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Abstract

Missing data are unavoidable in environmental epidemiologic surveys. The aim of this study was to compare methods for
handling large amounts of missing values: omission of missing values, single and multiple imputations (through linear
regression or partial least squares regression), and a fully Bayesian approach. These methods were applied to the PARIS birth
cohort, where indoor domestic pollutant measurements were performed in a random sample of babies’ dwellings. A
simulation study was conducted to assess performances of different approaches with a high proportion of missing values
(from 50% to 95%). Different simulation scenarios were carried out, controlling the true value of the association (odds ratio
of 1.0, 1.2, and 1.4), and varying the health outcome prevalence. When a large amount of data is missing, omitting these
missing data reduced statistical power and inflated standard errors, which affected the significance of the association. Single
imputation underestimated the variability, and considerably increased risk of type I error. All approaches were conservative,
except the Bayesian joint model. In the case of a common health outcome, the fully Bayesian approach is the most efficient
approach (low root mean square error, reasonable type I error, and high statistical power). Nevertheless for a less prevalent
event, the type I error is increased and the statistical power is reduced. The estimated posterior distribution of the OR is
useful to refine the conclusion. Among the methods handling missing values, no approach is absolutely the best but when
usual approaches (e.g. single imputation) are not sufficient, joint modelling approach of missing process and health
association is more efficient when large amounts of data are missing.
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Introduction

In epidemiological studies, accurate estimate of exposure is very

important for assessment of health risk. However missing data are

often unavoidable, resulting from loss to follow-up in longitudinal

studies, or non-responses in questionnaires. In large scale studies,

certain strategies have been developed reducing the high cost of

environmental measurements, e.g. collecting exposure surrogates

for all subjects generally by questionnaires, and performing exact

personal or environmental measurements only in subsamples of

population [1]; most of the time these subsamples are small due to

economic and logistic reasons (high cost, noise, bulk samplers…).

For instance, in the National health and nutrition examination

survey (NHANES), personal exposure to volatile organic com-

pounds was assessed in a subsample of 851 adults, i.e. 8.5% of the

population study [2]. Furthermore, even these specific studies can

suffer from missing data due to measuring instrument failure,

routine maintenance of monitors, and human error. Whatever the

reasons for incomplete data, it can be a significant obstacle for

researchers.

Most statistical software omits records with missing values by

default, and analysis is conducted on a subset with the available

data. This approach is commonly used for handling missing data,

but can lead to loss of statistical power which can be problematic

in environmental surveys where associations between environ-

mental factors and health outcome are generally weak. Further-

more, the results of the complete cases analyses are imprecise,

given that part of the data is not considered.

An alternative is to use measurements issued from subsamples to

build predictive models and then, apply them to the whole

population. Among these imputation techniques, single imputation

approach is the most common and easily conducted as standard

methodology [3], it involves a single estimated value for each

missing value. It can be applied directly without loss of power due

to the sample size being brought back to its original size. However,

single imputation ignores the uncertainty of estimation due to the

imputation.

Consequently, in 1987, Rubin proposed multiple imputation

[4], where each missing value is imputed by multiple simulated

data leading to multiple ‘‘completed datasets’’. Each generated

dataset is analyzed by standard methodology and the results

combined, enabling the uncertainty attached to missing data to be

assessed. Whilst several authors have declared multiple imputation

their method of choice [5,6], a recent review has suggested that its

use is still quite rare: less than 2% of papers published in
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epidemiology journals have used multiple imputation and often

omitting important details of the methodology used [7].

Another more recent alternative for dealing with missing data is

to jointly model through a Bayesian approach the missing process

and the association between health outcome and covariates [8,9].

This kind of models is a part of more general approaches referred

to hierarchical Bayesian modelling [10] which combines several

sub-models. In our case, there are two sub-models where the first

one connects missing exposure and predictive factors, and the

second one assesses the association between health outcome and

covariates including missing exposure. These two sub-models

could be implemented separately but the estimated exposure by

the first sub-model would be used in the second sub-model of

disease as if it had been measured without uncertainty. Through

the Bayesian modelling, the sub-models are integrated together

allowing to take into account all uncertainty.

The aim of this paper is to examine performances of several

approaches for handling large amounts of missing data in

environmental epidemiological surveys when the data are missing

completely at random (MCAR) using both a case study and a

simulation study. Omitting missing values, imputation techniques

(single and multiple imputation) and fully Bayesian approach are

considered.

Materials and Methods

In order to compare results from methods for handling missing

values, a real dataset was used. In the PARIS (Pollution and

Asthma Risk: an Infant Study) cohort, measurements were

performed and pollutant levels, such as formaldehyde levels, are

available in a subset of the population, but missing for infants not

involved in the environmental investigation [11].

Data
The cohort enrolled 3 840 full-term healthy babies, recruited

between February 2003 and June 2006. The study protocol is

described elsewhere [12]. At birth, an interview with the mother

was conducted to collect data about the history of allergic

conditions in both parents. Gender, parity, anthropometric

parameters of the child, maternal history of pregnancy and

delivery were also registered from newborn’s and mother’s medical

records. Parents regularly documented health outcomes in mailed

questionnaires. The health outcomes of interest were defined by

the occurrence of lower respiratory infection (LRI) and a dry night

cough (DNC) during the first twelve months of life [11,13].

Concerning environmental and lifestyle data, a trained inter-

viewer interviewed parents by phone during maternity leave to

describe in detail home characteristics (construction date, number

of occupants, home surface area, heating and cooking appliances,

presence of mechanical ventilation and double glazing, wall and

floor coverings and signs of dampness) and family living conditions

(duration of breastfeeding, information on day-care attendance,

keeping of pets, aeration, smoking, use of air fresheners, do-it-

yourself (DIY)). Any changes were assessed by mailed question-

naires at each time points.

Aldehyde air sampling measurements were performed in a

random sample of 196 babies’dwellings using a passive sampler

[14]. Predictive factors of formaldehyde levels were previously

identified: sources (presence and age of wall coating, wood-pressed

products for flooring or varnished parquet floor, and particle

board furniture), parameters of aeration and air stuffiness (length

of window opening, presence of mechanical ventilation and double

glazing), and home characteristics (construction date, housing

area, and number of occupants) [11].

This study was approved by the National Ethics Committee

(permissions 031153 and 051289), and parents of participating

infants gave their written informed consent. Data are stored in the

Paris council, within its Social, Childhood and Health Direction

(DASES). All data were anonymized before statistical analysis.

Association between formaldehyde, including missing
values, and health outcomes in the PARIS cohort

In the context of the study of formaldehyde exposure impact

(variable including missing values) on LRI (a relative common

health outcome in infancy) or DNC (a less prevalent event), results

from methods for handling missing values were compared. All

infants who move during the first year of life and those with no

data on health outcome were excluded from the analyses.

Unmeasured formaldehyde values are assumed MCAR [15]

since families where measurements were carried out were selected

at random, values are missing by design. The methods for dealing

with missing data that we considered were: omitting missing data,

imputation methodologies, and a fully Bayesian approach. For the

first one, as its name implies, only cases with available information

are considered, with cases with missing data being discarded.

Concerning the imputation approach, missing data are imputed

from the available information. Whatever the choice between

single or multiple, an imputation model has to be established. Two

approaches imputing missing formaldehyde values were exam-

ined, the linear regression model (LM), and the partial least

squares (PLS) model. PLS regression is particularly suited when

there are more predictors variables than observations, and

contrary to LM, it allows multicolinearity between variables

[16]. PLS method is based on the reduction of predictor variables

dimension by using techniques near principal component analysis.

As recommended in the literature, the imputation model includes

variables that are used in subsequent analyses such as the outcome

[17,18]. Therefore, the imputation model included formaldehyde

predictive factors and LRI or DNC. The predicted formaldehyde

mean was used in the single imputation. Note that other

approaches exist for single imputation where, for instance, the

missing value is replaced by local or adaptative estimate [19,20,21]

and not by the global mean. Whatever the chosen technique, the

missing value is always replaced by a single value underestimating

the variability due to this estimation. As the health outcomes are

binary variables, the association between formaldehyde levels and

LRI or DNC was then examined using logistic regression whatever

the imputed model approach.

In the multiple imputation approach, several imputations are

generated for given missing data. As previously described by Little

and Rubin [22], ‘‘m completed datasets’’ were firstly created by

filling in the missing values through the imputation model: missing

formaldehyde values were imputed randomly from an approxi-

mate predictive distribution based on the fitted regression. For

example in the case of LM, regression coefficients were sampled

from their multivariate Gaussian distribution obtained on

observed data and then missing formaldehyde values were

replaced by their corresponding predicted values. This procedure

was repeated m times. Here 10 000 imputed datasets were fitted.

The completed datasets were analyzed separately, the association

between formaldehyde levels (observed and imputed) and health

was examined using logistic regression, and the results of all

datasets were then combined, applying Rubin’s rules, to yield final

inference on the parameters of interest. The variance for the

combined parameter estimates included between and within

imputation variation.

Finally, a fully Bayesian model was implemented, as suggested

by Carpenter and Kenward [18]. Two sub-models were fitted

Missing Data in Environmental Epidemiology
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jointly using Markov Chain Monte Carlo methods [17]. The first

one modelled the association between health indicator and

exposure, and the second one modelled the relation between

missing and observed exposure measurements including covariates

supposed to be linked to exposure. Such joint modelling has

advantages as mutually enhanced estimates precision of two sub-

models parameters, extending multiple imputation methodology.

The algorithm was run for 10 000 iterations with 1000 iterations

discarded for burn-in. Inspection of posterior time series plots for

the parameters as well as autocorrelation plots indicated that the

model mixed well. For each model, posterior mean of OR with

95% credibility interval (95% Cr) is shown for the formaldehyde

exposure. Note that since the PLS approach is not based on a

probability model, Bayesian modelling cannot be used.

Simulation study
Facing missing data, the choice of approach is crucial in terms

of the conclusion, particularly when there is a high proportion of

missing data (near 94% in our case), and weak associations.

Comparisons between approaches have to be based on the quality

of estimates, and on the ability to conclude or not a significant

association. Simulation studies with characteristics near those of

real data but controlling the true value of OR without omitting the

case of no association (OR = 1.0) were therefore conducted. Two

cases were considered: one frequent outcome similar to LRI

(named ‘‘event 1’’), and a second case close to DNC (‘‘event 2’’).

Sample sizes are similar to those in real data sets (n = 2 551 for

event 1 and n = 2 342 for event 2).

Datasets were simulated from the following steps: ln E , N(X
Q; s2 Id) and Yi , B(pi) with logit(pi) = a + b Ei + c Zi, b = ln
ORtrue and i = 1, …, n, and where formaldehyde factors are

denoted by X, exposure variable by E, covariates by Z and health

indicator by Y. Exposure variable (corresponding to formaldehyde

in real dataset) was simulated on a logarithmic scale from a linear

model with formaldehyde predictors obtained from real data [11],

and coefficients Q were equal to those estimated in this study.

Then, the health indicator was simulated from a logistic model

with the resulting formaldehyde levels and covariates from real

data (coefficients c associated with covariates were those estimated

on real data as well as the residual variance s2). Formaldehyde

predictors and covariates are given in Table S1.

Three different ORtrue (and then three btrue = ln ORtrue) between

formaldehyde and event 1 or event 2 were considered: 1.0, 1.2,

and 1.4. Missing values for formaldehyde were assigned at

random. A case of 95% missing values was considered. To assess

the robustness of our conclusions, simulations with different

missing values percentages (85%, 75% and 50%) were also

conducted. For each scenario, a total of 100 datasets were

generated. This number of simulations is required to obtain an

estimate of the regression coefficient associated with formaldehyde

exposure within 10% of its true value when missing values are

omitted in the real data. Indeed, the equation given by Burton

et al. [23] for the number of simulations B is B~
Z1{a

2
s

d

� �2

here d is

the specified level of accuracy of the estimate of interest

‘‘accepted’’, s, the standard error for the parameter of interest

and, Z1-a/2, the (1-a/2) quantile of the standard normal distribu-

tion. When B = 100, a = 0.05 and s2 = 0.26 (estimated variance on

real data set), d is equal to 10%.

The quality of estimates for the different approaches was

assessed by the root mean square error of beta coefficients (RMSE,

RMSE~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
m

Pm
i~1

(bbibi{btrue)2

s
where bbibi is estimated b on ith dataset

i~1,:::,mð Þ and CI95%(RMSE)~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSEinf

p
;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSEsup

p� �
where

MSEinf~MSE{1:96
bsdsd(MSE)ffiffiffi

m
p and MSEsup~MSEz1:96bsdsd(MSE)ffiffiffi

m
p and MSE~RMSE2). The proportion of ‘‘significant’’

associations (PS, PS~ 1
m

Pm
i~1

1
1=[CI(cORiORi)

where 1
1=[CI(cORiORi)

~1, if

1 =[CI(dORiORi)~1 and 1
1=[CI(cORiORi)

~0, otherwise) i.e. of confidence or

credibility interval of OR excluding 1 was also calculated. This

criterion assesses risk of type I error when ORtrue = 1, and statistical

power when ORtrue was different from 1.

Confidence intervals for RMSE were based on a Gaussian

approximation using the empirical standard deviation of the MSE,

and confidence intervals for the PS were based on the Clopper-

Pearson ‘‘exact’’ confidence intervals [24] avoiding the Gaussian

approximation. As the question is basically if formaldehyde

exposure increased LRI and DNC risk according to previous

studies in literature, the one-sided approach was chosen. Statistical

analyses were conducted using R 2.14.0 [25] and WinBUGS

software [26].

Results

Results on real data
In this study, 2 551 infants of the PARIS birth cohort were

completely observed, independently of health outcomes and

formaldehyde levels, and pollutant levels were available for 142

of them. Most of infants lived in apartments. Nearly 30% of

buildings were built after 1975, and two-thirds were equipped with

double glazing. Around half of babies had wood-pressed products

for flooring or varnished parquet floor in their bedroom. Recent

(less than one year old) particle board furniture was present in

49.8% dwellings. About half of infants (46.9%) had at least one

LRI during their first year of life and the prevalence of DNC was

14.9%.

OR estimates between LRI or DNC occurrence and formal-

dehyde exposure levels are given in Table 1. The single

imputation techniques (LM or PLS) clearly induced high estimates

of association compared to all other approaches. The estimated

OR with fully Bayesian approach was similar to that obtained with

multiple imputation particularly for LRI, but lower than that with

PLS imputation. However, intervals were different leading to a

significant association with Bayesian modelling for LRI and nearly

significant for DNC but not significant with both multiple

imputation.

Simulations results
From the 100 simulated datasets, the resulting mean prevalence

of event 1 was 29.6% (range: 18.4%–41.3%) and of event 2 was

12.3% (range: 6.8%–18.5%). Table 2 shows RMSE and PS

assessed on simulated data when no data are missing. Results were

quasi similar for all approaches. As RMSE depends on ORtrue and

on prevalence of event, it increased between events 1 and 2 and

slightly with ORtrue. Concerning event 1, frequentist and Bayesian

approaches always concluded a significant association when

ORtrue = 1.4 while when ORtrue = 1.2, statistic power was near

60%. For an infrequent event as event 2, statistical power

decreased being near 85% when ORtrue = 1.4 and near 40% when

ORtrue = 1.2. When ORtrue = 1.0, PS had to be equal to 5%, which

was the case for the two approaches even if there was a slight

increase for the less frequent event. These results can be

considered as reference results as no data are missing.

Missing Data in Environmental Epidemiology

PLOS ONE | www.plosone.org 3 September 2014 | Volume 9 | Issue 9 | e104254



Table 3 provides results of the RMSE on replicates with 95% of

missing values. RMSE values ranged from 0.18 to 0.83 for event 1,

and from 0.09 to 1.06 for event 2. For each event, RMSE slightly

increased with OR. RMSE values were always lower in multiple

imputation than in single imputation, whatever the imputation

model (LM or PLS). Single imputation led to huge RMSE

reflecting poor qualities of estimates. All results were confirmed

with proportion of missing values of 75% and 85% (Table S2).

Figure S1 shows boxplots of beta estimates obtained from

Bayesian approach, from 100 simulations for the three different

values of ORtrue. When ORtrue is equal to 1.0, the range of

estimates increased with the proportion of missing values and with

the decrease of event prevalence. These results were also observed

when ORtrue = 1.2 and ORtrue = 1.4. Moreover, an underestima-

tion of beta (and so of OR) was obtained when ORtrue = 1.4.

When ORtrue is equal to 1, real risk of type I error is assessed by

PS while the theoretical one was fixed at 5% (Table S3). For event

1 with 95% of missing data, single imputation led to very high risks

(23% [15.2, 32.5] and 21% [13.5, 30.3] for LM and PLS,

respectively). If missing proportion is 75% or 85%, huge risks of

type I error were again found for single imputation. For event 2,

PS considerably increased for single imputation, 35% [25.7, 45.2]

and 42% [32.2, 52.3] for LM and PLS, respectively. This increase

was confirmed with 75% and 85% of missing values. Multiple

imputation led to always conservative results explained by large

confidence intervals of OR obtained with this approach whether

for event 1 or 2. Bayesian approach led to increase risk of type I

error. For event 1, this increase seems reasonable because 5% is

always in the confidence interval (7% [2.9, 13.9] with 95% missing

values). For the infrequent event 2, risk of type I error increases

and excluding 5% from confidence intervals when 85% and 95%

of data are missing (e.g. 16% [9.4, 24.7] with 95% missing values).

Figure 1 presents PS when ORtrue is greater than 1 and 95% of

missing values for two events and for all approaches, excluding

single imputation which had given a weak quality on estimates and

overestimated risk of type I error. As expected, statistical power

increased with ORtrue and decreased for infrequent event. Weak

performances were obtained for multiple linear and PLS

imputation. This figure clearly shows highest PS for Bayesian

model near reference power on complete data (Table 1) especially

for event 1, all other approaches giving a null or quasi null power

for ORtrue = 1.2 and ORtrue = 1.4, respectively. Figure S2 presents

PS when ORtrue is greater than 1 for 85% and 75% of missing

values. Highest PS were clearly obtained for Bayesian model.

And with 50% of missing data, statistical power increased

remaining the best for Bayesian approach especially for infrequent

event (near 80% by Bayesian approach against 53% by LM

multiple imputation when ORtrue = 1.4).

Discussion

This paper addresses the crucial question of how to handle large

amounts of missing data in environmental epidemiological surveys.

Till now, as far as we know, very few teams have compared

performances of approaches handling missing values with a

proportion of missingness above 75% [27,28]. To solve this

question, we used both real and simulated data to determine the

most appropriate approach when there is a large amount of

missing data. Results on RMSE and PS showed poor perfor-

mances with single imputation. Fully Bayesian approach seems

better, followed by imputation approaches, which in turn gave

better results than omitting missing observations.

As expected, we found that omitting missing values is less

efficient than single and multiple imputations. Even if it is the

easiest approach for handling missing values, it should be used

only in presence of less than 5% of missing values [29] because it

should induce a significant loss of statistical power: unrealistic

when the health outcome is infrequent and problematic in

environmental studies where pollutants have often a weak impact.

Another common approach for handling missing values is to

impute them before any analysis which is commonly used in

environmental epidemiological studies to estimate exposure levels

for all study members. An increase in power is the substantial

benefit of this alternative over omitting missing values. Neverthe-

less, the specification of the imputation model is an important step.

As previously demonstrated, if the imputation model is not

properly specified the imputation approach could introduce a bias

which is not present in omitting missing values when missingness is

MCAR [28]. It has been observed that including many relevant

variables in the imputation model tends to make the missing at

random assumption more plausible [30], even if computational

problems could occur such as multicollinearity and a large number

of predictors might provide instable estimates. Previous authors

showed the importance of including the health outcome because

Table 1. Associations between environmental risk factora including missing values, and health outcomes, by different methods
handling missing values (OR [95% CI or 95% Cr]).

LRIb DNCc

Na omitted 1.11 [0.55, +‘) 1.31 [0.45, +‘)

Single imputation LM 1.91 [1.53, +‘) 5.63 [3.69, +‘)

PLSd 3.27 [1.61, +‘) 3.69 [2.57, +‘)

Multiple imputation LM 1.28 [0.91, +‘) 1.35 [0.14, +‘)

PLSd 2.81 [0.35, +‘) 2.69 [0.39, +‘)

Bayesian approach 1.27 [1.10, +‘) 1.16 [0.95, +‘)

Abbreviations: CI, 95% confidence interval; Cr, 95% credibility interval, LM, linear regression model; OR, odds ratio; PLS, partial least squares.
a: Environmental factor: formaldehyde exposure, expressed in mg/m3, (for one unit increase in the logarithmic scale), and health outcome: lower respiratory infection
(LRI) or dry nigh cough (DNC).
b: Association was adjusted for gender, socio-economic status, siblings, parental history of asthma, breastfeeding, daycare attendance, pre/postnatal tobacco smoke
exposure, sign(s) of dampness, and presence of pets at home.
c: Association was adjusted for gender, socio-economic status, parental history of allergy, breastfeeding, pre/postnatal tobacco smoke exposure, gas heating,
cockroaches, infant’s mattress age, family events, and number of episodes of lower respiratory infections.
d: PLS imputation with two components.
doi:10.1371/journal.pone.0104254.t001
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regression coefficients came close to the truth [31,32]. Note that

inclusion of the health outcome implies that the imputation

procedure has to be renewed for each new health outcome.

Single imputation is easy to implement, but the major

disadvantage is the overestimation of association between exposure

and health outcome increasing with the strength of the association.

As explained by Rubin [4], this overstatement is certainly due to

that one imputed value cannot itself represent uncertainty about

imputed value.

Conversely, multiple imputation takes into account the uncer-

tainty and thus, does not underestimate the variance of estimates.

But this approach is conservative. In fact, as previously described

in the literature [31], large imprecision of OR estimates was

observed, thus yielding to no significant associations. Moreover,

concerning the choice of the number of imputations, it has been

suggested [4], that less than 10 imputed datasets are useful

compared with an infinite number of imputations. However, when

the percentage of missing values is huge, more than 10 imputations

may be needed and the number of imputed data should

approximate the number of observations with missing data, as

previously suggested [33]. Although 2 000 imputations could have

been sufficient in this study, we fitted 10 000 imputed datasets as a

precaution even if it was time consuming. Bayesian joint modelling

appears to be less conservative with a statistical power near 75%

for event 1 (near 55% for the infrequent event 2) when

ORtrue = 1.4 with 95% of missing data. Nevertheless, it is

important to notice that risk of type I error tends to increase,

slightly for event 1 (near 7%) and much more for the infrequent

event 2 (near 16%). Even if the RMSE is always smaller for the

Bayesian approach compared to the other approaches and

indicates a better performance in terms of estimates, boxplots of

the beta estimates from 100 simulations under ORtrue = 1.0 clearly

show that the range of estimates increases with decrease of event

prevalence and with increase in the missing values proportion.

This result is confirmed when OR is greater than one but a bias

appears when ORtrue increases. Thus, caution should be taken

when interpreting results for an infrequent event with high

proportion of missing values. In addition, the use of empirical

approaches (e.g. bootstrap, Monte Carlo study) could be useful to

assess the real risk of type I error.

For infrequent events (for instance with prevalence less than

10%) and high proportion of missing values, statistical power

remains too weak. Bayesian approach offers the possibility to

obtain easily estimated posterior distribution of OR which could

be a useful tool to refine conclusions. Posterior probability of OR

being smaller than 1 can indeed be deduced and such probability

between 5% and 10% could be considered weak enough to

conclude an ‘‘almost significant’’ association. This strategy would

lead to three possible conclusions: ‘‘not significant’’, ‘‘significant’’

or ‘‘almost significant’’. Thus, for event 2, the classical approach

Figure 1. Proportions of significant associations based on 100 replicates, for each approach dealing with 95% missing values.
doi:10.1371/journal.pone.0104254.g001
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yields 46 non significant associations when ORtrue = 1.4, but

among them, 7 would be declared as ‘‘almost significant’’. It is

noteworthy that the proportion of non significant associations now

labeled ‘‘almost significant’’ increases with ORtrue from 8.8%

(ORtrue = 1.2) to 15.2% (ORtrue = 1.4). If the type I error is assessed

only among associations not declared ‘‘almost significant’’, it

remains stable (16% and 17.8% for classical and this new strategy,

respectively).

In conclusion, among the methods dealing with missing data, no

approach is absolutely better than the others in all circumstances.

In the presence of high proportions of missing values, using only

complete data yields to a significant loss of statistical power. Single

imputation underestimates the variance, thus overestimating the

association between environmental factor and health outcome.

Multiple imputation, due to overcoverage, is too conservative and

unable to show significant associations. When the health outcome

is frequent, joint modelling seems to be more efficient than other

approaches, combining low RMSE, limited increase of risk of type

I error, and high statistical power. The simulation study is useful

for explaining the disparity of associations found in the real data,

for example for LRI (Table 1) corresponding to a frequent event.

Indeed, the characteristics of each method highlighted by the

simulation study are found in the real case, i.e. bias using simple

imputation, lack of power using multiple imputation, and

significant association using Bayesian approach. The conclusion

of a significant association between formaldehyde exposure and

LRI is strengthened. With regards to the infrequent event, DNC,

only a tendency of an association is observed. No approach gives

completely satisfactory results when the health outcome is

infrequent and the proportion of missing values is high. Though

the Bayesian modelling has the best power and precision of

estimates, this comes at a cost of inflated risk of type I error.

However, estimated posterior distribution of OR would be helpful

to refine the conclusion by introducing a new category of ‘‘almost

significant association’’ when probability of OR less than 1 is

between 5% and 10%. Concerning inflation of risk of type I error,

correcting methodology as bootstrap could be implemented. This

would lead certainly to very huge computer time as MCMC

iterative algorithm would be used on each bootstrapped sample.

An alternative approach to MCMC in repeated Bayesian

estimations such as ‘‘Importance Sampling’’ could be envisaged

[34].

Supporting Information

Figure S1 Boxplots of b (b = ln OR) estimates under
Bayesian approach from 100 simulated datasets for the
three different values of true OR dealing with no missing
values, 75%, 85% and 95% of missing values.

(PDF)

Figure S2 Proportions of significant associations based
on 100 replicates, for each approach dealing with 85%,
and 75% of missing values.

(PDF)

Table S1 Predictive factors of formaldehyde exposure
and covariates used for adjustment in the model relating
formaldehyde exposure and health indicator.

(DOC)

Table S2 Root mean square error of beta coefficients
with 95% confidence interval based on 100 replicates
with 85%, and 75% of missing values.

(DOC)

Table S3 Proportions of significant associations with
95% confidence interval based on 100 replicates with
95%, 85% and 75% of missing values when ORtrue = 1.

(DOC)

Acknowledgments

The authors wish to thank the families for their participation and the

administrative staff for their involvement in the PARIS study. The authors

would like to thank the editor and the referees for helpful suggestions that

lead to significant improvements.

Author Contributions

Conceived and designed the experiments: CR IM CG. Analyzed the data:

CR IN CG. Contributed reagents/materials/analysis tools: CR IN IM

CG. Wrote the paper: CR IN IM CG.

References

1. Vach W, Blettner M (2005) Missing data in epidemiologic studies. Encyclopedia

of Biostatistics: John Wiley & Sons.

2. Jia C, D’Souza J, Batterman S (2008) Distributions of personal VOC exposures:

a population-based analysis. Environ Int 34: 922–931.

3. Fusco D, Forastiere F, Michelozzi P, Spadea T, Ostro B, et al. (2001) Air

pollution and hospital admissions for respiratory conditions in Rome, Italy. Eur

Respir J 17: 1143–1150.

4. Rubin DB (2004) Multiple imputation for nonresponse in surveys: Wiley.

5. Barzi F, Woodward M (2004) Imputations of missing values in practice: results

from imputations of serum cholesterol in 28 cohort studies. Am J Epidemiol

160: 34–45.

6. Schafer J (1997) Analysis of incomplete multivariate data. Monographs on

statistics and applied probability.

7. Klebanoff MA, Cole SR (2008) Use of multiple imputation in the epidemiologic

literature. Am J Epidemiol 168: 355–357.

8. Carrigan G, Barnett AG, Dobson AJ, Mishra G (2007) Compensating for

Missing Data from Longitudinal Studies Using WinBUGS. J Stat Softw 19:

1–17.

9. Gryparis A, Paciorek CJ, Zeka A, Schwartz J, Coull BA (2009) Measurement

error caused by spatial misalignment in environmental epidemiology. Biostatis-

tics 10: 258–274.

10. Gelman A, Carlin JB, Stern HS, Rubin DB (2003) Bayesian Data Analysis. 2nd

Edition. CRC Press.

11. Roda C, Kousignian I, Guihenneuc-Jouyaux C, Dassonville C, Nicolis I, et al.

(2011) Formaldehyde Exposure and Lower Respiratory Infections in Infants:

Findings from the PARIS Cohort Study. Environ Health Perspect 119: 1653–

1658.

12. Clarisse B, Nikasinovic L, Poinsard R, Just J, Momas I (2007) The Paris

prospective birth cohort study: which design and who participates? Eur J Epi-

demiol 22: 203–210.

13. Roda C, Guihenneuc-Jouyaux C, Momas I (2013) Environmental triggers of

nocturnal dry cough in infancy: New insights about chronic domestic exposure

to formaldehyde in the PARIS birth cohort. Environ Res 123: 46–51.

14. Dassonville C, Demattei C, Laurent AM, Le Moullec Y, Seta N, et al. (2009)

Assessment and predictor determination of indoor aldehyde levels in Paris

newborn babies’ homes. Indoor Air 19: 314–323.

15. Rubin DB (1976) Inference and missing data. Biometrika 63: 581.
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