1	Immune Responses to SARS-CoV-2 Vaccination in People With HIV: A Tale of Two
2	Pandemics
3	Jeffrey M. Jacobson
4	
5	Division of Infectious Diseases, Department of Medicine, Case Western Reserve University
6	School of Medicine, Cleveland, OH
7	Word Count: 1,300
8	Financial support: This work was supported by the National Institute of Allergy and
9	Infectious Diseases of the National Institutes of Health Grants AI069501 and P30 AI036219.
10	Potential conflicts of interest: The author reports no potential conflicts of interest.
11	Author contact information:
12	Jeffrey M. Jacobson, M.D.
13	Professor of Medicine
14	Case Western Reserve University School of Medicine
15	Cleveland, OH 44106
16	Tel. 216-844-2057; Fax. 216-844-5523; email: <u>jxj573@case.edu</u>
17	
18	Suppressive antiretroviral therapy (ART) preserves and, indeed, restores CD4 T lymphocyte
19	counts and immune function in individuals with HIV infection. People with HIV (PWH)
20	receiving effective treatment are no longer susceptible to severe and opportunistic
21	infections and neoplasms that characterize the acquired immune deficiency syndrome

© The Author(s) 2022. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)

1	(AIDS). Nonetheless, less severe immune dysfunction, lower level inflammation and
2	immune cell senescence persist [1]. The degree of ongoing inflammation correlates with
3	slower and less complete CD4 T cell recovery [2]; comorbidities such as cardiovascular
4	disease, neurocognitive decline, and frailty [3]; and poorer immune responses to vaccines
5	[4].
6	Uncontrolled viremia strongly impairs immune responses to vaccines in PWH, and the
7	induced pathogen-specific neutralizing antibodies wane more quickly [5-7]. The viral
8	suppression from initiating ART substantially, but incompletely, improves the magnitude
9	and durability of these responses [8,9]. This ART-induced viral suppression seems to be the
10	most important factor in improving immune responses to vaccines [8,9], but CD4 T cell
11	count is also associated with vaccine responses. Stronger responses are seen in PWH with
12	CD4 cell counts >200 cells/mm ³ [5-7] There is also evidence that the legacy of immune
13	damage prior to initiating ART is important in determining current vaccine effectiveness, as
14	the nadir CD4 T cell count has correlated with antibody responses to vaccines in some
15	studies [5-7]. To address this problem, more and higher doses of vaccine, as well as the use
16	of more potent adjuvants, have been utilized to enhance vaccine immunogenicity in PWH
17	[5-7].
18	In this issue of The Journal of Infectious Diseases, Lapointe, et al. compared the humoral
19	immune responses generated against wild-type and Omicron strains before SARS-CoV-2
20	vaccination; at one month, 3 months, and 6 months after the second dose of a two-dose
21	vaccination; and then one month following the third "booster" dose in 99 PWH receiving
22	suppressive ART with 152 HIV negative controls [10]. They measured anti-spike protein

1	receptor-binding domain (RBD) antibodies, ACE2 displacement, and live virus neutralization.
2	Most study participants received an initial two-dose mRNA vaccine regimen (83% PWH, 99%
3	controls); the others received either a two-dose ChAdOx1 regime (8%PWH, 1% controls) or
4	a heterologous mRNA-ChAdOx1 regimen (8% PWH, 2% controls). The booster immunization
5	was with an mRNA vaccine. The median recent CD4 T cell count was 715 cells/mm ³ ; the
6	median nadir CD4 T cell count was 280 cells/mm ³ . Notably, the analyses adjusted for
7	sociodemographic, health, and vaccine-related factors.
8	PWH did not have lower antibody concentrations or viral neutralization activity at any time
9	point measured, nor did they manifest a faster rate of antibody decline after two vaccine
10	doses. The most recent or nadir CD4 T cell counts did not affect antibody concentrations,
11	either 6 months after the second vaccine dose or 1 month after the third dose, nor the rate
12	of antibody decline after the second dose. Antibody levels and neutralization titers were
13	boosted substantially in both cohorts after the third dose, but these activities were
14	consistently lower against Omicron than against wild type SARS-CoV-2. The titers in PWH
15	were actually higher than in the HIV-negative controls after boosting with the third dose,
16	but the majority of the PWH who received the mRNA-1273 vaccine at this time may have
17	received the higher (original) dose, as recommended.
18	Overall, the study was very well organized and conducted, with the "real world" analyses
19	accounting for important confounding variables. The multivariable analyses of the study
20	contribute to its strength but, of course, these analyses are dependent on the assumptions
21	made. For example, equal weight to potentially influence immune responses to the vaccines
22	was given to each of the comorbid conditions considered. But some conditions such as

1	immunosuppression will have more of an influence on vaccine immunogenicity than others
2	such as hypertension. Furthermore, other known and unknown confounders can affect
3	results in real-world studies. The ongoing, shifting landscape of the SARS-CoV-2 pandemic,
4	and the government and community responses to it, affect the conduct of study protocols.
5	For example, as a result of government prioritization decisions, the vaccination schedule
6	differed between the PWH and HIV negative groups with regard to the waves of variant
7	strain infections. The post-third vaccine dose study visit occurred just after the first Omicron
8	wave for the majority of the PWH group, while most of the control group, the majority of
9	whom were health care workers, had their third doses and post-third dose vaccination visit
10	earlier. The authors believe this, and not increased susceptibility to infection, accounts for
11	the higher rate of overall post-vaccination infections in the PWH group than in the control
12	group (18% vs. 9%). On the other hand, because of the greater exposure to Omicron, it is
13	also conceivable that the PWH group had a higher rate of unrecognized asymptomatic or
14	mild Omicron infections that may have contributed toward boosting the immune responses
15	measured at the post-third dose visit.
16	To be sure, these factors are unlikely to affect the results enough to detract from the
17	general conclusion that the magnitude and durability of humoral immune responses to
18	mRNA vaccination in ART-treated PWH with high CD4 T cell counts are similar to those in
19	HIV negatives. The "real world" finding that HIV-infected individuals receiving effective ART
20	have essentially equivalent antibody responses to SARS-CoV-2 vaccination is important for
21	the field. Since PWH may be more susceptible to more severe illness from SARS-CoV-2
22	infection [11,12], there is a need to determine the optimal vaccine strategy for them.

1	The study confirms the findings of most other investigations of PWH who received either
2	the CHAdOx1 vaccine or an mRNA vaccine; namely that SARS-CoV-2 vaccination induced
3	humoral and cellular immune responses comparable to HIV negative individuals in ART-
4	treated PWH with high CD4 T cell counts [13-17]. In one study of 143 ART-treated PWH with
5	high CD4 T cell counts and 261 health care worker controls who received the BNT 162b2
6	mRNA vaccine, while the rates of anti-RBD-seroconversion (97% vs 99%) and anti-
7	pseudovirus neutralization positivity (97% in PWH) were similar, the geometric mean anti-
8	RBD and neutralization titers were moderately lower in the PWH group [18]. The Lapointe
9	et al. study provides important additional data regarding the durability of these responses
10	and the effective boosting of these responses against the wild type and recent Omicron
11	SARS-coV-2 strains after an additional dose of mRNA vaccine. Taken together, all these data
12	are reassuring for ART-treated PWH with high CD4 T cell counts.
13	Evidence is accumulating that antibody titers, and in particular neutralization titers,
14	correlate with protection from infection and disease [19]. Nevertheless, other antibody
15	functions and cell mediated immunity, as well as mucosal host defenses may also
16	contribute. Studies to-date suggest that cellular immune responses to SARS-Cov-2
17	vaccination are not compromised in ART-treated PWHs with high CD4 T cell counts [13-15].
18	Nevertheless, further investigation of the effect of SARS-CoV-2 immunization on actual
19	infection risk in PWH is urgently needed. The durability of immune responses and
20	protection from infection and illness beyond 6 months should be assessed.
21	Other subpopulations of PWH are likely to respond very differently to SARS-CoV-2
22	immunization. If the experience with other vaccines is informative, viremic individuals will

1	not achieve the same protection from SARS-CoV-2 vaccination. Several studies have found
2	that PWH with CD4 T cell counts <200 cells/mm ³ mount inferior humoral immune
3	responses to SARS-CoV-2 immunization compared to immunocompetent people without
4	HIV infection [20-23]. Notably, there is sparse published information about SARS-CoV-2
5	vaccine-induced responses in children with HIV. These groups of PWH need to be
6	systematically investigated to determine optimal vaccination strategies.
7	In sum, this study provides further testament to the potency of ART in restoring immune
8	function in PWH, allowing them to benefit from the protective effects of SARS-CoV-2
9	immunization. As such, it gives further voice to the need to identify and treat all those with
10	known and unrecognized HIV infection, and to immunize them against SARS-CoV-2. This is a
11	tale of two pandemics – of how treating HIV infection can help control the SARS-CoV-2
12	pandemic.
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	

1 **REFERENCES**

- Funderburg NT, Andrade A, Chan ES, et al. Dynamics of immune reconstitution and
 activation markers in HIV+ treatment-naïve patients treated with raltegravir, tenofovir
 disoproxil fumarate and emtricitabine. PLoS One. 2013 Dec 18;8(12):e83514.
- Hunt PW, Martin JN, Sinclair E, et al. T cell activation is associated with lower CD4+ T cell
 gains in human immunodeficiency virus-infected patients with sustained viral
 suppression during antiretroviral therapy. J Infect Dis. 2003;187(10):1534-1543.
- Tenorio AR, Zheng Y, Bosch RJ, et al. Soluble markers of inflammation and coagulation
 but not T-cell activation predict non-AIDS-defining morbid events during suppressive
 antiretroviral treatment. J Infect Dis. 2014;210(8):1248-1259.
- Shive CL, Judge CJ, Clagett B, et al. Pre-vaccine plasma levels of soluble inflammatory
 indices negatively predict responses to HAV, HBV, and tetanus vaccines in HCV and HIV
 infection. Vaccine. 2018;36(4):453-460.
- Kim HN, Harrington RD, Crane HM, Dhanireddy S, Dellit TH, Spach DH. Hepatitis B
 vaccination in HIV-infected adults: current evidence, recommendations and practical
 considerations. Int J STD AIDS. 2009;20(9):595-600.

Geretti AM, Doyle T. Immunization for HIV-positive individuals. Curr Opin Infect Dis.
 2010;23(1):32-38.

- El Chaer F, El Sahly HM. Vaccination in the Adult Patient Infected with HIV: A Review of
 Vaccine Efficacy and Immunogenicity. Am J Med. 2019;132(4):437-446.
- Landrum ML, Huppler Hullsiek K, Ganesan A, et al. Hepatitis B vaccine responses in a
 large U.S. military cohort of HIV-infected individuals: another benefit of HAART in those
 with preserved CD4 count. Vaccine. 2009;27(34):4731-4738.
- 9. Evison J, Farese S, Seitz M, Uehlinger DE, Furrer H, Mühlemann K. Randomized, double blind comparative trial of subunit and virosomal influenza vaccines for
 immunocompromised patients. Clin Infect Dis. 2009;48(10):1402-1412.
- 10. Lapointe HR, Mwimanzi F, Cheung PK, et al. People with HIV receiving suppressive
 antiretroviral therapy show typical antibody durability after dual COVID-19 vaccination,
 and strong third dose responses. J Infect Dis. 2022;X(X):XXXX.

1	11. Geretti AM, Stockdale AJ, Kelly SH, et al. Outcomes of Coronavirus Disease 2019 (COVID-
2	19) Related Hospitalization Among People With Human Immunodeficiency Virus (HIV) in
3	the ISARIC World Health Organization (WHO) Clinical Characterization Protocol (UK): A
4	Prospective Observational Study. Clin Infect Dis. 2021;73(7):e2095-e2106.
5	12. Waters LJ, Pozniak AL. COVID-19 death in people with HIV: interpret cautiously. Lancet
6	HIV. 2021; 8(1)e2-e3.
7	13. Frater J, Ewer KJ, Ogbe A, et al. Safety and immunogenicity of the ChAdOx1 nCoV-19
8	(AZD1222) vaccine against SARS-CoV-2 in HIV infection: a single-arm substudy of a phase
9	2/3 clinical trial. Lancet HIV. 2021;8(8):e474-e485.
10	14. Ogbe A, Pace M, Bittaye M, et al. Durability of ChAdOx1 nCoV-19 vaccination in people
11	living with HIV. JCI Insight. 2022;7(7):e157031. Published 2022 Apr 8.
12	15. Madhi SA, Koen AL, Izu A, et al. Safety and immunogenicity of the ChAdOx1 nCoV-19
13	(AZD1222) vaccine against SARS-CoV-2 in people living with and without HIV in South
14	Africa: an interim analysis of a randomised, double-blind, placebo-controlled, phase
15	1B/2A trial [published correction appears in Lancet HIV. 2022 May 18;:]. Lancet HIV.
16	2021;8(9):e568-e580.
17	16. Woldemeskel BA, Karaba AH, Garliss CC, et al. The BNT162b2 mRNA Vaccine Elicits
18	Robust Humoral and Cellular Immune Responses in People Living With Human
19	Immunodeficiency Virus (HIV). Clin Infect Dis. 2022;74(7):1268-1270.
20	17. Lombardi A, Butta GM, Donnici L, et al. Anti-spike antibodies and neutralising antibody
21	activity in people living with HIV vaccinated with COVID-19 mRNA-1273 vaccine: a
22	prospective single-centre cohort study. Lancet Reg Health Eur. 2022;13:100287.
23	18. Levy I, Wieder-Finesod A, Litchevsky V, et al. Immunogenicity and safety of the
24	BNT162b2 mRNA COVID-19 vaccine in people living with HIV-1. Clin Microbiol Infect.
25	2021;27(12):1851-1855.
26	19. Gilbert PB, Montefiori DC, McDermott AB, et al. Immune correlates analysis of the
27	mRNA-1273 COVID-19 vaccine efficacy clinical trial. Science. 2022;375(6576):43-50.
28	20. Noe S, Ochana N, Wiese C, et al. Humoral response to SARS-CoV-2 vaccines in people
29	with HIV infection. 2021; 1-7.

- 21. Balcells ME, Le Corre N, Durán J, et al. Reduced immune response to inactivated SARS CoV-2 vaccine in a cohort of immunocompromised patients in Chile [published online
 ahead of print, 2022 Mar 7]. Clin Infect Dis. 2022;ciac167.
- 4 22. Haidar G, Agha M, Bilderback A, et al. Prospective evaluation of COVID-19 vaccine
 5 responses across a broad spectrum of immunocompromising conditions: the COVICS
 6 study. Clin Infect Dis 2022.
- 23. Oyaert M, De Scheerder MA, Van Herrewege S, et al. Evaluation of Humoral and Cellular
 Responses in SARS-CoV-2 mRNA Vaccinated Immunocompromised Patients. Front
 Immunol. 2022;13:858399. Published 2022 Mar 22.