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Abstract
The level of activity of many animals including humans rises and falls with a period of ~ 24

hours. The intrinsic biological oscillator that gives rise to this circadian oscillation is driven

by a molecular feedback loop with an approximately 24 hour cycle period and is influenced

by the environment, most notably the light:dark cycle. In addition to the circadian oscilla-

tions, behavior of many animals is influenced by multiple oscillations occurring at faster—

ultradian—time scales. These ultradian oscillations are also thought to be driven by feed-

back loops. While many studies have focused on identifying such ultradian oscillations, less

is known about how the ultradian behavioral oscillations interact with each other and with

the circadian oscillation. Decoding the coupling among the various physiological oscillators

may be important for understanding how they conspire together to regulate the normal activ-

ity levels, as well in disease states in which such rhythmic fluctuations in behavior may be

disrupted.Here, we use a wavelet-based cross-frequency analysis to show that different

oscillations identified in spontaneousmouse behavior are coupled such that the amplitude

of oscillations occurring at higher frequencies are modulated by the phase of the slower

oscillations. The patterns of these interactions are different among different individuals. Yet

this variability is not random. Differences in the pattern of interactions are confined to a low

dimensional subspace where different patterns of interactions form clusters. These clusters

expose the differences among individuals—males and females are preferentially segre-

gated into different clusters. These sex-specific features of spontaneous behavior were not

apparent in the spectra. Thus, our methodology reveals novel aspects of the structure of

spontaneous animal behavior that are not observable using conventional methodology.

Introduction
Circadian rhythms are expressed in many behaviors and physiological functions including
metabolism [1], and temperature regulation [2] in many animals [3] and in humans [4]. While
circadian oscillations have beenwell known for many years, it has become clear that in addition
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to circadian oscillationsmany aspects of animal behavior and physiology fluctuate at faster
(ultradian) time scales [5, 6]. Analysis of motor activity in several strains of rat has identified
ultradian rhythms with cycle periods of 12 hr, 6 hr, 4.8 hr and 4 hr [7]. These ultradian oscilla-
tions may be influenced by both intrinsic factors and by the environment. For instance, ultra-
dian oscillations in rabbits with cycle periods of 12.3 hr, 8.2 hr, and 6.1 hr [8] are influenced by
light exposure [9]. One example of intrinsic regulation of such ultradian fluctuations is growth
hormone secretion, which fluctuates with cycle period of .93 hr. [10, 11]. Furthermore, the neu-
ronal basis of ultradian oscillations in mice [12, 13] entrained to 12h:12h light:dark cycle [14]
has been shown to involve dopamine [15, 16]. Such co-existence of oscillations on multiple
time scales raises an obvious question: Are different oscillations independent? If so, then the
biologicalmechanisms that underlie different behavioral oscillations can be treated indepen-
dently. Conversely, if different oscillations interact with each other then it would follow that
the biological processes that give rise to different oscillationsmust be integrated. Here, we
study fluctuations in spontaneous activity of mice and demonstrate that different behavioral
oscillations are in fact strongly interdependent.
While traditional approaches to the analysis of periodicities in animal behavior that involve

spectral estimation and autocorrelations are able to identify the frequency and power of differ-
ent oscillators, they cannot provide insight into the interdependence between different oscilla-
tions. This is due to several strong assumptions about the data that are not obviously valid for
animal behavior and physiology. The most critical assumption is that the statistical features of
behavior (e.g. periodicity) remain constant. Yet even cursory examination of the behavior sug-
gests that it is highly non-stationary. Previous reports have demonstrated that spontaneous
behavior is characterized by bursts of activity punctuated by periods of rest across many species
and environmental settings [17, 18]. Thus, distributions of many measures of activity are char-
acterized by power-laws, long-range correlations and 1/f-like spectrum[19]. One important
implication of this is that, there is no principled choice of a single time scale over which the
behavior can be considered stationary and appropriately represented by its spectrum.More-
over, in traditional spectral analysis that relies on Fourier transform, the signal is convolved
with a sine wave. To study oscillations at different frequencies the frequency of the sine wave
can be adjusted. Yet regardless of the frequency, the sine wave extends indefinitely in time.
This in effect embodies the assumption of stationarity in traditional spectral analysis. In wave-
let analysis, the signal is convolved with a wavelet of a particular frequency. The major differ-
ence betweenwavelet and traditional spectral analysis is that the wavelet does not extend
indefinitely in time [20]—increasing the wavelet frequency shrinks the wave in time while
decreasing wavelet frequency leads to dilation of the wavelet. Thus, wavelet analysis allows one
to study faster oscillations over shorter time scales and slower oscillations over longer time
scales.Wavelet transform is thus ideally suited for the analysis of animal activity data since
behavioral rhythms span a wide range of frequencies [21].
The major advantage of the wavelet transform is that it allows us to identify different oscilla-

tions in the behavior and study how the power (amplitude) of these oscillations changes over
time. To anticipate the results, what we find is that the power of many oscillations fluctuates
rhythmically, similar to AM (amplitude modulated) radio where the signal (slow oscillation)
modulates the amplitude of a faster (carrier) oscillation. In other words, amplitude of one oscil-
lation depends on the phase of a different, slower oscillation.We refer to this coupling between
oscillators as phase-amplitude cross frequency coupling (CFC). In the context of biological sys-
tems, CFC has beenmostly studied for a variety of brain-derived signals such as electroenceph-
alogram (EEG), local field potential (LFP) and other brain recordings [22]. Much like animal
behavior, spectra of many brain signals are 1/f-like. Yet the CFC analysis revealed that certain
pairs of neuronal oscillators are tightly coupled while others are not, and that this coupling
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distinguishes scale-invariant brain activity from other scale-invariant signals such as seismic
waves and stock market fluctuations [23]. Furthermore, the degree of coupling as well as the
phase of coupling can be altered depending on the behavioral state [24]. In this study, we dem-
onstrate that further analysis of the 1/f-like fluctuations in spontaneous behavior reveal addi-
tional structure not directly observablewith previously applied analysis techniques.

Results

Wavelet analysis identifies ultradian behavioral oscillations
Fig 1A shows representative pattern of the locomotor activity during a 14-day recording ses-
sion in one Het-8 male mouse.While it is clear that variations in the level of activity follow a
cyclical pattern with the cycle period of ~ 24 hours, just specifying this periodicity (i.e. the spec-
trum) does not unequivocally capture the dynamics of spontaneous behavior. To illustrate this
point, Fig 1B shows a phase shuffled surrogate of the data in Fig 1A (Methods).While the two
signals have similar spectra (Fig 1E and 1F), in the time domain the real behavior is much
more irregular and bursty than its surrogate (Fig 1C and 1D zooms in on the time axis for the
real and the surrogate datasets respectively). The accentuated fluctuations reveal non-stationar-
ity of animal behavior that is not captured by its power spectrum. In the remainder of the man-
uscript, we focus on these essential nonstationarities.
In contrast to the power spectrum, continuous wavelet transform reveals the time-depen-

dence of the amplitudes of oscillations at many different frequencies (Fig 2). Consistent with
the observation of the data in the time domain, power at different frequencies fluctuates
abruptly. To better appreciate these fluctuations, data filtered at 4 different frequencies (the
regions in the time-frequencyplane that correspond to each trace are shown with white rectan-
gles) are shown beneath the wavelet scalogram. The amplitude of oscillations at many frequen-
cies fluctuates in a rhythmic fashion (red lines in Fig 2A, 2B and 2C). This suggests that the
amplitude of one behavioral oscillationmay depend on the phase of another behavioral oscilla-
tion. In what follows we uncover this coupling by investigating the dependence of the ampli-
tude of a faster oscillation on the phase of a slower oscillation.

Illustration and intuition behind the analysis of phase amplitude coupling
Fig 3A (top green traces) shows three example patterns. All three of them are constructed by
linearly combining (adding) two sine waves: slow oscillation (S) and, fast oscillation (F)
(highlighted by a rectangle). The only difference between the three top patterns is that prior to
adding the two oscillations, the fast oscillation is multiplied by a different modulating function
(M). In the first case (left), the modulating function is a constant (Mst). Thus, the characteris-
tics of the fast oscillation appear constant in time. This kind of pattern is called stationary and
is adequately captured by the spectrum. In contrast, in the middle trace, the amplitude of the
fast oscillation appears to grow dramatically at the peak of the slow oscillation (this corre-
sponds to the phase of slow oscillation = π / 2). In this case the modulating function (Mphase)
approaches zero at all points except those near π / 2 of the slow oscillation. For the purposes of
illustration,Mphase was chosen to be a Gaussian distribution centered at π / 2 of the slow oscil-
lation. The correspondence between the phase of the slow oscillation and the peaks in Mphase

are highlighted by green rectangles.Multiplication of the fast oscillation by Mphase gives rise to
the waxing and waning of the fast oscillation (second row, middle column) depending on the
phase of the slower oscillation. This is an example of phase-amplitude cross frequency coupling
(CFC). Note, however, that not all non-stationarities imply CFC. In the rightmost trace (top),
the amplitude of the fast oscillation changes in time (i.e. the signal is non-stationary). Yet the
waxing and waning of the fast oscillation is not connected in an obvious way to the phase of
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Fig 1. Spectrum does not capture the essential non-stationarities in spontaneousmovements. A. Spontaneousmotor activity in onemalemouse over
the course of a 14-day recording period (mean subtracted). An expansion of the trace in A over the periodmarkedwith a dashed line in shown inC.B. Phase-
shuffled surrogate constructed on the basis of data inA. Expanded phase-shuffled surrogate trace is shown inD. Note that phase-shuffled surrogate is
qualitatively different from the real data despite the fact that the power spectra of these data are the same (E real data, F phase-shuffled surrogate).

doi:10.1371/journal.pone.0162262.g001
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the slower oscillation. This is illustrated by showing that Mnon-stat does not appear to depend
on the phase of the slower oscillation. The objective of the analysis that follows is to first extract
the oscillations occurring at different frequencies (akin to F and S in the example). This step is
accomplished by filtering the behavioral time series using wavelets centered at different

Fig 2. Continuouswavelet transformof locomotoractivity reveals fluctuationsin the power of multiple behavioral
oscillations.Wavelet scalogram of spontaneous locomotor activity. Frequency is displayed on a logarithmicscale.
Power of the oscillations is shown in color from blue (low power) to red (high power). The prominent horizontal ridgewith
high power corresponds to oscillations with frequency ~1/24 hours i.e. the dominant circadian oscillation.Multiple other
oscillations are present, but the power of these oscillations fluctuates dramatically throughout the recordings. Continuous
wavelet transformcan be seen as a bank of filters centered at the frequency of each of the wavelets. A-DData from the
time-frequency regions indicated in wavelet spectrogram.DCorresponds to the circadian oscillation whileA-C
correspond to different ultradian oscillations. Black line inA-D shows the filtered locomotor activity, while red line shows
the amplitude envelope of the oscillations computed as the absolute value of the Hilbert transform.While the amplitude of
the circadian oscillation remains fairly constant in time, the amplitude of ultradian oscillations fluctuates.

doi:10.1371/journal.pone.0162262.g002
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frequencies (e.g. Fig 2). The second step is to quantify the amplitude of the fast oscillation (akin
to M in the example) and the phase of the slow oscillation. This is accomplished using a Hilbert
transform (Methods). Amplitude extracted from filtered behavioral time series is illustrated by
red traces in Fig 2. The final step is to determine whether amplitude of the fast oscillation
depends on the phase of a slower oscillation. In order to accomplish this last step we simply
plot amplitude of one oscillation as a function of phase of a different, slower oscillation.We
illustrate this for the cartoon examples in Fig 3 by plotting Mst, Mphase, and Mnon-stat as a func-
tion of phase of S. It can be readily seen that only Mphase depends strongly on the phase of S.
This implies that in this particular case the two oscillations are coupled.

Modulogramanalysis reveals phase—amplitudecoupling in
spontaneous behavior
To extract oscillations occurring at frequencies fi and fj, we filtered the data using wavelets cen-
tered at fi and fj (where fj> fi and fi� 1/24 hours). To quantify the interactions between these
oscillations, we first computed the distribution of amplitudes of j (Aj) using Hilbert transform.
We then plotted Aj (after normalization as described in the methods) as a function of phase of i
(Fi). As illustrated in Fig 3, if Aj is independent of Fi then the plot of Ai vsFj is expected to be
a flat line. Thus, deviation from the flat line can be used as a measure of dependence of Aj on
Fi. This was quantified using Kullback-Leibler (KL) divergence (Methods).
We refer to the normalized value of the KL divergence as modulation index (MI) following

the approach [25] (Methods).We compute theMI for all pairs of oscillations (Fig 4). While cir-
cadian oscillation is clearly dominant and modulates several faster oscillations (bottom row of
the modulograms shown in Fig 4A, 4F and 4K, example of Aj vsFi plot for a particular ultra-
dian oscillator that is modulated by the circadian oscillation is shown in Fig 4E), other oscilla-
tions can also contribute to modulation. Some faster behavioral oscillations are modulated by
more than one slow oscillation (e.g. Fig 4C and 4E). Yet other pairs of oscillations appear to be
largely uncoupled (Fig 4B). To assess the statistical significance of the observedMI values, we
compared them to those observed in the phase shuffled datasets (Fig 4K). For each real dataset,
we constructed 500 phase-shuffled surrogates and computed the distribution of MI values for
each frequency pair. Then each experimentally observedMI can be expressed in terms of its
probability under the assumption of null hypothesis given by phase shuffling. Using this

Fig 3. Illustrationof phase amplitudemodulation. A. Top row shows three time series.While they appear quite different
in their characteristics, each of these time series is formed by adding two oscillations: fast (F) and slow(S) (highlighted by a
box). The only difference between these three time series is that in each case the fast oscillation was multiplied by a function
M (modulation). In the first case (left column),Mst is a constant function (left column, third row). Thus, the amplitude of the
fast oscillation stays constant in time (left column, second row). The overall characteristics of the time series formed by
addition of the fast and themodulated slow waves stays constant in time. Thus, this kind of pattern is called stationary. This
is what is typically assumed in the analysis of behavioral oscillations. In the second column the fast oscillation is multiplied
by Mphase, a function that rises and falls depending on the phase of the slow oscillation. The relationship betweenMphase and
slow oscillation is highlighted by green rectangles. Mphase peaks at the peaks of the slow oscillationwhich corresponds to the
phase of S = π / 2. For the purposesof illustration,Mphase was chosen to be a Gaussian distribution centered at π / 2. The net
result is that the amplitude of the fast oscillation waxes and wanes rhythmically (second column, second row). Note the
similarity between this example trace and real behavioral traces shown in Fig 2B and 2C.While phase amplitude coupling
(second column) is an example of a non-stationary pattern,not all forms of non-stationarity imply phase-amplitude coupling.
For example, consider the trace in the right column. The amplitude of the fast oscillation changes in time, but the waxing and
waning of the fast oscillation does not have an obvious relationship to the phase of the slow oscillation (the lack of
relationship is highlighted by the green rectangles).B. To determinewhether phase of slow oscillator (S) modulates the
amplitude of the fast oscillator (F), we re-plot the different modulating functions fromA (Mst, Mphase, andMnon-stat) as a
function of phase of the slow oscillator rather than a function of time as inA. It can be seen that both Mst andMnon-stat do not
change appreciably depending on the phase of the slow oscillator. In contrast,Mphase deviates significantly from uniform
distribution. This deviation from uniformdistribution is precisely what is measured by the modulation index, which quantifies
the effect of phase of one oscillation on the amplitudeof a different oscillation.

doi:10.1371/journal.pone.0162262.g003
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procedure, statistically significant coupling was observed in every animal (n = 59mice) both
under 12h:12h light-dark conditions (Fig 4A, 4B, 4C, 4D and 4E) as well as in animals main-
tained in total darkness (Fig 4F, 4G, 4H, 4I and 4J). Note that somemodulation indices that
were prominent during light:dark conditions became less prominent in constant darkness (e.g.
Fig 4E and 4J) while others becamemore prominent (Fig 4D and 4I). Presence of statistically
significant coupling between different oscillations observed in total darkness reflects variables
intrinsic to each animal rather than those imposed onto the animal extrinsically by the light/
dark cycle. Thus, MI analysis reveals novel and statistically robust elements of the temporal
structure of spontaneous behavior that is not given by the spectrum.

Identifying characteristic features among groups of animals
We observed that while there were consistent features of the map of the CFCs, different indi-
viduals taken from genetically diverse populations of mice exhibited some variability in the
specific features of these interactions. Furthermore, the same animals maintained under light:
dark (Fig 4A) and in constant darkness (Fig 4F) conditions exhibited different patterns of
CFCs. One possibility for the observeddifferences is that they simply reflect noise inherent in
both the estimation of the CFC and in the behavior itself. Alternatively, differences in the pat-
tern of CFCmay reflect systematic differences between animal phenotypes and environmental
influences such as the light:dark cycle.While in principle the pattern of CFC can reflect some
combination of intrinsic properties of the animal and features of the environment, the com-
plete investigation of the variability in the patterns of CFCwould require a large number of ani-
mals and an efficient parameterization of the environmental factors. Thus, here we focused just
on the variability in the patterns of CFC computed in the simplest setting–constant darkness
and in one generation ofHet8mouse strain. To study the variability in the pattern of CFC, we
first subjected the CFCmaps (e.g. Fig 4) to dimensionality reduction using principal compo-
nent analysis (PCA), and then clustered the data in this reduced dimensional space.
Using PCA, we captured ~70% of the variance in the first 5 components (Fig 5A). Thus, var-

iability between different individuals in terms of patterns of CFC is confined to a low dimen-
sional subspace. Formally, the principal components (PCs) that span this low dimensional
space are the eigenvectors of the covariance matrix computed across all pairs of CFCmaps and
reflect characteristic and mutually orthogonal patterns of CFCs (Fig 5B–5F). As expected, the
first PC captures the effect of the most dominant modulator–the circadian oscillation (Fig 5B).
Subsequent components, however, highlight the interactions between different ultradian oscil-
lations (Fig 5C, 5D, 5E and 5F).
To discover further structure in the differences between individual patterns of CFCs, we

subjected the data projected onto the first 5 PCs to cluster analysis using hierarchical clustering
(Fig 6A, Fig 6C shows centroids of each of the clusters). The dendrogram reveals that there are

Fig 4. Multiplebehavioral oscillationsare coupled. The frequency of the oscillator used for amplitudeextraction (themodulated
wave) is plotted on the abscissa in modulograms (A, F, K). The frequency of the oscillator used for phase extraction (modulator) is
plotted on the ordinate. Modulation Index (MI) is plotted in color from blue (nomodulation) to red (significant modulation) on the
same scale for all modulograms. Examples of the phase vs. amplitude histograms from the regions in the modulogram (white
rectangles) are shown in panels (B:E,G:J, L:O).A.Modulogramshowing strengths of cross frequency phase-amplitude coupling
in spontaneous behavior observed during light:dark cycle. The prominent horizontal line along the x-axis with highmodulation
indices corresponds to themultiple ultradian oscillators modulatedby the circadian oscillator. Some oscillators are beingmodulated
by the ultradian oscillations (e.g.C). Some oscillations appear to be uncoupled (e.g.B). Finally some oscillations are modulatedby
more than one oscillator (e.g.E andC). F. Modulogram in the same animalmaintained in total darkness.While somemodulation is
clearly present and thus reflects the intrinsic propertiesof spontaneous behavior, the overall patternof modulation depends quite
strongly on the lighting conditions. Note the decreasing influence of the circadian oscillator and an increasing influence of some
ultradian oscillations. K. In contrast to the experimentally-observed datasets, the phase shuffled surrogates computed from the
same data as inA (or F, not shown) do not display significant phase-amplitude coupling despite having identical spectra.

doi:10.1371/journal.pone.0162262.g004
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two clusters of CFCs.While one cluster is enriched in the females, the other cluster predomi-
nantly contains males and this degree of segregation between different sexes is statistically sig-
nificant (p = 0.00635, Fisher exact probability). In contrast to the CFC, the spectra obtained
frommales and females were quite similar (Fig 6B). Thus, analysis of the CFC reveals novel fea-
tures of spontaneous locomotor activity differentially expressed in males and females.

Discussion
In this study, we find that ultradian rhythms in spontaneous behavior are coupled to the circa-
dian rhythm and to each other. Conventionally, spontaneous behavior has been analyzed using
spectral or autocorrelation analysis—techniques that are not appropriate to reveal the patterns
of interactions among the different oscillators due to the stationarity assumption. By using
wavelet transform we relaxed this assumption to discover highly significant interactions
between phases and amplitudes of behavioral oscillations at different frequencies. To demon-
strate statistical significance,we compared the pattern of interactions observed in the real data

Fig 5. Differences in themodulograms computed for different animals under constant darkness are confined to a low dimensional subspace. A.
Activity from 35 individualHet8mice (19 females, 16 males) were observed in total darkness for 14 days. Themodulograms computed for these data were
subjected to principal component analysis. The percent of total variance is plotted as a function of the number of principal components (dimensions).While
there is no distinct elbow in this plot, first 5 components capture >70% of the variance.B-F. Principal components (eigenvectors of the correlation matrix)
represent the characteristic patternsof CFC. While the first eigenvector extracts the influence of the circadian oscillator, subsequent eigenvectors pick out
the interactions between different ultradian oscillators.

doi:10.1371/journal.pone.0162262.g005
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to that computed over phase-shuffled surrogates constructed to preserve the spectral character-
istics of the signal.
Circadian oscillations are mediated through a feedback regulatory network of transcription

factors. Since the original groundbreaking discovery of the periodmutants by Konopka and
Benzer [26] the number of genes thought to be important for mediating cyclical fluctuations in
animal behavior and physiology has increased tremendously [27]. Along with the discovery of
the new genes, the network defined by their interactions has also gained in complexity. It
seems likely that such complex molecular network has evolved to not simply give rise to the cir-
cadian oscillation but to coordinate the various rhythms of behavior and physiology across
broad range of timescales. Yet, the methods currently applied to the analysis of behavior are
not appropriate to detect such coordination between different behavioral rhythms. Analysis of
phase amplitude coupling between different behavioral oscillations developed herein is a step
towards a more complete characterization of behavior. Indeed our analysis suggests that cou-
pling between different behavioral rhythms occurs in the absence of any external clues. This
implies that the coupling is a consequence of the intrinsic properties of the molecular network
that underlies different biological rhythms.
While the intrinsic components of the circadian oscillations are important, previous studies

have demonstrated that the specific features of the circadian oscillator depend critically on the
environment [28]. We find that this is also true of the cross frequency coupling between differ-
ent behavioral oscillations.While coupling is observedboth in the light:dark cycle and in con-
stant darkness [29, 30], the specific pattern of coupling in these two settings is distinct. (Fig
4A–4J). Furthermore, we observe that the pattern of CFC can differ significantly between dif-
ferent individuals from an outbred mouse strain. Interestingly, this variability is not entirely
random [31, 32] implying that only certain configurations of CFC are most biologically
plausible.
We show that just by analyzing the patterns of CFC in a featureless dark environment we

can identify features that are more characteristic of either males or females.While it is tempting
to speculate on the biological significance of the sex differences in CFC, segregation of the
sexes into two clusters is not entirely surprising. Sex differences were the only consistent bio-
logical difference between the animals included in the analysis. Further analysis will be required
to pinpoint the relationship between the patterns of CFCs and sex. The most important aspect
of the clustering result is that the pattern of CFC depends on the underlying biological differ-
ences between animals—sex in this case—rather than being some generic feature of the 1/f-like
fluctuations in the amount of locomotion. This segregation of males and females into different
clusters, while statistically significant, was not perfect. In this context, we note that the presence
of scalloping activity in the behavioral rhythms in female hamsters (and in mice to a lesser
degree) has been linked to their natural estrous cycle (approximately 4 days) [33, 34, 35]. How-
ever those findings and the ones herein are distinct—themost important distinction being
timescale.While work on scalloping has addressed the interactions between the circadian
rhythm and the hormonal oscillation occurring at a slower time scale, here we exclusively
focused on oscillations with the cycle period that is at most circadian.While it is possible that

Fig 6. Males and females can be segregated into two clusters based on the CFC but not on the spectra. A:Dendrogramcomputed for the
same animals as in Fig 4 reveals that much of the variability can be captured by 2 clusters. Euclidean distance between elements is shown on the y-
axis. Clustering was done on the CFCmaps projected onto the first 5 PCs. One cluster contains data predominantly from female (73%)while the
other is enriched in the malemice (77%) (shown by the pie charts). The probability of obtaining this degree of segregation between males in females
under null hypothesis of randomassignment is p = 0.00635 (Fisher exact probability).B: In contrast to the separation betweenmales in females on
the basis of the CFC, the spectra from the two populations show no clear differences. C:Centroids of the two clusters (left! female enriched
cluster; right!male enriched cluster) reveal clear differences in terms the strength of coupling between different ultradian oscillators.

doi:10.1371/journal.pone.0162262.g006
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some of the differences in coupling revealed by the CFCmay reflect estrous cycle, it is not pos-
sible to make any specific claims without disrupting the estrous cycle experimentally. We
emphasize, however, that our objective here was not to come up with a classification scheme to
distinguish between the sexes. This would likely be possible given larger datasets and more
robust classifiers.What our results do suggest quite strongly is that the differences between
males and females were not observedusing conventional methods of analysis of spontaneous
behavior.
Not surprisingly, our analysis of the CFC identified circadian oscillation as the key, but not

the only, modulator of faster ultradian oscillations.Mutations in the Clock gene have been
shown to lengthen the circadian cycle with notable shifts in the circadian spectral peaks [36],
and deficiency in Bmal1 gene completely disrupts the circadian rhythm [37] as evidencedby
the disappearance of the spectral peak at the circadian frequency. Yet, it is not obvious what
effects, if any, this should have on the modulation of the ultradian oscillations. For instance,
assume that the slow oscillation (S) in Fig 3A is the circadian oscillation, while the fast oscilla-
tion (F) is an ultradian oscillation. Elimination of the circadian oscillationwithout the concom-
itant elimination of the modulation will result in the transformation of the behavioral time
series from the green trace (Fig 3A, top row, middle column) into the red trace (Fig 3A, second
row, middle column). Note that the presence of modulation in this case will not show up as a
spectral peak at the circadian frequency consistent with the results in Bmal1-deficient animals.
Conversely elimination of both the circadian oscillation and the modulation will result in either
a stable ultradian oscillation (Fig 3A, second row, left column) or a non-stationary ultradian
oscillation (Fig 3A, second row, right column). Furthermore, the converse scenario—elimina-
tion of the modulation without elimination of the periodicity—is also possible. In other words,
the modulation demonstrated herein is a fundamentally distinct phenomenon from the oscilla-
tion itself.
While little is known about the mechanisms of ultradian oscillations, recent study by Blum

et al, 2015 [15], suggests that dopaminergic neurons may be strongly involved. This is evi-
denced for instance by pharmacologicalmanipulation of dopaminergic signaling using psy-
chostimulants and antipsychotics as well as genetic manipulations of the dopaminergic
signaling. Of note, however, Blum et al, were able to demonstrate most profound alterations in
the cycle period of the ultradian oscillations after disrupting the circadian oscillation. This is
because it is thought that the pronounced and relatively stable circadian oscillation “masks”
the ultradian oscillations that are by comparison much more transient. The approach laid out
in this work may therefore be useful both in the characterization of the basic features of the
ultradian oscillations such as their cycle period and amplitude but also in their integration into
the overall coordinated patterns of behavior that involves oscillations occurringover a broad
range of frequencies.

Conclusion
Spontaneous behaviors, like many biological features and physiological mechanisms are com-
plex processes that are highly non-stationary—their statistical character fluctuates at slow and
fast timescales as a result of interactions with a fluctuating environment. To account for these
dynamical patterns, it is essential to reduce the signal into its components and elucidate the
underlying interactions between them. The wavelet based coupling analysis of the components
presented here identified a highly non-random phase structure in the spontaneous behavior
that was relatively preserved across all mice. Moreover, studying the alterations in locomotor
dynamics would potentially be useful for behavioral abnormalities such as those observed in
psychiatric disorders like bipolar disorder and depression [38].
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More generally, we note that the methodology employed here could be applied to spontane-
ous human behaviors in a variety of settings. Analysis of the CFC applied to behavior on a
larger scale, may pinpoint both the idiosyncrasies of individuals and the organization of these
individuals into subgroups.

Methods

Animal Maintenance and Data Acquisition
All animal procedures were approved by The Rockefeller University's Animal Care and Use
Committee in accordance with the AnimalWelfare Act and the Department of Health and
Human ServicesGuide for the Care and Use of Laboratory Animals. Food and water were
available ad libitum. Mice were housed separately in acrylic cages (18cm x 29cm x 13cm). Two
strains of mice, C57BL/6J (Jackson Labs) and Het-8 (an outbred stock from an intercross of
more than eight outbred strains followed by over 60 generations of structured outbreeding,
were maintained on either 12h:12h light:dark cycle or in constant darkness. For both strains
adult animals between 3 and 6 months of age were used. Only recordings longer than 14 days
were used in this study. Animals were housed individually inside a VersaMax monitor placed
within a chamber, and maintained at a constant temperature of 20 (±2°C and the food and
water were provided ad libitum. The procedure for data acquisition is specified in detail in
[19]. Briefly, locomotor activity measured using breaks of IR beams arranged in a grid in a Ver-
samax monitor enclosed in a chamber is used to assay mouse spontaneous behavior. The cages
do not impose any restriction in the direction of movement within the boundaries of the
box or any timing cues. Each individual Versamax apparatus was housed inside a sound-proof
chamber each with its own dedicated ventilation system in order to limit the possibility of
interactions between individuals. The experiments were performed in a dedicated room and all
attempts were made to limit the number of entries into the room during the experiment. Thus,
to the best of our ability we minimized any external time cues. To reduce the computational
cost for the purposes of the analysis here we reduced the temporal resolution to 1 sample per
100 seconds by down-sampling the data (see the analysis section below).

Data Analysis
All analysis was performed in Matlab (Mathworks) using custom-written software. While the
original data sets were acquired at 1 second temporal resolution for computational feasibility
we downsampled the data usingMatlab function decimate.m to 100 seconds (0.01 Hz). All sub-
sequent analysis was performed on this downsampled time series.
Power spectrumof the behavioral timeseries was computed using multitaper estimates [39].

This method provides for robust, unbiased spectral estimation even given a relatively short
period of observations.Here we used 5 tapers and a time-bandwidth product of 9.

Constructionof surrogates
For each experiment, we established a statistical control analysis to infer whether the observed
coupling, quantified with the MI value (see below), differed from a chance distribution derived
from the analysis of surrogate data. We constructed two sets of surrogates designed to preserve
the spectral features while altering the phase information. The downsampled data was first
transformed from time to frequency domain using the Fourier transform. Phase information
was extracted and randomized in one of two ways (below), and transformed back into the time
domain using the inverse Fourier transform. By construction these surrogate datasets have the
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same power spectrumas the original timeseries. Thus, all first order correlations are preserved
in the experimental timeseries (Wiener-Khinchin theorem).
Two procedures were used to create 500 surrogate time series for each experimental dataset:

1) Phases are sampled randomly from a uniform phase distribution between −π and π. We
refer to this as phase randomized surrogates. Note that this not only randomizes the phases but
also disrupts the phase distribution. 2) The phases of the original data were shuffled randomly
between the different frequency components. Note that this, secondmethod, preserves both
the power spectrumand the distribution of phases found in the original dataset while disrupt-
ing only the relationship between phase and frequency. We refer to these as phase shuffled sur-
rogates. While all of the conclusions in the paper hold for both sets of surrogates, here we
focused on the phase-shuffled surrogates because they preservemore of the features of the real
data than the phase-randomized dataset.

ContinuousWavelet Transform (CWT)
CWTof a signal x(t) is defined as the convolution of the signal with a scaled and translocated basis
function known as the mother wavelet, Morlet in this case. The choice of themother function is
neither unique nor arbitrary. The requirements open the possibility of using several different func-
tions as wavelets [20].We chose theMorlet wavelet because the resulting CWT is complex-valued,
thus allowing us to extract both phase and amplitude information.Moreover, the presence of sinu-
soidal characteristics of the time series supports the use of this wavelet function.
The CWT of a signal x(t) is defined in [40]:

Xðb; aÞ ¼ �
ffiffiffiffiffi
jaj

p
Z1

� 1

xðtÞφððt � bÞÞ=aÞdt ðEq: 1Þ

where the Morlet wavelet φ(t) is defined by the following equation:

φðtÞ ¼ eiw0t � e
w2

0
2

� �

et
2

2 ðEq: 2Þ

in whichw0 = 6 is the so called wavenumber parameter chosen to assure that admissibility cri-
teria for the wavelet are met [20].
a in (Eq 1) is called wavelet scale. The relationship betweenwavelet scale and frequency is

given by the Fourier transform of the wavelet ([20], Table 1). Changing the scale (a) has the
effect of shifting the peak of the Fourier transform of the Morlet wavelet and changing the
width of the peak in the frequency domain. In the time domain changing a has the effect of
broadening or shrinking the wavelet. This is the essence of the wavelet transform—different
time windows are used to estimate the characteristics of oscillations occurring at different fre-
quencies. Please see excellent guide to wavelet analysis by Torrence et al 1998 [20] for the
details of the implementation and the interpretation of the wavelet transform.
Using standard approach we performed the wavelet transform along a dyadic scale grid

where each octave (doubling of the frequency) was divided into 4 elements. Given the data
sampling rate (dt = 100 s or 0.01 Hz), the smallest wavelet scale (a0) that can be computed is
given by a0 = 2 � dt (Nyquist limit). The largest scale is amax ¼ a02

j�dj where dj is the spacing

between consecutive scales (1/4 in this case) j ¼
log2ðN

� dt
a0
Þ

dj
where N is the number of points in the

original data series.We only considered datasets that were at least 2 weeks in duration. This
yields a minimum number of points 12095 (where each point denotes activity within a 100 s
period).
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While the actual mechanics of the wavelet transform are done in terms of scales, it is much
more convenient and conventional to report the results in terms of actual frequencies (where
each a is associated with a frequency that corresponds to the peak of the Fourier transform of
the Morlet wavelet). We refer to each frequency in the manuscript by f and, following SI units
report frequency in terms of Hz. Each particular frequency element within a set of all estimated
frequency elements is denoted by a subscript (e.g. fi corresponds to the ith frequency element).
While CWT is very useful for time-frequencydecomposition of the signal (see Fig 2),

another way to see the CWT is as a bank of bandpass filters.We used this property to generate
multiple filtered versions of the behavioral dataset, one at each of the wavelet scales. This was
accomplished by performing an inverse CWT using just the wavelet of interest. This procedure
avoids phase shifts commonly encountered with filtering because wavelet coefficients at each
scale are computed independently.

Analysis of Phase-AmplitudeCoupling
The approach for calculation of phase-amplitude coupling is identical to that discussed in [25].
Below we outline this strategy. Please consult Tort et al [25] for the discussion of this measure
of phase amplitude coupling as well as other alternative measures.
To establish whether the phase of oscillation occurring at frequency fimodulates the ampli-

tude of the oscillation occurring at frequency fj the behavioral time series x(t) is first filtered
using wavelets with scales chosen such that the peak of the frequency response of the wavelet is
at fi and fj. Phase of signal filtered at fi is then extracted using standard Hilbert transform. This
yields phase time series (denoted as Fi(t)). The instantaneous amplitude of the oscillation fil-
tered at frequency fj was similarly extracted by taking the absolute value of the Hilbert trans-
form. This yields amplitude time series (denoted as Aj(t)). Composite phase-amplitude time
series [φi(t),Aj(t)] is then constructed.Note that the phase and amplitude are extracted from
different oscillations distinct in terms of their frequency. Then the phase (Fi(t)) is binned into
20 bins on the range (−π,π) and mean amplitude of Aj(t) in each bin is computed. We denote
this mean amplitude in kth bin as hAjik. Note that this assumes that the relationship between
phaseFi(t) and amplitude Aj(t) is stationary across the recording.While this not need be the
case necessarily, in order to test this assumption, longer recordings would be necessary. Finally
mean amplitudes in each bin are normalized according to the following PðkÞ ¼ hAjikXN

r¼1
hAjir

where N = 20 (i.e. number of bins). This normalized amplitude has properties similar to proba-

bility density function in that P(k)� 08k and
XN

k¼1
PðkÞ ¼ 1.

Note, that the intensity of the phase-amplitude coupling can be inferred visually by inspect-
ing the plot of P(k) (e.g. Fig 3 and Fig 4). If Fi(t) and Aj(t) are not related (i.e. no coupling)
then the plot will appear as a flat line or a uniform distribution. Conversely, if the phase modu-
lates amplitude, then the normalized amplitude will not be uniform across phases.
Thus, in order to quantify the phase-amplitude coupling we compute the deviation of P(k)

from uniform distribution (U(k)). For this purpose we invoke Kullback-Liebler (KL) diver-
gence, a standard approach to compute differences between distributions in statistics and infor-
mation theory. For two discrete distributions (P and U in this case) KL divergence is defined by
the following equation:

DKLðP;UÞ ¼
XN

k¼1
PðkÞlog

PðkÞ
UðkÞ

� �

Eq: 3
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Note the resemblance betweenEq 3 and equation for Shannon entropy HðpÞ ¼ �
XN

k¼1

PðkÞlogðPðkÞÞ. Further note that the maximum entropy value occurs at log(N). Finally, note
that maximum entropy occurs precisely when the distribution is uniform. Thus, we can rewrite
Eq 3 as follows:DKL(P,U) = log(N) −H(P). BecauseH(P)� log(N) we defined our modulation
index for pair of frequencies fi and fj (identically to [25]) as follows:

MIi;j ¼
DKLðP;UÞ
logðNÞ

Eq: 4

Note that if P(k) is a uniform distribution then the numerator of Eq 4 is zero. Thus, if two
oscillations are not coupled, MI is zero. Conversely, maximum coupling is seen when P(k) is a
Dirac delta function (non-zero amplitude for oscillationwith frequency fj is only observed in a
single phase bin of oscillationwith frequency fi). In this case, MI will attain its maximum value
(MI = 1).
We performed the above analysis for all pairs of frequencies sampled according to the pro-

cedure described in the previous section. For the purposes of plotting the modulation index is
shown in color in corresponding figures. fi and fj are shown on the ordinate and the abscissa
respectively. The frequency pairs were chosen such that 1/24 hours� fi< fj. That is, we only
considered oscillations that are at most as slow as the circadian oscillation and only allowed for
the possibility that slower oscillationmodulates a faster one but not vice versa. The former
requirement can in principle be relaxed but would require longer contiguous recordings. The
latter requirement gives rise to the triangular appearance of the modulograms.
In order to establish, statistical significance of the MI, we applied the same procedure to

phase-shuffled and phase-randomized surrogate datasets (see above). 500 surrogates were used
for each animal. The MI values derived from the original data and the surrogate datasets were
compared to obtain a Z-score measurement of cross-frequency phase-amplitude coupling
strength. In every experiment on everymouse we found robust statistically significant
(p<0.0001 after Boneferroni correction for multiple comparisons) coupling between different
behavioral oscillations.

Supporting Information
S1 Dataset. The attachedmatlab structure contains the activity data for the animals used in
this study. The fields labeled with “DD” corresponds to the animals raised in the total dark-
ness, and those without the “DD’ label corresponds to the animals raised in 12h:12h light:dark
cycle. The activity is recorded for 14–17 days, and the gender of the animals is denoted by F
(females) or M (males) respectively
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