoted by a red triangle indicates that ma-

jority voting prediction did not match with the underlying label of that case.

Abbreviations: MRI, magnetic resonance imaging; LM, logical memory;

MMSE, Mini–Mental Status Examination; MCI, mild cognitive impair-

ment; NC, normal cognition.
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have allowed us to make remarkable progress in terms of
developing diagnostic models for disease assessment and
even predictive models for disease prognosis. Many re-
searchers indeed believe thatwe are just at the beginning stages
of this revolution as more advances in data-learning technolo-
gies canprofoundly impact thewaywemakeuseofbiomedical
data. Given the right infrastructure, deep learning algorithms
are now arguably the primary choice for image-based classifi-
cation of clinical phenotypes as they have shown to be more
effective than using traditional machine learning models for
these tasks [49,50]. Significant progress has been made in
the field of AD where both traditional machine learning and
deep learning methodologies have been implemented to
identify various patterns and perform segmentation within
the brain as well as develop diagnostic models for accurate
detection of clinical phenotypes.

The traditional way of training CNN models requires
large amounts of imaging data as there are thousands to mil-
lions of parameters that need to be estimated to obtain
reasonably accurate predictions using them. This approach
is not practically feasible to analyze neuroimaging data
because only a limited number of labeled cases are generally
available. Moreover, training a CNN model de novo with
limited cases can easily lead to model overfitting. Therefore,
we leveraged transfer learning that allowed us to fine-tune
theweights of a pretrained deep neural network, thus making
it practically viable to use deep learning for data sets with
limited cases [41,42].

We observed that adding dropout and batch normalization
layers between convolutional blocks efficiently stabilized
and accelerated the training process. Because we were
dealing with a slightly imbalanced data set (NC-MCI ratio:
3.65), the model can get stuck in local minima during
training. Increasing the learning rate is typically one trick
to avoid this issue, but naively increasing the learning rate
without batch normalization can cause gradients to explode
or even vanish [44]. Thus, we performed batch normaliza-
tion, rescaled, and shifted the outputs between the interme-
diate layers within the deep neural network, to allow the
model to get trained with large learning rate in a stable
fashion. We also added dropout layers to overcome overfit-
ting, as this technique is well known to improve the general-
izability of the model [43].
4.3. Study limitations and future directions

Incorporating biomarkers into the diagnosis of MCI has
some limitations. There are a broad set of biomarkers corre-
lated with AD including b-amyloid, cerebrospinal fluid–tau,
fluorodeoxyglucose uptake, and cortical atrophy [47]. It is
still not clear how to select a subset of biomarkers for spe-
cific diagnosis and how the information contained in these
biomarkers should be collected and analyzed in a standard-
ized fashion. Another limitation of this study is that we do
not know whether the subjects diagnosed as MCI can be
placed on the AD continuum because there is no confirmed
biomarker for MCI due to AD. Moreover, it is known that
Lewy body and cerebrovascular disease also cause impair-
ment in cognition [47].

In future, one could envision the use of MRI in conjunc-
tion with clinical core assessments to provide more specific
and accurate diagnosis of AD and other non-AD-related de-
mentias. Neurobiological changes in the brain occur years
before symptoms of impaired cognition appear, and patients
with similar clinical symptoms of MCI may have substantial
heterogeneity in biomarkers [51]. Thus, it is important to
detect early stages of cognitive impairment and predict the
future direction of the disease toward various dementias. Ul-
timately, we envision development of diagnostic software
that can be built based on the deep learning models to auto-
matically analyze various types of data. Models based on
each data modality may result in specific predictions with
bounded accuracies, and approaches such as majority voting
can help unify these findings and even enhance the overall
diagnostic accuracy.
5. Conclusion

By adding seemingly disparate information, such as
MRI scans, to screening tools such as MMSE and neuropsy-
chological examinations such as LM test, which are well
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known and widely used to detect MCI in aging individuals,
performance of deep-learning models for MCI diagnosis can
be greatly enhanced. This result also suggests that no data
modality may be sufficient to assess MCI on its own, and
that this unique feature is even more salient when the goal
is to diagnose diseases that have insidious onset such as Alz-
heimer’s disease. For these models to reach mainstream clin-
ical practice for real-time assessment of MCI, they need to
be evaluated on multiple cohorts in the form of retrospective
data analysis as well as prospective trials. If this happens,
then the implications for clinical care are profound as they
will likely lead to improved outcomes compared with the
current methods for early detection of MCI.
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RESEARCH IN CONTEXT

1. Systematic review: After performing a PubMed
search, we found that there is a limited body of
work that investigated if the accuracy of diagnosing
mild cognitive impairment (MCI) using well-
known screening tools such as Mini–Mental State
Examination and neuropsychological tests such as
logical memory (LM) test could be enhanced by
adding structural information from magnetic reso-
nance imaging scans.

2. Interpretation: Our findings indicate that a fusion
modeling framework can better predict MCI as it
has the capability to combine needed information
from multimodal data resources. This also implies
that no data modality may be sufficient to assess
MCI on its own.

3. Future directions: This framework when validated on
multiple clinical cohorts can profoundly impact the
way we make use of multimodal data sets for diag-
nosing individuals with MCI from the ones with
normal cognition.
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Appendix
Supplementary Table 1

Modified VGG-11 architecture used for model development

Layers Output channel (k-s-p) Dropout rate

Conv1_1 64 (3 – 1 - 1)

Batch Norm, Relu

Max Pooling 64 (2 - 2 - 0)

Dropout 0.2

Conv2_1 128 (3 – 1 - 1)

Batch Norm, Relu

Max Pooling 128 (2 - 2 - 0)

Dropout 0.2

Conv3_1 256 (3 – 1 - 1)

Conv3_2 256 (3 – 1 - 1)

Batch Norm, Relu

Max Pooling 256 (2 - 2 - 0)

Dropout 0.2

Conv4_1 512 (3 – 1 - 1)

Conv4_2 512 (3 – 1 - 1)

Batch Norm, Relu

Max Pooling 512 (2 - 2 - 0)

Dropout 0.4

Conv5_1 512 (3 – 1 - 1)

Conv5_2 512 (3 – 1 - 1)

Batch Norm, Relu

Max Pooling 512 (2 - 2 - 0)

Dropout 0.4

Fc_6, Relu 4096

Dropout 0.5

Fc_7, Relu 4096

Dropout 0.5

Fc_8, Relu 1000

Dropout 0.5

Fc_9, Relu 20

Dropout 0.5

Fc_10, Softmax 2
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