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Purpose: To develop and evaluate methods to improve the generalizability of convo-
lutional neural networks (CNNs) trained to detect glaucoma from optical coherence
tomography retinal nerve fiber layer probability maps, as well as optical coherence
tomography circumpapillary disc (circle) b-scans, and to explore impact of reference
standard (RS) on CNN accuracy.

Methods: CNNs previously optimized for glaucoma detection from retinal nerve fiber
layer probability maps, and newly developed CNNs adapted for glaucoma detection
from optical coherence tomography b-scans, were evaluated on an unseen dataset (i.e.,
data collected at a different site). Multiple techniqueswere used to enhance CNNgener-
alizability, includingaugmenting the trainingdataset, usingmultimodal input, and train-
ing with confidently rated images. Model performance was evaluated with different RS.

Results: Training with data augmentation and training on confident images enhanced
the accuracy of the CNNs for glaucoma detection on a new dataset by 5% to 9%. CNN
performance was optimal when a similar RS was used to establish labels both for the
training and the testing sets. However, interestingly, the CNNs described here were
robust to variation in the RS.

Conclusions: CNN generalizability can be improved with data augmentation, multiple
input imagemodalities, and trainingon imageswith confident ratings. CNNs trainedand
tested with the same RS achieved best accuracy, suggesting that choosing a thorough
and consistent RS for training and testing improves generalization to new datasets.

Translational Relevance: Strategies for enhancing CNN generalizability and for choos-
ing optimal RS should be standard practice for CNNs before their deployment for
glaucoma detection.

Introduction

Glaucoma is a leading cause of irreversible blind-
ness worldwide, projected to affect 112 million people
by 2040.1 If left untreated, glaucoma can ultimately
lead to blindness. Although methods exist to diagnose
and slow the progression of the disease, one of the
greatest challenges is that more than one-half of cases
remain undetected owing to a lack of timely assessment

by a specialist.2 Furthermore, even among clinicians,
there is no clear litmus test for a glaucoma diagno-
sis.3,4 Artificial intelligence has the potential to help
expedite glaucoma detection and/or triage when access
to specialist time may be limited. In addition, artifi-
cial intelligence may aid in prioritizing cases that need
attention first, ensuring that care is given to those
subtle or uncertain cases most requiring expert inspec-
tion. Although significant advances have been made
in developing deep learning models for ophthalmology
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applications,5 there are two major issues that need to
be addressed. First, how does one evaluate the gener-
alizability of these models, and second, how does one
choose reference standards (RS) for their validation?

A number of studies have developed approaches
based upon convolutional neural networks (CNNs)
to detect glaucoma from optical coherence tomogra-
phy (OCT) images.6–10 These studies, in general, show
excellent performance in terms of reasonably high
sensitivity and specificity. However, to demonstrate
clinical usefulness, it is essential to test a deep learning
system’s ability to be effective with a new dataset from
a different clinic. Although deep learning approaches
applied to fundus images have exhibited generaliz-
ability,11,12 most of the existing studies that focused
on applying CNNs to OCT images lacked an evalu-
ation of model performance on data collected from
different OCT machines and/or at different locations.
Our primary purpose here is to develop and evalu-
ate methods to improve the generalizability of CNNs
trained to detect glaucoma.

A second critical issue in determining the clinical
usefulness of a deep learning model is the RS on which
its accuracy is based.5 Because there is no litmus test for
glaucoma detection, models are typically tested against
an RS to determine their efficacy in detecting glauco-
matous damage. However, there is no universal agree-
ment on anRS; different studies have used different RS,
sometimes using a different RS for training and testing.
Our secondary purpose here is to explore the conse-
quences of using different RS.

To address these issues, we build on prior work in
which we developed CNNs that showed high accuracy
(≥95%) for detecting glaucoma from OCT retinal
nerve fiber layer (RNFL) probability map input.6,7
Here we develop models for glaucoma detection from
OCT circumpapillary disc (circle) b-scan image input
as well. Second, we evaluate the generalizability of
the RNFL map model and b-scan models on a new
dataset collected at a different location than the train-
ing dataset. Third, we describe and assess methods to
improve the generalizability of both the RNFL map
model and b-scan models. Finally, we measure the
impact of choice of RS on CNN accuracy.

Methods

Datasets and RS for RNFL MapModels

RNFL Map Dataset (DSRNFL-Map)
The OCTDSRNFL-Map, as described elsewhere,6 was

composed of 737 eyes from wide-field Topcon Atlantis
(Topcon, Inc, Tokyo, Japan) OCT cube scans collected

in our laboratory as well as the machine’s norma-
tive database (for healthy controls). Patients were early
glaucoma or glaucoma suspects (mean deviation on 24-
2 visual field better than –6 dB). Each widefield scan
contained RNFL and retinal ganglion cell plus inner
plexiform layer (RGCP) probability/deviation values
over a 9 × 12 mm region, which included the fovea and
optic disc. Figure 1 shows examples of the RNFLmap
(red rectangle) and the RGCP map (violet rectangle).

RNFL Map Generalizability Set (GSRNFL-Map)
The new dataset of RNFL maps used for generaliz-

ability testing, GSRNFL-Map, was collected on a Topcon
Atlantis (Topcon, Inc, Tokyo, Japan) OCT machine
at a different location (Columbia University Medical
Center, Harkness Eye Institute) and by a different
operator (than DSRNFL-Map), and was composed of
RNFL probability maps from 135 healthy controls,
glaucoma suspects, or patients with early glaucoma
(24-2 mean deviation better than –6 dB; median,
−1.67 dB; range, −5.62 to 0.84 dB; similar to that of
DSRNFL-Map with a median of −2.22; range, −4.69 to
−0.49; themedian patient age of 53± 16 years was also
similar to that of DSRNFL-Map of 57 ±13 years; further
characteristics described in detail in prior work).14,15
See compositions of all datasets in the Supplementary
Table S1a.

Reference Standards
We evaluated theCNNperformance onGSRNFL-Map

based on four different RS. For each RS, the expert(s)
gave a rating after reviewing the following informa-
tion: RS1RNFL-Map, a custom commercial OCT report
(Topcon,13 example in Fig. 1); RS2RNFL-Map, RNFL
and RGCP probability maps (red and violet rectangles
in Fig. 1); RS3RNFL-Map, RNFL probability maps alone
(red rectangle only in Fig. 1); and RS4RNFL-Map, OCT
as well as visual field information.

For RS1RNFL-Map to RS3RNFL-Map, the ratings of
a single OCT expert (DCH) were used, whereas
RS4RNFL-Map was based on a consensus of multiple
experts. In each case, the expert(s) rated each patient
eye on a scale between 0% and 100%, where “nonglau-
comatous”was<50% and “glaucomatous”was>50%.
For each of the 737 eyes in DSRNFL-Map, a single OCT
expert (DCH) viewed a whole 3D Wide Glaucoma
Report with VF [Visual Field] test points (Hood
report), hereafter called a Hood report (equivalent to
RS1RNFL-Map as described elsewhere in this article),
arriving at 544 nonglaucomatous and 193 glaucoma-
tous RNFL maps, as previously described.6 The 135
eyes in GSRNFL-Map were categorized as 78 nonglauco-
matous and 57 glaucomatous based on RS4RNFL-Map



Improving CNNs, RS to Detect Glaucoma in OCT Scans TVST | April 2021 | Vol. 10 | No. 4 | Article 16 | 3

Figure 1. Example full Hood report which served as RS1RNFL-Map. A combination of the red and violet rectangles above served as RS2RNFL-Map.
The red rectangle alone served as RS3RNFL-Map.

Figure 2. (A) Example cpRNFL report (left) and (B) full Hood Glaucoma Report (right). The cpRNFL report served as RS1B-Scan. The full report
served as RS2B-Scan, and the b-scan alone (shown in red rectangle) served as RS3B-Scan.

and as 81 nonglaucomatous and 54 glaucomatous
based on RS1RNFL-Map.

Datasets and RS for B-Scan Models

B-Scan DataSet (DSB-Scan)
The b-scan dataset (DSB-Scan) was composed of

3.5 mm circle b-scans from 771 scans (from 771 eyes)
collected with a Heidelberg Spectralis OCT (Heidel-
berg Engineering, Inc., Heidelberg, Germany). We
also generated the circumpapillary RNFL (cpRNFL)
thickness profile for each scan. The orientation
of these thickness profiles was in T (temporal)–S

(superior)–N (nasal)–I (inferior)–T (temporal), follow-
ing the same format as the commercial Heidelberg
cpRNFL reports (Fig. 2A), whereas the commercial
full Hood Glaucoma Report (Heidelberg Engineering,
Inc.) in Figure 2B was in N (nasal)–S (superior)–T
(temporal)–I (inferior)–N (nasal).

B-Scan Generalizability Set (GSB-Scan)
The new b-scan dataset used for generalizability

testing, GSB-Scan, was collected on a different Heidel-
berg Spectralis OCT instrument at a different location
(Columbia University Medical Center, Harkness Eye
Institute) and by a different operator (than DSB-Scan),
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and was composed of 127 circle b-scans from 127 eyes
(median mean deviation, −1.67 dB; range; −5.62 to
0.84dB, similar to that of DSB-Scan with a median of
−2.22; range, −4.69 to −0.49; median patient age of
53 ± 16 years, similar to that of DSB-Scan of 57 ± 13
years).15 See the b-scan dataset composition in Supple-
mentary Table S1b.

Reference Standards
Just as for RNFL maps, we evaluated the CNN

performance on GSB-Scan based on four different RS.
For each RS, the expert(s) gave a rating after review-
ing the following information: RS1B-Scan, cpRNFL
reports only; RS2B-Scan, Heidelberg reports; RS3B-Scan,
b-scans only; and RS4B-Scan, OCT as well as visual field
information. Just as with RNFL maps, RS1B-Scan to
RS3B-Scan were based on ratings of a single OCT expert
(DCH), whereas the RS4B-Scan was based on a consen-
sus of multiple experts. In each case, the expert(s) rated
each patient eye on a scale between 0% and 100%,
where “nonglaucomatous”was <50% and “glaucoma-
tous” was >50%. For each of the 771 eyes in DSB-Scan,
a single OCT expert (DCH) viewed the commer-
cial cpRNFL report (same as RS1B-Scan described
elsewhere in this article) and shown in Figure 2A, arriv-
ing at 474 nonglaucomatous and 297 glaucomatous b-
scans. The 135 eyes in GSB-Scan were categorized as
72 nonglaucomatous and 55 glaucomatous based on
RS4B-Scan and as 61 nonglaucomatous and 66 glauco-
matous based on RS1B-Scan. For both RNFLmaps and
b-scans, although experts provided continuous ratings
(between 0% and 100%), a final binary classification
used for RS and for deep learning models was based
on binary labels (glaucomatous >50% or nonglauco-
matous <50%).

This study was approved by the Columbia Univer-
sity Institutional Review Board and adheres to the
tenets set forth in the Declaration of Helsinki and
the Health Insurance Portability and Accountability
Act. Written informed consent was obtained from
all subjects. The clinical trial associated with this
study was registered at ClinicalTrials.gov (identifier:
NCT02547740).

Models

Models for RNFL Maps
Of themodels described in previous work,6 the best-

performing CNN (identified hereafter as ‘CNN A’)
was ResNet18 + Random Forest, determined using
repeated measures analysis of variance and Holm–
Sidak corrected t tests.16 Performance of CNN A was
tested on GSRNFL-Map after (1) training on DSRNFL-Map

(as previously described)6 and after (2) improvement
techniques described in the following sections.

Models for Circumpapillary B-scan Images
Building on themodels described in previous work,6

we developed two new models (CNN B, trained on
OCT data alone; and CNN C, pretrained on natural
images).17 These models were evaluated for their
performance on GSB-Scan after (1) training on DSB-Scan
as described in the next section and after (2) improve-
ment techniques described in this article.

CNN B and CNN C were independently trained,
validated and tested on DSB-Scan with a 60%:20%:20%
ratio. To assess model generalizability, we tested the
same models on GSB-Scan. CNN B was a lightweight
model that was trained from scratch consisting of
three convolutional blocks and two dense layers. Each
convolutional block was composed of multiple two-
dimensional convolutional filters, rectified linear unit
or sigmoid activation, and a two-dimensional max
pooling layer (see Supplementary Figures S1 and S2
in for more details, including strengths and weaknesses
of the CNN B architecture). The hyperparameters
of CNN B were fine tuned according to validation
results. CNN C used ResNet5018 as the backbone,
followed by a random Forest classifier. Models were
built using the Python deep learning library, Keras
(https://keras.io/), and were trained using Google’s
Colaboratory platform (https://colab.research.google.
com/notebooks/) with GPU accelerator.

Techniques to Improve CNN Generalizability
We explored three techniques to improve gener-

alizability. (1) Data augmentation involved increas-
ing size of the training set by adding more images
with size and scale variations consistent with machine
differences. (2) For multimodal input images, we tried
two multimodal techniques: (a) feature concatenation
features were extracted from multimodal image types
and then concatenated before being classified by a
CNN. Specifically, for RNFLmap images, CNNAwas
used to extract features from RNFL maps and RGCP
maps, respectively. These features were then concate-
nated, and these combined features were classified as
either glaucomatous or nonglaucomatous (as depicted
in Fig. 3). For b-scan input, CNN C was used to
extract features from b-scans and thickness plots, and
the resulting concatenated features were classified as
glaucomatous or nonglaucomatous (Fig. 3). (b) Image
concatenation, for b-scan images, an additional multi-
modal image concatenation technique was attempted
by placing b-scans vertically adjacent to thickness plots
(similar in format to the clinical cpRNFL report shown

https://keras.io/
https://colab.research.google.com/notebooks/
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Figure 3. (A) Schematic showing the multimodal input image (feature concatenation) technique for RNFL + RGCP maps (top left) and for
b-scans+ thickness plots (bottom left). In each case, featureswere extracted fromeach image by a pretrained CNN and concatenated before
being classified by a downstream Random Forest classifier. (B) At right is shown the image concatenation technique attempted for b-scans.
The b-scans were vertically concatenated with thickness plots; these combined images were provided as input to the CNN.

Figure 4. Flowchart showing terminology and methodology used in our study: OCT image types are shown in orange boxes at the top,
followed by corresponding datasets (red ovals), RS (yellow ovals), models (blue ovals), and generalizability techniques (green rectangles) for
RNFL map input (left) and b-scan input (right), respectively.

in Fig. 2B). (3) Training on confidently rated (extreme)
images: The model was trained on the images for which
the expert gave confident ratings: a high glaucomatous
probability rating (75%–100%) or a low glaucomatous
probability rating (0%–25%).

Details: RNFL Map Improvement Techniques
Of the techniques described elsewhere in this article,

data augmentation and multimodal input were used

to improve generalizability for the RNFL map model,
CNN A. Data augmentation was used to add training
images with a 10% scale variation and with horizon-
tal and vertical flips.19 This scaling variation was
motivated by the fact that the instrument used to collect
GSRNFL-Map images had an 8% to 10% scaling differ-
ence from the machine used to collect DSRNFL-Map.
Horizontal flips effectively added more left or right
eyes, opposite of what existed in the training pool
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(because only one eye from each patient was present
in DSRNFL-Map). Vertical flips also helped to augment
training database size without loss of information or
major modulation to existing RNFLmaps. The second
improvement technique consisted of multimodal image
input: (a) just RNFL map features or (b) features
concatenated from RNFL maps and RGCP maps
(following the schematic shown in Fig. 3) were classi-
fied.

Details: B-Scan Improvement Techniques
Of the techniques described elsewhere in this article,

data augmentation, multimodal input, and confident
scans were used to improve generalizability for the
best performing b-scan model, CNN C. In particu-
lar, the data augmentation variations included horizon-
tal flips and vertical shifts, both plausible changes to
account for collection of b-scan data on a different
OCT machine. Both feature concatenation (Fig. 3A)
and image concatenation (Fig. 3B) multimodal input
techniques were attempted for b-scans. To evaluate how
the confidence level of b-scan ratings impacted model
performance, 703 circle b-scans which a single OCT
expert (DCH) rated as glaucomatous with reason-
able confidence (<25% = nonglaucomatous, n = 444;
>75% = glaucomatous, n = 259) were selected from
DSB-Scan as a confident dataset (C-DSB-Scan). To evalu-
ate potential improvement in generalizability, we reran
the same process used previously (training–validation–
testing on DSB-Scan, testing on GSB-Scan) with C-
DSB-Scan (detailed results shown in Supplementary
Table S2).

Figure 4 shows a flow chart of our full method-
ology for this paper: all generalizability improvement
techniques and all RS used for each model type.

Results

Performance of the New B-Scan Models

The b-scan models, CNN B, trained on OCT data
alone, and CNN C, pretrained on natural images,
showed high and comparable accuracies, 94.4%
(CNN B) and 95.8% (CNN C), for DSB-Scan (Table 1,
B-Scan Models, bottom half of table, Column 2),
consistent with past studies.6,20 The performance
of these b-scan models was also similar to the
performance, 94.8%, of the RNFL map model,
CNN A, using DSRNFL-Map. For both model types,
we present generalizability set results using only
RS1RNFL-Map/RS1B-Scan and RS4RNFL-Map/RS4B-Scan,
respectively, owing to the clinical relevance of
these two RS. (Results for all models using
RS2RNFL-Map/RS2B-Scan and RS3RNFL-Map/RS3B-Scan
are presented in Supplementary Table S3).

Generalizability of RNFL Map and B-Scan
Models Before Improvement

For both b-scan and RNFL map models, there was
a significant decrease in performance when transfer-
ring to GSRNFL-Map/GSB-Scan (Table 1, Columns 2 vs.
3). For the same RS (RS1RNFL-Map and RS1B-Scan),
the best-performing RNFLmapmodel decreased from
94.8% to 80.7% (CNNA) (significant,P= 1.57× 10−4,
Wilcoxon signed rank test), whereas the b-scan models
decreased from 94.4% to 72.4% (CNN B) (significant,
P = 1.72 × 10−4, Wilcoxon signed rank test) and from
95.8% to 74.0% (CNNC) (significant,P= 1.33× 10−4,

Table 1. Accuracies of Best-Performing RNFL Map Model and New B-Scan Models on DSRNFL-Map and DSB-Scan as
Well as on GSRNFL-Map and GSB-Scan With Varying RS
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Figure 5. ROC curves showing impact of data augmentation andmultimodal input for RNFLmaps (left) and b-scans (right). AUC values are
shown in legends for each curve.

Table 2. Impact of Data Augmentation on Generalizability Performance (GSRNFL-Map) for Best-Performing RNFL
Map Model With RS1RNFL-Map (red) and With RS4RNFL-Map (Green)

Wilcoxon signed rank test). These are reductions of
14.1%, 22.0%, and 21.8%, respectively.

Effect of Improvement Techniques on
Generalizability

Impact of Data Augmentation andMultimodal Input
Figure 5 contains receiver operating characteris-

tic (ROC) curves showing the impact of multimodal
input and data augmentation on generalizability for
the RNFL map and b-scan models. Based on the area
under the ROC curve (AUC) scores, RNFL probabil-
ity map input alone with data augmentation resulted
in the best generalizability for RNFL map models,
with an AUC of 0.918 (95% confidence interval [CI],
0.866–0.970) (Fig. 5, left). This improvement can also
be seen from Table 2 (compare columns 2 and 3).
With data augmentation, CNN A accuracy increased
by 5.2%, from 80.7% to 85.9% (significant, P = 3.60
× 10−4, Wilcoxon signed rank test). Multimodal input
was less valuable in enhancing generalizability of the
RNFL map model; AUC for RNFL + RGCP input

was 0.845 (95%CI, 0.775–0.915) without data augmen-
tation and was 0.873 (95% CI, 0.809–0.937) even with
data augmentation.

In contrast, data augmentation was less valuable in
enhancing generalizability for the best b-scan model
(resulting in lower AUCs of 0.826 [95% CI, 0.750–
0.902] and 0.835 [95% CI, 0.762–0.909] for height shift
and horizontal flip, respectively), but multimodal input
(both feature concatenation and image concatenation
approaches) resulted in the two highest AUC values
of 0.906 (95% CI, 0.849–0.963) and 0.894 (95% CI,
0.834–0.954), respectively, for b-scan models (Fig. 5,
right). Note that for these ROC curves, the RS used
were RS4RNFL-Map and RS4B-Scan, respectively.

Training on Confident Scans
A substantial, although not statistically significant,

improvement in test accuracy performance on the
generalizability set, GSB-Scan, was obtained by train-
ing the b-scan models, CNN B and CNN C, only on
b-scans that the OCT expert rated as confident cases
(i.e., the confident dataset, C-DSB-Scan), as can be seen
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Table 3. Impact of Confident Input on b-ScanModel Generalizability Performance (GSB-Scan)With RS1B-Scan Shown
in Red and With RS4B-Scan Shown in Green.

Figure 6. ROC curves showing impact of RS on model performance. For RNFL map input, the RS with higher AUC is full Hood reports,
followed by consensus; for b-scan inputs, the RS resulting in higher AUC is cpRNFL reports, followed by consensus. However, there is no
significant difference in AUC for both model types between RS1RNFL-Map/RS1B-Scan and RS4RNFL-Map/RS4B-Scan, respectively (AUC values shown
in legends).

in Table 3 (compare columns 2 and 3, CNN B). CNN
B improved by 8.7%, from 72.4% to 81.1% (not signif-
icant, P = 0.477, Wilcoxon signed rank test).

Impact of RS on Model Performance
Changing the RS had a significant impact on model

accuracy for GSRNFL-Map and GSB-Scan; however, it
did not have a significant impact on model AUC.
This can be seen especially for model accuracy on
GSRNFL-Map and GSB-Scan using RS1RNFL-Map and
RS1B-Scan vs. using RS4RNFL-Map andRS4B-Scan, respec-
tively. For RNFL map model CNN A, accuracy on
GSRNFL-Map was 80.7% with RS1RNFL-Map and was
80.0%with RS4 RNFL-Map (significant,P= 2.30× 10−5,
Wilcoxon signed rank test). For b-scan model CNN
B, accuracy on GSB-Scan was 72.4% with RS1B-Scan
and was 70.1% with RS4B-Scan (not significant, P =
0.166, Wilcoxon signed rank test), and for CNN C,
accuracy on GSB-Scan was 74.0% with RS1B-Scan and

was 76.4% with RS4B-Scan (significant, P = 0.002,
Wilcoxon signed rank test). Figure 6 showsROCcurves
for RNFLmap input and for b-scan input with varying
RS. For the RNFL map model, AUC was highest
when RS was RS1RNFL-Map (Hood report) at 0.903
(95% CI, 0.845–0.961), while RS4RNFL-Map (consensus
of experts) resulted in slightly lower AUC of 0.891
(95% CI, 0.831–0.951) (Fig. 6, left). This difference was
not significant (P = 0.790, DeLong’s test). The best-
performing b-scan model (CNN C) parallels this, with
the highest AUC of 0.871 (95% CI, 0.795–0.931) for
RS1B-Scan (cpRNFL reports) and slightly lower AUC
of 0.863 (95% CI, 0.809–0.933) for RS4B-Scan (consen-
sus of experts), Figure 6 (right). This difference was
not significant (P = 0.790, DeLong’s test). Evident
from Table 1 and these ROC curves is that CNN
performance is highest when the RS used for acquir-
ing ratings on model training data is the same as the
RS used for acquiring ratings on model testing data
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(RS1RNFL-Map/RS1B-Scan in our case), as shown by the
red rectangles in Table 1. RS4RNFL-Map and RS4B-Scan
result inminor reduction in performance for CNNAas
well as for CNN B (green rectangles, Table 1), because
the consensus RS was only used for acquiring ratings
for model test data, but was not used during model
training.

Combining Improvement Techniques and RS
The results for combiningRSwith optimal improve-

ment techniques are shown in Table 2 for RNFL maps
and in Table 3 for b-scans. Because the most effective
improvement technique for RNFL probability maps
was data augmentation, we show the glaucoma detec-
tion accuracy rates for RNFL map models with data
augmentation using RS1RNFL-Map (full Hood reports)
and using RS4RNFL-Map (consensus for RNFL map
data) for RNFL input alone (Table 2). For RNFLmap
models, best performance is observed for the ResNet18
+ random forest model with data augmentation and
with RS1RNFL-Map, when the OCT expert viewed full
Hood reports, the same RS used for RNFLmapmodel
training.

Because training on confident b-scans was most
effective for b-scan models, the best parameters for
b-scan inputs using RS1B-Scan (cpRNFL reports) and
RS4B-Scan (consensus of experts for b-scan data) are
shown in Table 3. Note highest CNN accuracy is
achieved with CNN B with the C-DS training and
RS1B-Scan, when the clinician only viewed the cpRNFL
report for making a decision (same RS used for train-
ing).

Discussion

One of the primary challenges of putting neural
networks into practice is maintaining their general-
izability to new test datasets. In particular, we need
to know how well they will perform at new clinical
sites when data are collected on different machines, by
different operators, and for different patient popula-
tions. One should anticipate a decrease inmodel perfor-
mance when transferring to an unseen dataset. In fact,
we found that performance of our RNFL map and b-
scan deep learning models was decreased by as much
as 22.0% when evaluating the generalizability datasets
without incorporation of any training optimizations.

The primary purpose of this study was to assess and
improve the generalizability of deep learning models
trained to detect glaucoma. For both model types, we
trained with multiple data augmentation techniques
that had clinical face validity. Vertical shifting and

horizontal flips were reasonable data augmentation
choices for b-scans. For RNFLmaps, because we know
that the machine where the GSRNFL-Map dataset was
collected had an 8% to 10% scaling difference in image
generation, we scaled images by 10% and also intro-
duced horizontal flips (effectively changing right eyes
into left eyes) and vertical flips (inverting the RNFL
map),19 significantly improving model performance.
For b-scan models, training on confident images (C-
DS) improved model performance. This improvement
can be attributed to the decrease in training noise
afforded by only including scans that definitely belong
to each class (glaucomatous vs. nonglaucomatous).
Multimodal input played a role in slightly improving
generalizability for b-scan images, possibly because the
addition of the thickness plot increased the availabil-
ity of information relating to local defects, which is
important for glaucoma detection.21 This finding is
supported by attention maps22 (which highlight image
regions used by the CNN to make its decision) that
suggest that local defects are missed in false-negative
classifications using b-scan input alone, as shown
in Figure 7.17 Also, vertically adjacent thickness plots
and b-scans are similar to the commercial cpRNFL
plots used by experts to detect glaucoma. Thus, the
addition of thickness plot information may help by
adding local defect information. In contrast, for RNFL
map models, the best performance was observed for
RNFL map input alone; single modality images in
this case performed better than multiple modalities,
possibly because features extracted from the combined
inputs did not add new information to sufficiently
separate glaucomatous from not glaucomatous images,
but instead added noise to the classification decision.
(See Discussion of false positives and false negatives
using an RNFL map visualization technique, as well
as Supplementary Figure S3 and Supplementary Table
S4). This finding suggests thatmore knowledge of OCT
report subimages used by experts to bias CNN feature
extraction toward those regions may enhance perfor-
mance for RNFL map models.19

Our second purpose here was to explore the conse-
quences of using different RS. Interestingly, there
was a significant difference in accuracy between
RS1RNFL-Map/RS1B-Scan (full Hood reports/cpRNFL
reports) and RS4RNFL-Map/RS4B-Scan (consensus for
RNFL maps/consensus for b-scans) for two of the
three models (CNN A and CNN C), whereas model
AUCs were comparable for these two models. The
intergrader kappa statistic between RS1RNFL-Map and
RS4RNFL-Map was consistent with model AUCs, at
0.954, indicating near perfect agreement; similarly,
the intergrader kappa statistic between RS1B-Scan and
RS4B-Scan was 0.702, indicating fair agreement. Even



Improving CNNs, RS to Detect Glaucoma in OCT Scans TVST | April 2021 | Vol. 10 | No. 4 | Article 16 | 10

Figure 7. Attention Map22 visualization of b-scan (left) is an example of a False Negative (missed case); this attention map suggests that
the CNN has missed a local defect (red arrow). Slight improvement in accuracy of multimodal b-scan images and thickness plots (similar in
content to the cpRNFL report at right) may be due to the fact that thickness plots make local defect informationmore prominent (red arrow
at right).

though intergrader agreement is relatively high between
RS1 and RS4 in both cases, the additional variance
between graders for the consensus ratings (both RS4
cases) may have contributed to the significant differ-
ence in accuracy between models trained on these
two RS. We did expect RS1RNFL-Map/RS1B-Scan to
exhibit higher accuracies, because this RS was used
both for training and testing. However, at the same
time (based on comparable AUCs with differing RS
shown in Fig. 6), it seems that our models are well-
buffered and robust to changes in RS. This diver-
gence in significance between accuracy and AUC
highlights the important role played by the RS. In
particular, this study suggests the need for training
and testing with a similarly defined RS, as model
performances were significantly better for two of the
three models presented here for datasets based on
RS1RNFL-Map/RS1B-Scan (and models were trained with
RS1RNFL-Map/RS1B-Scan). Any information available to
graders while establishing ground truth for the train-
ing dataset should be available to graders when assign-
ing labels to the test dataset as well. These findings
suggest that the RS should be one that is consistent
throughout training and testing as well as clinically
optimal (i.e., built on as much information as possi-
ble) to ensure generalizable CNN performance and the
greatest clinical accuracy for patient diagnoses. In clini-
cal terms, future commercially available CNNs should
be developed using RS that in fact replicate the wealth
of information clinicians use in practice, in particular
the full OCT data. We acknowledge that tailoring RS
used for training and testing may only be feasible when
CNNs are being developed at the same facility where
patient data are being collected; in cases when CNNs
are developed elsewhere, training details such as RS,
training dataset size, and optimizations used should be

questioned and clarified before use to gauge expected
generalizability to new data.

Future Directions

Combining optimal strategies for each model type
may further enhance performance; for example, using
data augmentation specifically on confidently trained
b-scan models or training RNFL models with data
augmentation only on confidently rated RNFL maps
are potential combinations for future exploration. To
further take advantage of multimodal input, CNN
ensemble approaches19 (averaging the predictions of
multiple models, each taking as input a separate
image type)—as opposed to the multimodal feature
extraction/concatenation approaches described in this
article—may also enhance generalizable performance.
In addition, accuracy may be improved by combin-
ing multimodal structure and function information by
extracting features from visual fields and OCT images,
instead of RNFL and RGCP maps or b-scans and
thickness plots as was done here. Finally, using clini-
cally informative regions of interest, such as temporal
regions of the RNFL in b-scans, may enhance b-scan
model performance.

Conclusions

The generalization accuracy of CNNs can be
improved with data augmentation, multiple input
image modalities, and training on images with confi-
dent ratings. Specifically, for RNFLmapmodels, incor-
porating data augmentation during training improved
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generalizability performance, and RNFL map input
alone achieved better performance than combined
RNFL and RGCP maps. For b-scan models, train-
ing on confident scans and multimodal approaches
improved generalization accuracy to different extents.
CNNs trained and tested with the same RS achieved
best accuracy, suggesting that choosing a thorough and
consistent RS for training and testing improves gener-
alization to new datasets. Strategies for enhancing the
generalizability of CNNs and for choosing optimal RS
should be standard practice for CNNs before their
deployment for glaucoma detection.
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