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Activity of cortical principal cells is controlled by the GABAergic system providing inhibition
in a compartmentalized manner along their somatodendritic axis. While GABAAR-mediated
inhibitory synaptic transmission has been extensively characterized in hippocampal prin-
cipal cells, little is known about the distribution of postsynaptic effects of GABABRs. In
the present study, we have investigated the functional localization of GABABRs and their
effector inwardly rectifying potassium (Kir3) channels by combining electrophysiological
recordings in acute rat hippocampal slices, high-resolution immunoelectron microscopic
analysis and single cell simulations. Pharmacologically isolated slow inhibitory postsynaptic
currents were elicited in the three major hippocampal principal cell types by endogenous
GABA released by electrical stimulation, photolysis of caged-GABA, as well as the
canonical agonist baclofen, with the highest amplitudes observed in the CA3. Spatially
restricted currents were assessed along the axis of principal cells by uncaging GABA in the
different hippocampal layers. GABABR-mediated currents were present along the entire
somatodendritic axis of principal cells, but non-uniformly distributed: largest currents and
the highest conductance densities determined in the simulations were consistently found
on the distal apical dendrites. Finally, immunocytochemical localization of GABABRs and
Kir3 channels showed that distributions overlap but their densities diverge, particularly on
the basal dendrites of pyramidal cells. GABABRs current amplitudes and the conductance
densities correlated better with Kir3 density, suggesting a bottlenecking effect defined
by the effector channel. These data demonstrate a compartmentalized distribution of the
GABABR-Kir3 signaling cascade and suggest differential control of synaptic transmission,
dendritic integration and synaptic plasticity at afferent pathways onto hippocampal principal
cells.
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INTRODUCTION
GABAB receptors mediate the slow inhibitory effects of GABA
and contribute crucially to the control of network activity and
information processing in cortical circuits by regulating neuronal
excitability and synaptic transmission (Kohl and Paulsen, 2010;
Palmer et al., 2012; Larkum, 2013). On postsynaptic membranes,
GABABRs preferentially localize to the extrasynaptic membrane
and co-cluster with G-protein coupled inwardly rectifying potas-
sium channels (Kir3 or GIRK) (Kulik et al., 2006). Activation of
GABABRs, and subsequent phosphorylation of Gi/o leads to acti-
vation of Kir3, which produces a slow hyperpolarizing potassium
conductance (Bettler et al., 2004). However, the distribution of the
receptor and the effector channel is not homogeneous along the

Abbreviations: AP - action potentials; GABABR – GABAB receptor, GABAAR –
GABAA receptor, IPSC – inhibitory postsynaptic current; CA – cornu ammonis, DG –
dentate gyrus, GCL - granule cell layer; PC – pyramidal cell, DGC - dentate granule
cell, ML - molecular layer; str. L-M - stratum lacunosum-moleculare; Kir3 - G-protein
couple inwardly rectifying potassium channel; GABA – gamma-amino butyric acid,
APV – D,L-phosphoamino valearate, DNQX- 6,7-Dinitroquinoxaline-2,3-dione;
SDS-FRL - SDS-digested freeze-fracture replica immunogold labeling.

somatodendritic axis (Kulik et al., 2003), indicating that this sig-
naling cascade may control excitability of neuronal membranes in
a layer- and compartment-specific manner (Larkum, 2013).

Early electrophysiological studies from hippocampal PCs
showed that GABABR-mediated slow postsynaptic inhibitory
responses can be elicited in the dendrites, but not the periso-
matic domain (Newberry and Nicoll, 1985; Solís and Nicoll, 1992).
In good agreement, immunocytochemical studies have generally
revealed strong labeling in dendritic layers with the highest inten-
sity observed over the distal apical dendrites in the str. L-M of
the CA areas and the outer ML of the DG (Fritschy et al., 1999;
Sloviter et al., 1999; Kulik et al., 2003). Similarly, Kir3 channels
were found to show stronger immunolabeling over the distal apical
dendrites (Ponce et al., 1996; Drake et al., 1997; Kulik et al., 2006).
In stark contrast, recent data from the neocortical layer 5 PCs sug-
gest that perisomatic GABABRs activate Kir3 potassium channels,
whereas dendritic GABABRs primarily inhibit voltage-sensitive
calcium channels (Breton and Stuart, 2012). Whether these con-
trasting data reflect regional differences in the distribution of
GABABRs and their effectors or a divergent coupling of GABABRs
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to their effectors along the somatodendritic axis remains an open
question.

In the present study, we therefore analyzed the distribution
of GABAB1 and Kir3.2 subunits and the currents mediated by
GABABR-Kir3 signaling cascade along the somatodendritic axis of
hippocampal principal cells in a combined neuroanatomical and
electrophysiological approach. Whole-cell patch-clamp recordings
were performed in vitro from identified principal cells from acute
slices and GABABR-Kir3 mediated currents mapped by electrical
stimulation, direct pharmacological activation or lamina-specific
photolysis of caged-GABA. The distributions of surface membrane
localized GABABRs and Kir3 channels were then assessed with
SDS-digested freeze-fracture replica immunogold labeling.

MATERIALS AND METHODS
ACUTE SLICE PREPARATION
Experiments were performed on 18–26-days-old Wistar rats,
expressing Venus/yellow fluorescence protein (YFP) under the
vesicular GABA transporter (vGAT) promoter, (Uematsu et al.,
2008) in accordance with local (LaGeSo, Berlin, T 0215/11)
and national guidelines (German Animal Welfare Act). Trans-
verse hippocampal slices were prepared as previously described
(Booker et al., 2013). Briefly, rats were anesthetized with isoflu-
rane, decapitated and the brains rapidly removed into ice-cold
carbogenated (95% O2/5% CO2) sucrose-modified artificial cere-
brospinal fluid (sucrose-ACSF; in mM: 87 NaCl, 2.5 KCl, 25
NaHCO3, 1.25 NaH2PO4, 25 Glucose, 75 Sucrose, 1 Na2-Pyruvate,
1 Na2-Ascorbate, 7 MgCl2, 0.5 CaCl2). Transverse hippocampal
slices (300 μm nominal thickness) were then cut on a Vibratome
(VT1200s, Leica, Germany) in ice-cold sucrose-ACSF, transferred
to submerged storage chambers containing sucrose-ACSF warmed
to 35◦C for 30 min and then stored at room temperature (20◦C).

WHOLE-CELL PATCH-CLAMP RECORDINGS
For electrophysiological recordings, slices were transferred to
a submerged recording chamber, and superfused with carbo-
genated, normal ACSF (in mM: 125 NaCl, 2.5 KCl, 25 NaHCO3,
1.25 NaH2PO4, 25 Glucose, 1 Na2-Pyruvate, 1 Na2-Ascorbate,
1 MgCl2, 2 CaCl2), at 10–12 ml/min for improved oxygena-
tion (Hájos et al., 2009) at a near physiological temperature
(32 ± 0.4◦C) by an inline heater (SuperTech, Switzerland). Slices
were visualized with an upright microscope (BX-50, Olympus,
Hamburg, Germany) equipped with a 40x water immersion
objective lens (N.A. 0.8) and principal cells selected from the
stratum pyramidale or GCL. Whole-cell patch-clamp recordings
were accomplished using a Multiclamp 700B amplifier (Molecular
Devices, USA). Recording pipettes were pulled from borosilicate
glass capillaries (2 mm outer/1 mm inner diameter, Hilgenberg,
Germany) on a horizontal electrode puller (P-97, Sutter Instru-
ments, Novato, CA, USA). When filled with intracellular solution
(in mM: 130 K-gluconate, 10 KCl, 2 MgCl2, 10 EGTA, 10 HEPES,
2 Na2-ATP, 0.3 Na2-GTP, 1 Na2-creatinine, and 0.1% Biocytin;
290–310 mOsm) the pipettes had a resistance of 3–5 M�. Sig-
nals were filtered online at 10 kHz using the built in 2-pole
Bessel filter of the Multiclamp amplifier, digitized and recorded
at 20 kHz (NI USB-6212 BNC, National Instruments, Berk-
shire, UK), using WinWCP software (courtesy of John Dempster,

University of Strathclyde, Glasgow, UK). Data were analyzed
offline using the open source Stimfit software package (Guzman
et al., 20141).

CHARACTERIZATION OF GABABR-MEDIATED CURRENTS
After achieving whole-cell configuration, intrinsic properties of
principal cells were characterized for cell identification. Char-
acterization was performed in current-clamp mode from resting
membrane potential (Vm) and cells identified on the basis of the
voltage response and the resulting train of APs of the recorded neu-
rons to a family of hyper- to depolarizing current steps (500 ms
duration) ranging from –250 to 250 pA, in 50 pA, steps, followed
by a final 500 pA step. Cells showing a hyperpolarized membrane
potential, large and fast AP kinetics, and an accommodating train
of APs at 500 pA depolarization were deemed to be principal cells.

Pharmacologically isolated GABABR-mediated currents were
examined in the presence of ionotropic receptor blockers, DNQX
(10 μM), DL-APV (50 μM), and gabazine (10 μM) in the
perfusing ACSF, under voltage-clamp at –65 mV. Extracellu-
lar stimulation was delivered to the apical neuropil via a glass
monopolar electrode (patch pipettes filled with 2 M NaCl, pipette
resistance = 0.1 M�) and GABABR-mediated IPSCs evoked in
response to a single stimulus (100 μs duration, 50 V amplitude)
or 200 Hz trains of 3, 5, and 10 stimuli. Stimulation electrodes
were positioned at the str. radiatum/L-M border for recordings
from CA1 and CA3, and in the outer third of the ML for the
DG. Kinetic properties of GABABR IPSCs were determined from
average traces (minimum eight individual traces), where the IPSC
amplitude was greater than 5 pA. To assess the whole-cell contin-
gent of GABABR-mediated currents the canonical agonist baclofen
(10 μM) was applied to the bath and 5 min steady state whole-cell
current recorded. To confirm that the baclofen-induced current
was specific to the GABABR, the potent selective GABABR antag-
onist CGP 55,845 (CGP, 5 μM) was subsequently applied. The
currents produced by baclofen and CGP were measured as the dif-
ference in the holding current between the 2 min peak response
of each pharmacological epoch and the control level (measured
2 min prior to drug wash-in).

Spatially restricted GABA application was achieved by pho-
tolysis of the photolabile caged-GABA compound Rubi-GABA
(20 μM) applied to the bath (Rial Verde et al., 2008). Photore-
lease of GABA was induced by brief flashes (200 ms flash duration,
2 min inter-flash interval) of 470 nm monochromatic light to the
tissue (OptiLED, Cairn Scientific, Kent, UK). To assess the spa-
tial distribution of pharmacologically isolated GABABR-mediated
currents in hippocampal principal cells, 60 μM wide stripes were
exposed to the light flashes in each hippocampal layer, perpendic-
ular to the dendritic axis by fitting a 2 mm slit mask at the level of
the stop-filter in the conjugated plan of the epifluorescent tube of
the microscope.

VISUALIZATION, IMAGING, AND RECONSTRUCTION OF THE RECORDED
NEURONS
Following completion of the experiments, the outside-out patch
configuration was obtained and slices fixed immediately with

1http://www.stimfit.org
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4% paraformaldehyde (PFA) in 0.1 M phosphate buffer (PB),
overnight at 4◦C. Slices were then rinsed repeatedly in PB prior to
incubation with Alexa Fluor 647-conjugated streptavidin (1:1000,
Invitrogen, Dunfermline, UK), diluted in PB containing 0.1%
Triton-X100 and 0.05% NaN3, overnight at 4◦C. Slices were
then rinsed liberally with PB and mounted on glass slides, con-
taining a 300 μm thick agar spacer to reduce compression and
shrinkage of the slices, with a polymerizing mounting medium
(Fluoromount-G, Southern Biotech, Birmingham, AL, USA) and
coverslipped.

Recorded cells were imaged on a laser scanning confocal micro-
scope (FluoView 1000, Olympus) with either 20x (N.A 0.75) or
oil-immersion 60x (N.A 1.3) objective lenses for cell identifica-
tion and reconstructions, respectively. For 3D reconstruction of
imaged cells, image stacks were collected from the Z-axis of the
cells (0.5 or 1 μm steps, 4 μs pixel dwell time, 4 megapixel res-
olution). Z-series images for high magnification reconstruction
were deconvolved (AutoQuant X3, Media Cybernetics, USA) and
stitched using the FIJI software package2. Neurons were then
segmented and reconstructed using a semi-automatic algorithm
in a two-step procedure first tracing the skeleton of the neuron
and subsequently fitting the diameters of neurites (Simple Neu-
rite Tracer plug-in for FIJI; Longair et al., 2011). The soma shape
was reconstructed by defining the longest axis first and measur-
ing diameters along this path. Morphometric parameters, such as
dendritic length and surface area values were derived from the vec-
torial representation of the reconstructed neurons in the Neuron
simulation environment (see below) using predefined morphome-
tric functions (arc3d, diam3d, L and area). Dendritic length and
membrane surface area within the illuminated regions were esti-
mated by projecting 60 μm horizontal slits onto the reconstructed
neurons and summing the length and area of all segments falling
into this region. All light slits were positioned relative to the center
of the cell soma; thus a good correlation of light slit position and
dendritic length could be produced offline. The surface area of
the soma was added to the appropriate slit, but its length was not
considered.

SINGLE CELL SIMULATIONS
The reconstructed neurons were exported from FIJI software using
the built in converter to the standard SWC file format for vectorial
representation of neuronal structures and imported to the Neuron
simulation environment (Hines and Carnevale, 1997; version 7.3
on a Debian Linux PC) using the ‘import3d’ tool package. All neu-
rons were rotated to a vertical position with their somatodendritic
axis, to match their orientation during the experiments. Scales
were checked and Z axis dimensions corrected by measuring the
embedded slice thickness and using a correction factor assum-
ing an original slice thickness of 300 μm. To reduce raggedness
of reconstructed neuronal process trajectories, in particular along
the Z-axis, a Gaussian spatial filter was applied (five point win-
dow, single run in the X–Y plane and 10 iterations for values along
the Z-axis). Diameters were checked for non-fitted values which
were present in the SWC files and these were substituted by linear
interpolation to neighboring points.

2http://fiji.org

The electrical behavior of the neuron was assumed to be pas-
sive. The specific membrane capacitance (Cm) was set to 1 μF/cm2,
and the axial resistivity (Ri) was 140 Ohm/cm (Baker et al., 2011)
for all cells, The resting membrane potential and the reversal of
the leak conductance (pas distributed mechanism) were set to
–65 mV. Passive membrane resistivity (Rm) in the default model
was assumed to be non-uniform for all PCs, with 50% lower val-
ues at the distal dendrites along a sigmoidal gradient (Stuart and
Spruston, 1998; Golding et al., 2005):

Rm = Rm(soma)∗(0.5 + 0.5/(1 + Exp(Dx − Dhalf )/f steepness))

where Dx is the distance of a given point measured from the cen-
ter of the soma, the gradient midpoint Dhalf was 150 μm from
the soma and the steepness factor fsteepness was 50 μm. For gran-
ule cells a uniform value was applied to the entire dendritic axis
(Schmidt-Hieber et al., 2007). The value of Rm was then individ-
ually determined for each cell by matching the measured input
resistance.

Spines were not reconstructed but were incorporated in the
model as a surface area correction factor: the extra area contributed
by the spines was modeled by dividing Rm and multiplying Cm
by a dendritic domain specific factor (Stuart and Spruston, 1998;
Golding et al., 2005). These correction factors were based on elec-
tron microscopic spine density measurements by Megías et al.
(2001) and confirmed and derived for simulations in the study
by Golding et al. (2005). The correction factors were between 1.0
(soma and proximal dendrites largely lacking spines) and 3.3 (high
density spines on thin oblique dendrites in the CA1 str. radia-
tum). In the modeled CA1 and CA3 PCs spines contributed to
an average of 57 and 49% of the total membrane area, respec-
tively. In granule cells spine correction factors approximated the
distribution described by Schmidt-Hieber et al. (2007) and had
a value of 1.7 for the proximal dendritic segments in the inner
ML, 2.1 for those in the middle and 2.3 for segments in the
outer ML.

After passive electric properties were applied, segment length
was adjusted according to the “d_lambda rule” (Carnevale and
Hines, 2009): an alternating current length constant at 1 kHz was
calculated for each section, and the number of segments per den-
dritic section (nseg) was increased until their length was less then
3.3% of this length constant (Schmidt-Hieber et al., 2007). The
integration time step was fixed to 12.5 μs. Voltage-clamp record-
ings were simulated with a VClamp object positioned at the soma,
with the electrode resistance set to the value of the uncompensated
series resistance during the experiment and the holding potential
was –65 mV.

GABAB receptor-mediated synaptic effects were modeled by
inserting Exp2Syn point processes into the segments falling into
the illumination windows. Peak conductance was calculated by
multiplying the assumed current density with the surface area
of the corresponding segment located within the illumination
window. Kinetic parameters of the conductance were set to
the experimentally determined values and the reversal poten-
tial was –95 mV (Booker et al., 2013). All instances of the
synaptic conductance inserted into a cell were connected to and
triggered by an abstract presynaptic NetStim object. For each
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simulation run the peak amplitude of the somatically measured
GABABR-mediated current was measured by recording the cur-
rent measured by the VClamp object and the conductance density
for the illumination window was iteratively adjusted on pro-
portion to the error (the difference between the experimentally
measured amplitude and the peak value of the somatic current
obtained in a simulation run) until the difference was smaller
than 0.01 pA. For each window the conductance density was cal-
culated as the mean of at least three iterative search processes.
Initial values were randomly chosen from a uniform distribu-
tion with 25% variability around the current density calculated
as the ratio of the somatically measured current divided by the
driving force and the surface area within a given illumination
slit.

SDS-DIGESTED FREEZE-FRACTURE REPLICA IMMUNOGOLD LABELING
To assess lamina distribution of the GABAB1 and Kir3.2 sub-
units SDS-FRL was performed as previously described (Kulik et al.,
2006). Transgenic vGAT Venus/YFP mice (30-days-old; n = 3)
were lightly anesthetized with isoflurane; followed by terminal
anesthesia with ketamine/Domitor (5:3 mix, 6.3 and 0.8 mg/kg
respectively, i.p.). The rats were then transcardially perfused with
0.9% NaCl for 1 min, followed by fixative solution containing 2%
PFA and 15% saturated picric acid (in PB), for 13 min. Transverse
hippocampal sections (90 μm) were cut on a vibratome (VT1000,
Leica, Germany) and cryoprotected overnight with 30% glycerol
in PB, at 4◦C. Blocks containing either CA1 and DG or CA3 were
microdissected from the sections and frozen under high-pressure
(HPM100, Leica, Germany). Frozen samples were fractured at
–130◦C and the fractured face coated by deposition of carbon
(5 nm), platinum (2 nm) then carbon (18 nm) in a freeze-fracture
replica machine (BAF060, BAL-TEC, Lichtenstein). Replicas were
digested for 18 hrs at 80◦C in a solution containing 2.5% SDS and
20% sucrose diluted in 25 mM Tris buffered saline (TBS), pH 7.4.
Following digestion, replicas were washed liberally in replica wash-
ing solution, which contained 0.05% bovine serum albumin (BSA)
and 0.1% Tween 20, in TBS; then blocked in a solution containing
5% BSA and 0.1% Tween 20 for 1 h at room temperature. Replicas
were then incubated with primary antibodies raised against either
the GABAB1 subunit (B17, rabbit, 10 μg ml−1; Kulik et al., 2003,
2006; Booker et al., 2013) or Kir3.2 subunit (rabbit, 8 μg ml−1,
Alomone Labs, Israel), in a solution containing 1% BSA and 0.1%
Tween 20 made up in TBS, overnight at 4◦C. The replicas were
then washed liberally in TBS, blocked for 30 min and then reacted
with 10 nm gold nanoparticles conjugated to goat anti-rabbit sec-
ondary antibodies (1:30, Nanoprobes, Yaphank, NY, USA) diluted
in a solution containing 1% BSA and 0.1% Tween 20 made up
in TBS, either for 3 h at room temperature or overnight at 4◦C.
Replicas were washed in TBS, then ultrapure water and mounted
on 25-mesh grids. For quantitative analysis, replicas were first
imaged with light microscopy to determine laminar organization
and then images of P-face spiny dendrites or somata were col-
lected from the middle portion of the layers of CA1, CA3, and
DG. Immunogold particle density was calculated by analyzing
the number of immunogold particles on the total exposed P-face
surface of the somatic or dendritic membrane using FIJI/ImageJ
software package.

CHEMICALS AND PHARMACOLOGICAL TOOLS
Chemicals were obtained from either Sigma Aldrich (Munich, Ger-
many) or Carl Roth (Karlsruhe, Germany). Biocytin was obtained
from Life Technologies (Dunfermline, UK). Drugs were obtained
from Abcam Biochemicals (Cambridge, UK) or Tocris Bioscience
(Bristol, UK). Drugs were stored as 1000-fold concentrated stocks
at –80◦C. Working concentrations were prepared fresh on the
day in normal ACSF: DNQX 10 μM, DL-APV 50 μM, gabazine
(SR-95531)10 μM, Rubi-GABA 20 μM, CGP-55845 5 μM, and
baclofen 10 μM.

STATISTICAL ANALYSIS
Statistical analysis was performed with Graphpad Prism 3.0
(GraphPad Software, La Jolla, CA, USA). Group data were com-
pared with either one-way ANOVA (parametric analysis) or
Friedman (non-parametric) tests, respectively combined with
Bonferroni or Dunn’s multiple comparison post-test to estab-
lish group differences. Analysis of unpaired and paired data was
performed with Mann–Whitney or Wilcoxon matched-pairs tests
respectively. Data is shown as mean ± SEM throughout. Statistical
significance was assumed if P < 0.05.

RESULTS
POSTSYNAPTIC GABABR CURRENTS SHOW DIFFERENTIAL
AMPLITUDES IN CA1, CA3 PCs, and DGCs
Previously reports have observed a clear laminar staining pat-
tern for the GABAB1 subunit of the obligatory heterodimer
receptor and the Kir3.2 channel subunit in the hippocampal
neuropil (Fritschy et al., 1999; Sloviter et al., 1999; Kulik et al.,
2003, 2006). To confirm the presence of GABABR/Kir3-mediated
potassium currents in hippocampal principal cells (Dutar and
Nicoll, 1988; Solís and Nicoll, 1992; Lüscher et al., 1997; Mott
et al., 1999; Booker et al., 2013) we performed extracellular stim-
ulation of pharmacologically isolated GABABR-mediated slow
IPSCs and tested the response of principal cells to the canon-
ical GABABR agonist baclofen. To assess GABABR-mediated
responses produced by synaptic release of GABA, we elicited slow
IPSCs in the presence of AMPA, NMDA, and GABAA recep-
tors antagonists (DNQX, 10 μM; APV, 50 μM and gabazine,
10 μM). Slow IPSCs were evoked by electrical stimulation to
the neuropil surrounding the distal apical dendrites with a
single stimulus or trains of five stimuli delivered at 200 Hz
(Figure 1A, top). All recorded IPSCs were confirmed to be
GABABR-mediated due to their blockade during bath application
of the potent and selective GABABR antagonist CGP-55845 (CGP;
5 μM).

In CA1 PCs (n = 5 cells), extracellular stimulation of the str.
radiatum/L-M border produced IPSCs following a single stimulus
with a mean peak amplitude of 7.7 ± 1.2 pA, while trains of the 5-
stimuli (applied at 200 Hz) produced IPSCs with a mean amplitude
of 26.2 ± 6.8 pA (Figure 1A, top and 1B), consistent with an
increased GABA release and therefore greater volume transmission
during the trains. In CA3 PCs (n = 7 cells), a single stimulus to the
str. radiatum/L-M border produced IPSCs with a mean amplitude
of 12.4 ± 0.8 pA, somewhat larger than those observed in CA1 PCs,
albeit not significantly so (P = 0.15). The 5 stimulus train elicited
IPSCs of 45.0 ± 9.4 pA in CA3 PCs, (Figures 1A, middle and 1B).
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FIGURE 1 | Synaptic and agonist-induced GABABR-mediated currents

in hippocampal principal cells. (A, upper), IPSCs elicited in a CA1 PC by a
train of five stimuli at 200 Hz before (black trace) and after application of the
specific GABABR-antagonist CGP-55845 (CGP, 5 μm, gray trace). (A, lower),
IPSCs elicited by a train of five stimuli in CA1 PCs (top), CA3 PCs (middle)
and DGCs (bottom), following subtraction of the CGP trace. Inset illustrates
the arrangement of the recording pipette and the extracellular stimulation
site (arrow). (B) Summary bar chart shows the mean amplitudes of
GABABR-mediated IPSCs produced by 5-stimuli in CA1 PCs (CA1, n = 6),
CA3 PCs (CA3, n = 7), and DGCs (DG, n = 7). (C) Mean change in IWC
plotted against time, before and during baclofen and subsequent CGP
application (CA1 PCs, n = 5; CA3 PCs, n = 9; DGCs, n = 8). (D) Bar chart of
the average peak IWC measured for baclofen (dark gray) and CGP (light
gray) in CA1 PCs (baclofen: n = 12, CGP: n = 11), CA3 PCs (baclofen:
n = 17, CGP: n = 13), and DGCs (baclofen: n = 15, CGP: n = 9). All average
data is overlain by the values from the individual experiments (open circles).
Statistics shown: ns = P > 0.05, *P < 0.05, ***P < 0.001; one-way
ANOVA.

Finally, slow IPSCs in DGCs (n = 6 cells) had mean amplitudes of
8.1 ± 1.2 pA following single stimuli and 39.6 ± 7.0 pA following
the 200 Hz trains of five stimuli. (Figures 1A, bottom, 1B).

The kinetics properties of GABABR-mediated IPSCs, measured
from single stimulus responses (>5pA) were mostly comparable
for the three principal cell types (Table 1). IPSCs recorded in CA1
PCs (n = 5), CA3 PCs (n = 7), and DGCs (n = 6) showed similar
onset latencies and rise times (P > 0.05, one-way ANOVA). Sur-
prisingly however, the decay time-constant of the IPSCs in DGCs
was ∼100% longer than either CA1 or CA3 PCs (P = 0.04, one-way
ANOVA, with Bonferroni multiple comparisons, Table 1).

As extracellular stimulation only activates a subset of GABABRs
on the somatodendritic domain of neurons (Lüscher et al., 1997;
Mott et al., 1999; Booker et al., 2013), we next bath applied the
canonical GABABR agonist baclofen (10 μM) in order to acti-
vate the full complement of surface localized functional receptors
(in the presence of ionotropic receptor blocker DNQX or NBQX,
APV, and gabazine). In CA1 PCs, baclofen application elicited an
outward whole-cell current (IWC) of 83.1 ± 7.9 pA (n = 12 cells,
Figure 1C, top). In CA3 PCs the observed baclofen-induced peak
IWC was substantially larger at 156.3 ± 14.1 pA (n = 17 cells)
188% higher than those in CA1 PCs (P = 0.0007; Figure 1C, mid-
dle). In contrast, DGCs responded to bath application of baclofen
with a smaller IWC of 60.6 ± 5.9 (n = 15 cells, Figure 1C, bot-
tom). This was 27% lower than the currents recorded in CA1 PCs
(P = 0.04) and 61% lower than those in CA3 PCs (P < 0.0001,
Figure 1D).

In all tested principal cells the baclofen-induced IWC was fully
blocked by subsequent application of CGP (5 μM), confirming the
specificity of the baclofen-induced currents. Moreover, the mean
IWC during CGP steady state undershot baseline current levels
significantly in all cell types (P < 0.01 for all, Figure 1D). The
mean amplitude of the overshoot current was 7.5 ± 1.9 pA in CA1
PCs (n = 11), 20.5 ± 4.6 pA in CA3 PCs (n = 13), and 11.7 ± 3.2 pA
in DGCs (n = 9; Figures 1C,D). This observation suggests that a
small net GABABR tonic current, mediated by either Kir3 channels
or inhibition of calcium channels, was present in the slices prior to
baclofen application, contrary to previously published literature
(Otis and Mody, 1992).

GABAB receptor-mediated postsynaptic currents are predom-
inantly mediated by activation of Kir3 channels (Otis et al., 1993;
Sodickson and Bean, 1996; Lüscher et al., 1997; Booker et al.,
2013). We have shown previously, under identical experimental
conditions (Booker et al., 2013), that GABABR-mediated cur-
rents in CA1 PCs and interneurons have a reversal potential close
to –100 mV and display inward-rectification, as typical for Kir3
channels. To confirm that the same is true in other principal cells,
we tested the reversal potential (EGABAB) of GABABR-mediated
IPSPs from current-clamp recordings of DGCs. The observed
EGABAB for the GABABR-mediated IPSP was –89.5 ± 3.2 mV
(n = 3 cells), close to the predicated potassium EGABAB of –
101 mV (data not shown). Furthermore, currents observed in
response to voltage-ramps from –20 to –120 mV (1 s dura-
tion), ran before and after the application of baclofen, showed
a K+ ER of –98.3 ± 5.8 mV with a rectification index of 0.59
(n = 3 cells, data not shown), confirming that baclofen-mediated
currents were produced by inwardly rectifying K+-channels in
DGCs.

In summary, all hippocampal principal cells express GABABR-
mediated slow IPSCs, plausibly by activation of Kir3 channels,
albeit with cell-type specific differences in the magnitude of the
whole-cell conductance indicating potential differences in the
postsynaptic complement of the receptor and effector channels.

LAMINAR DISTRIBUTION OF FUNCTIONAL GABABR-MEDIATED
CURRENTS IN HIPPOCAMPAL PRINCIPAL CELLS
To assess the distribution GABABRs over the somatodendritic
axis of hippocampal principal cells, we employed photolysis of

Frontiers in Synaptic Neuroscience www.frontiersin.org March 2015 | Volume 7 | Article 6 | 5

http://www.frontiersin.org/Synaptic_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Synaptic_Neuroscience/archive


Degro et al. Somatodendritic GABAB distribution in the hippocampus

Table 1 | Amplitude and kinetic properties of GABABR mediated IPSCs.

Amplitude (pA) Onset latency (ms) Rise-time (ms) Decay time constant (ms)

CA1 PC (n = 5) 7.7 ± 1.2 51.0 ± 6.9 106.2 ± 13.2 188.6 ± 38.9

CA3 PC (n = 7) 12.4 ± 0.8 47.2 ± 2.6 114.0 ± 11.2 223.0 ± 49.5

DGC (n = 6) 8.1 ± 1.2 53.5 ± 7.3 86.8 ± 7.0 428.1 ± 89.6**

Kinetic responses of IPSCs produced in response to single extracellular stimulation to the distal dendrites. ** indicates difference from CA1 PCs (P < 0.05, Mann–
Whitney non-parametric test).

caged GABA (Rubi-GABA, 20 μM) to map the laminar acti-
vation of the receptor-channel complexes (Figure 2). We first
confirmed that uncaged Rubi-GABA mediated IPSCs (uIPSC)
produced in the presence of NMDA and AMPA and GABAA

receptors blockers were mediated by GABABRs. To achieve
this, we induced photolysis of Rubi-GABA in the entire visual
field over the apical dendrites, which produced large ampli-
tude slow uIPSCs in CA1 and CA3 PCs, as well as DGCs
(52.6 ± 11.1, 71.7 ± 9.1, 29.1 ± 5.0 pA, respectively; data
not shown). While these amplitudes were smaller than those
during pharmacological activation, the differences in their mag-
nitudes from the different cell types corresponded well to those
for the baclofen induced currents (P = 0.005, one-way ANOVA).
Furthermore, the decay-time constants of the full-field uIPSCs
were similar to those elicited by a single extracellular stimu-
lus (P > 0.05 all, Mann–Whitney test). Finally, in three CA1
PCs bath application of CGP reduced the uIPSC amplitude by
97% (data not shown), confirming that pharmacologically iso-
lated slow uIPSCs were produced by the activation of postsynaptic
GABABRs.

Spatially restricted uncaging of GABA was achieved by apply-
ing flashes of light (200 ms duration) to narrow strips (60 μm)
in the different hippocampal layers perpendicular to the soma-
todendritic axis. In CA1 PCs (n = 11 cells) laminar activation of
GABABR produced uIPSCs with the largest amplitude in str. radia-
tum (19.2 ± 5.0 pA), followed by str. oriens with 14.4 ± 4.9 pA.
uIPSCs elicited in the str. L-M and the perisomatic domain in
the str. pyramidale had comparable amplitudes (9.3 ± 1.6 vs.
8.9 ± 2.7 pA). The observed differences between the layers were
statistically significant (P = 0.0001, one-way ANOVA with Bonfer-
onni multiple comparisons, Figure 2A). To confirm that laminar
GABABR-mediated responses were not due to extensive diffusion
from the uncaging site, we photoreleased GABA in L6 of the cortex
directly below the recorded CA1 PCs, which did not produce any
discernible uIPSC (1.4 ± 0.2 pA, P < 0.05 compared to all other
lamina).

As with CA1, uIPSCs in CA3 PCs (n = 13 cells) were large in
str. radiatum and L-M but in these cells had similar mean ampli-
tudes of 15.0 ± 3.4 and 16.4 ± 3.2 pA, respectively (P < 0.05
all, Figure 2B). uIPSCs in str. oriens, lucidum and pyramidale,
were small with comparable amplitudes: 7.3 ± 1.2, 8.7 ± 1.8, and
7.2 ± 1.2 pA respectively (P > 0.05 all, Figure 2B, left); substan-
tially lower than in str. radiatum and L-M (P = 0.0003, one-way
ANOVA with Bonferroni multiple comparisons).

In contrast to PCs, lamina specific slow uIPSCs in DGCs
(n = 13 cells) showed relatively constant amplitudes along the

somatodendritic axis over different subregions of the ML (inner:
10.3 ± 2.0 pA, middle: 12.0 ± 2.2 pA and outer: 12.9 ± 3.0 pA;
P > 0.05, Figure 2C), but had markedly lower mean amplitude of
4.6 ± 0.8 pA in the cell body layer (P = 0.0003, one-way ANOVA
with Bonferroni multiple comparisons, Figure 2C).

In summary, GABABR-mediated currents were observed in
all somatodendritic domains of hippocampal principal cells but
substantial differences were present in the laminar distribution
of functional GABABR-mediated currents, with high currents
measured from the apical dendrites.

LAMINAR DISTRIBUTION OF GABABR-MEDIATED CURRENT AND
CONDUCTANCE DENSITIES IN HIPPOCAMPAL PRINCIPAL CELLS
The Rubi-GABA uncaging-induced currents measured from the
various layers showed large variability, which was at least partially
due to differences in (1) the length and surface area of dendrites
exposed to the light flash and (2) voltage-clamp errors and loss of
currents at dendritic membranes. In order to estimate these fac-
tors, we have created 3-D reconstructions of a subset of neurons
(five CA1 and five CA3 PCs, and four DGCs, Table 2), quanti-
fied dendritic length and surface area, then performed single cell
simulations.

We first normalized the somatically measured current to the
membrane surface area falling into the 60 μm-wide horizontal
illumination windows. This normalization indicated that the cur-
rent density for CA1 PCs was lowest in the perisomatic domain
(0.91 ± 0.27 fA/μm2). The current density for the dendrites was
moderately higher in the str. oriens (2.22 ± 1.15 fA/μm2) and
str. radiatum (1.97 ± 0.94 fA/μm2), and it was the highest in the
str. L-M (3.97 ± 0.80 fA/μm2), albeit with considerable cell-to-cell
variability for all dendritic layers. In area CA3, the current densities
showed a similar distribution with the highest values found at the
apical dendrites in the str. L-M (10.3 ± 2.90 fA/μm2). In compari-
son to CA1 PCs, the normalized current values were approximately
2.5-times higher with the exception of the str. oriens which had
the lowest value of all CA3 layers (1.15 ± 0.19 fA/μm2). In DG,
the normalized currents were comparably low for the perisomatic
domain as well as the proximal and medial dendrites in the inner
and the middle ML (2.32–3.05 fA/μm2), but increased markedly
for the distal dendrites in the outer ML (7.92 ± 4.71 fA/μm2).

In order to estimate the local GABABR-mediated conduc-
tance densities in the different somatodendritic compartments,
we next ran single-cell simulations using the reconstructed prin-
cipal cell models assuming passive membrane properties (Table 2
and Figure 3). As expected, the conductance density for the
perisomatic domain of CA1 showed the lowest mean value
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FIGURE 2 | Laminar distribution of GABABR-mediated currents in

hippocampal principal cells. (A, left) Reconstruction of a CA1 PC. Soma
and dendrites are shown in black and the axon in red. Inset, Voltage
responses to a family of hyper- to depolarizing current pulses (–250 to
+500 pA, 50 pA steps). A train of APs was elicited at the largest step.
(A, middle) Representative pharmacologically isolated GABABR-mediated
uIPSCs in the different layers (L-M: str. L-M ; Rad: str. radiatum; Pyr: str.
pyramidale; Ori: str. oriens). Baseline is indicated by a gray dashed line,
(A, right) Summary bar chart illustrates the mean uIPSC amplitudes for
each layer (n = 11). (B, left) Reconstruction of a CA3 PC with the same

layout as in (A) with the inset. (B, middle) GABABR-mediated uIPSCs from
a CA3 PC for the various layers (Luc: str. lucidum). (B, right) Summary bar
chart of the mean uIPSC amplitudes for CA3 PCs (n = 12). (C, left) A
reconstructed DGC, with intrinsic physiological response as inset. (C,
middle) Representative GABABR uIPSCs recorded from a DGC evoked in
the different layers (GCL; iML, inner ML; mML, medial ML; oML, outer
ML). (C, right) Summary bar chart of the mean uIPSC amplitudes for DGCs
(n = 12). Bars for the mean values are overlain by data from individual
experiments (color coded circles and lines). Statistics shown: ns =
P > 0.05, ***P < 0.001; one-way ANOVA.

(GMem = 3.7 ± 1.0 μS/cm2, Figures 3A,B) and the low-
est cell-to-cell variability. It was very close to the estimated
value (Gest = 3.0 ± 0.8 μS/cm2) obtained from the normalized
current density and the driving force, confirming that there was
very little loss when measuring the induced GABABR-mediated
slow currents in this compartment. For the dendrites in the
str. oriens conductance densities (GMem = 9.5 ± 4.9 μS/cm2,

Figure 3B) were higher both in absolute value and in comparison
to the estimated density from the current densities. Neverthe-
less, the ratio of simulated and estimated conductance densities
(GMem/Gest = 78.3%) indicated only a moderate attenuation along
the basal dendrites. By contrast, in str. radiatum and str. L-M, the
majority of the dendritic segments were dominated by small cal-
iber oblique and tuft branches, the density values were markedly
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Table 2 | Morphological and passive electrical properties of hippocampal principal cells used in the simulations.

Area Cell code Dendritic length

(μm)

Dendritic surface

(μm2)

Soma surface

(μm2)

Input resistance

(M�)

Membrane resistivity

(�cm2)

CA1 20130613_02 10038 84706 1087 71.4 47200

20130613_03 6539 44687 1246 78.1 22500

20130617_02 9035 53584 1084 90.0 39050

20130701_02 10763 67055 593 52.3 24000

20131126_01 7675 66535 462 101.9 60700

CA3 20131106_02 8650 49925 1046 142.3 70900

20131107_01 9191 36962 876 82.3 24600

20131122_01 7679 41264 621 101.1 31300

20131217_01 4677 27897 624 150.3 42550

20131217_03 8454 46590 1304 134.9 59700

DG 20130613_01 2503 14514 318 66.0 6660

20131112_01 3465 16520 238 95.1 9700

20131117_02 3901 19827 403 130.8 17570

20131121_03 2738 12861 402 106.1 8250

Basic morphological and membrane properties of hippocampal principal cells as derived for single-cell simulations. The specific membrane capacitance (Cm) was
1 μF/cm2, and the axial resistivity (Ri) 140 Ohm/cm for all cells, Membrane resistivity (Rm) was assumed to be uniform for DGCs and non-uniform for PCs, with 50%
lower values at the distal dendrites. The table refers to the proximal Rm value for the non-uniform models. For further detail see Methods.

higher (20.3 ± 15.0 and 64.7 ± 33.8 μS/cm2, respectively) and
the attenuation stronger (GMem/Gest = 48.6 and 31.7%, respec-
tively), which was highly significantly different, as shown by a
Friedman test (P = 0.006), and also confirmed that str. L-M had a
higher conductance density than basal dendrites in the str. oriens
(P < 0.05).

In the CA3 region the conductance density was lowest in the
str. oriens (5.2 ± 0.7 μS/cm2, Figure 3C), comparable to that of
CA1 in terms of both its amplitude and the degree of attenuation.
Interestingly, the densities for the perisomatic domain and proxi-
mal and middistal dendrites in the str. lucidum and radiatum had
similar conductance densities of between 14.5 and 21.8 μS/cm2

(P > 0.05 all, Friedman’s test). The conductance density in CA3
PCs was highest in str. L-M, with a value (78.9 ± 40.3 μS/cm2,
P < 0.05) which was slightly larger, but not significantly so to
that for CA1 PCs (P = 0.67, Mann–Whitney test). However, the
attenuation was less pronounced (GMem/Gest = 54.8%) from the
distal apical dendrites of CA3 PCs, explaining the larger observed
somatic currents.

Finally, in DGCs the conductance density increased incre-
mentally from the GCL toward the middle ML from 12.1 to
18.6 μS/cm2, whereas it was markedly higher for the distal api-
cal dendrites in the outer ML (77.3 ± 47.0 μS/cm2; P < 0.05
inner vs. outer ML, Figure 3D). Attenuation in the dendrites of
GCs was less pronounced than in apical dendrites of CA1 PCs:
the GMem/Gest was 82.0% at the perisomatic domain, reflecting
minimal attenuation, decreasing consistently toward the distal
dendrites of the outer ML (34.9%).

In summary, the morphometric analysis and the single-cell sim-
ulations further confirmed that GABABR-mediated currents were
observed in all somatodendritic compartments of hippocampal

principal cells and revealed that while on the perisomatic domain
and the basal dendrites of PCs conductance densities are low,
they are high on the distal apical dendrites in the str L-M and
in the oML.

DISTRIBUTION OF GABAB1 AND Kir3.2 SUBUNITS IS DIFFERENT
BETWEEN HIPPOCAMPAL SUBFIELDS AND LAMINA AS SHOWN BY
SDS-FRL
As previous work (Kulik et al., 2003, 2006) has shown light micro-
scopic differences in laminar expression of GABAB and Kir3
subunits, we asked whether the distribution of GABABR-mediated
currents is concordant with GABABR and Kir3 channel expres-
sion at the plasma membrane along the somatodendritic axis of
hippocampal principal cells. We therefore performed highly sen-
sitive SDS-FRL labeling for these signaling molecules (Hagiwara
et al., 2005; Kulik et al., 2006) to allow us to accurately calculate
the membrane surface densities of these proteins. Immunogold
labeling for GABAB1 and Kir3.2 subunits was achieved from
replicas containing all dendritic and somatic layers for each
region, so that the laminar distribution could be compared under
identical conditions for each hippocampal region. Consistent
with previous reports from pre-embedding immunogold label-
ing (Kulik et al., 2003, 2006; Booker et al., 2013) GABAB1 and
Kir3.2 subunits were found at high densities on the postsynap-
tic membrane of the entire somatodendritic axis of principal
cells.

In CA1, spiny dendritic and somatic profiles were collected
from all dendritic layers and the str. pyramidale, respectively
(Figure 4A). Quantification of immunogold particles for GABAB1

subunit revealed that the labeling intensity varied substantially
between the different layers (P = 0.0053, one-way ANOVA,
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FIGURE 3 | Single-cell simulation of GABABR mediated currents and

conductance densities in 3-D reconstructed hippocampal neurons.(A,
left) 3-D reconstruction of a CA1 PC shown in conjunction with the laminar
stripes in which Rubi-GABA was released (gray boxes overlain). (A, right)
Simulated GABABR-mediated ISPC pairs at the somatic recording site (black
traces) and the illuminated perisomatic or dendritic membranes (gray traces)
corresponding to the layer specific photostimulation windows (indicated by
the arrows). The dendritic conductances were set so that the somatic IPSC
amplitudes match the experimentally observed light induced current
amplitudes. Note the difference in the amplitudes of the dendritic and

somatic currents. (B) Summary bar chart showing the GABABR-mediated
conductance densities for the illumination windows in the different layers of
the CA1 area derived in the simulations. Average data is overlain by data from
individual experiments (colored circles and lines). Note that the conductance
densities were consistently largest in str. L - M. (C,D) Summary bar charts
showing the conductance densities for membrane surfaces in the illumination
windows in the different layers for CA3 PCs and DGCs, respectively; same
format as in (B). Representative cell reconstructions with the illumination
windows superimposed are shown as insets. Scale bars: 100 μm. Statistics
shown: **P < 0.01, from Friedman’s tests.

Figure 4B, left). Immunogold particle density was highest in str.
L-M and oriens which had a similar density of labeling (36.8 ± 4.9
and 32.1 ± 3.6 particles/μm2, respectively; P > 0.05 one-way
ANOVA with Bonferroni multiple comparisons). Dendrites in str.
radiatum and somatic membranes of CA1 PCs showed lower label-
ing with similar levels (19.0 ± 2.3 and 19.6 ± 3.7 particles/μm2,
respectively; P = 0.9, one-way ANOVA with Bonferroni multiple
comparisons) which was approximately 50% of those found on
the basal and distal apical dendrites (Figure 4B, left).

In CA3 PCs, immunogold particle density for the
GABAB1 subunits was highest on dendrites in the str. L-M
(27.9 ± 2.3 particles/μm2, Figure 4B, middle), similar to the
CA1. In the other CA3 layers, however, putative PC spiny den-
drites as well as somata showed a 30–40% lower, but broadly
similar labeling intensities (str. oriens: 19.0 ± 1.6 particles/μm2,
CA3 PC somata: 15.9 ± 2.6 particles/μm2, str. lucidum:
17.4 ± 2.4 particles/μm2, str. radiatum: 18.7 ± 1.5 particles/μm2,

Figure 4B, middle, P = 0.0019, one-way ANOVA comparison of all
layers), Finally, in the DG the membrane surface densities for the
GABAB1 subunits were largely constant across the layers (P = 0.59,
one-way ANOVA with multiple comparisons, Figure 4B, right),
with surface densities of 22.1 ± 5.1 particles/μm2 on somata
in the GCL, 26.6 ± 3.1 particles/μm2 on dendrites in the inner
ML, 21.9 ± 2.5 particles/μm2 in the middle ML, and finally
26.6 ± 2.8 particles/μm2 in the outer ML.

Localization of the constitutive Kir3 effector channel sub-
unit, Kir3.2, in spiny dendrites and somata of CA1 showed
a generally lower, but largely overlapping pattern of label-
ing, with some notable differences when compared to that
of GABAB1. Dendrites in the CA1, str. radiatum and L-M
showed a high and relatively constant membrane surface labeling
(12.1 ± 1.5 and 12.8 ± 3.2 particles/μm2, respectively, P > 0.05;
Figures 5A,B, left). Immunogold particle density was ∼50%
lower on dendrites in str. oriens (5.9 ± 1.1 particles/μm2) and
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FIGURE 4 | GABAB1 receptor subunits are differentially expressed along

the somatodendritic axis of hippocampal principal cells. (A) Represen-
tative SDS-FRL electron micrographs of spiny dendrites from str. oriens (Ori),
str. radiatum (Rad), and stratum L - M (L - M) of the CA1. The putative CA1 PC
dendrites show immunogold labeling for GABAB1 receptor subunits (10 nm
gold particles). Spines and fractured spine necks are indicated with asterisks

(∗). Scale bar: 200 nm (top row), 100 nm (bottom row). (B) Summary bar
charts of the GABAB1 subunit surface density from somatodendritic
compartments in different layers of CA1 (left), CA3 (middle), and DG (right)
are shown alongside representative images of principal cells. Mean surface
densities are overlain by density measurements of individual P-face
structures. Statistics shown: ns = P > 0.05, *P < 0.05, one-way ANOVA.

∼80% lower on the somatic membrane in the str. pyramidale
(2.6 ± 0.8 particles/μm2), which were significantly different from
str. radiatum and L-M, (P = 0.0013, one-way ANOVA with Bonfer-
onni multiple comparisons; Figures 5A,B, left). A similar pattern
was observed in CA3 (P < 0.0001, one-way ANOVA, Figure 5B,
middle), where Kir3.2 labeling was high in the str. radiatum and
L-M (13.4 ± 1.8 and 14.7 ± 1.9 particles/μm2, respectively), 50%
lower in the str. oriens (6.8 ± 0.6 particles/μm2) and even lower
in dendrites in str. lucidum and on somata in the str. pyramidale
(3.0 ± 0.5 and 2.8 ± 0.5 particles/μm2, respectively). Finally, in
the DG, the labeling for Kir3.2 in the somatodendritic domain
of DGCs showed a gradual increase from the soma to the distal
dendrites (P = 0.006, one-way ANOVA, Figure 5B, right), with
mean Kir3.2 densities of 7.7 ± 2.3, 14.8 ± 1.9, 19.2 ± 2.2, and
23.8 ± 3.0 particles/μm2 on somata in the GCL, and dendrites in
the inner, middle and outer ML, respectively.

In summary, SDS-FRL labeling for GABAB1 and Kir3.2
subunits showed clear lamina- and region-specific differences.
GABAB1 displayed higher expression with moderate differences
along the somatodendritic axis of principal cells. In contrast,
labeling for Kir3.2 had a lower overall level, but the labeling density
was consistently higher on distal apical dendrites than on basal,
proximal apical dendrites or somata.

DISCUSSION
Our study confirms that the GABABR-Kir3 channel signaling
cascade is present along the entire somatodendritic axis of hip-
pocampal principal cells. However, the receptor and effector
channel, as well as the resulting conductances are not uni-
formly distributed, but show region- and layer-specific differences
(Figure 6). Receptor and channel distributions are overlapping,
but show divergence, whereby the conductance densities and
somatic current amplitudes correlate better with Kir3 densi-
ties, suggesting that GABABR-mediated currents are primarily
determined by an effector-bottlenecking effect.

REGIONAL DIFFERENCES IN GABABR EXPRESSION AND CURRENTS
The observed GABABR-mediated currents varied between hip-
pocampal regions with the highest currents in CA3 PCs. This
difference is consistent with previous light microscopic stud-
ies, which showed higher intensity GABABR labeling in the
CA3 neuropil (Fritschy et al., 1999; Sloviter et al., 1999; Kulik
et al., 2003). However, high-resolution analysis of GABAB1 sub-
units on dendritic membranes revealed a different relationship
whereby CA1 > CA3 > DG. This discrepancy between the whole-
cell currents and the immunogold densities in SDS-FRL might
be explained by a larger somatodendritic surface of CA3 PCs
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FIGURE 5 |The Kir3.2 channel subunit is differentially expressed

along the somatodendritic axis of hippocampal principal cells.

(A) Representative electron micrographs of spiny dendrites from str.
oriens (Ori), radiatum (Rad) and L - M (L - M) of the CA1. Immunogold
labeling for the Kir3.2 channel subunit seen as 10 nm gold particles.
Spines and fractured spine necks are indicated with asterisks (∗). Scale

bar: 200 nm (top row), 100 nm (bottom row). (B) Summary bar charts
of the surface density for the Kir3.2 subunit from the different layers of
the CA1 (left), CA3 (middle), and DG (right) are shown alongside repre-
sentative images of principal cells. Mean surface densities are overlain
by measurements of individual density values for examined structures.
Statistics shown: ns = P > 0.05, *P < 0.05, one-way ANOVA.

(Cannon et al., 1999; note however, that in our sample such a trend
wasn’t present), divergent GABAB1 splice-variant localization, or
variation in immunogold labeling between replicas. Furthermore,
amplitudes of GABABR-mediated currents are likely to be limited
by Kir3 channel densities, which were comparably low in the two
cell types. In good agreement, the low IWC measured in DGCs
was consistent with the smaller dendritic arbor and low receptor
and channel expression. However, this result is in conflict with
the proposition that DGCs receive stronger inhibitory input (Got-
tlieb and Cowan, 1972; Bekenstein and Lothman, 1991) although
GABAA- vs. GABAB-mediated mechanisms may show divergence.

LAMINA SPECIFIC DIFFERENCES IN GABABR AND Kir3 CHANNEL
DENSITY
Our data further show that GABABRs, as well as effector Kir3 chan-
nels are differentially localized to somatodendritic compartments
of hippocampal principal cells (See Figure 6). This is in line with
results of previous light microscopic investigations (Fritschy et al.,
1999; Sloviter et al., 1999; Kulik et al., 2003). SDS-FRL method
enables high-resolution subcellular localization and label a high
proportion (>70%) of surface-localized proteins (Tanaka et al.,
2005). Therefore, the membrane densities of both GABAB1 and
Kir3.2 subunits detected in the electron microscope are a better

reflection of their subcellular distributions than light microscopic
data. In fact the currents measured for the various layers correlated
well with the densities of Kir3.2 in the electron microscope. This
result further suggests that coupling efficiency between the recep-
tor and the channel might be spatially uniform but the currents are
largely defined by the availability of Kir3.2-containing channels.

Previous work has indicated that GABABR-mediated IPSPs in
CA1 are uniform across dendritic layers in terms of amplitudes
and kinetics (Pham et al., 1998). Our physiological examination of
GABABR-mediated currents evoked by lamina-specific photolysis
of caged-GABA now reveals differential expression of the currents
in all regions of the rat hippocampus with highest magnitudes
on the distal apical dendrites. However, the somatically recorded
responses do not account for the electrotonic properties of the
neurons (Spruston et al., 1993; Szilágyi and De Schutter, 2004).
Indeed, simulations using morphologically detailed single-cell
models demonstrate that the somatic voltage-clamp record-
ings substantially underestimate conductances in distal dendritic
compartments.

As our single cell model included several assumptions, we
need to exert caution with the interpretation of the quantitative
results (Szilágyi and De Schutter, 2004). Nevertheless, the high-
est conductance densities obtained for the distal apical dendrites
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FIGURE 6 | Summary of GABAB receptor and Kir3 effector channel and

conductance density distributions in the hippocampus. Schematic
overviews of the hippocampus show the density of immunogold labeling
for GABAB receptor (top) and Kir3 channels (middle) as well as for
conductance densities derived in the simulations (bottom). Boundaries of
the hippocampal areas CA1, CA3, and DG as well as their layers are
delineated in black; dark to light tones correspond to high to low densities
(see scale bars to the right).

(65–80 μS cm−2) suggest that during flash-induced activation
0.02–0.1 channels are open on a 1-μm2 membrane patch (assum-
ing a single-channel conductance between 5 and 31 pS, Takigawa
and Alzheimer, 1999; Chen and Johnston, 2005). This number is
markedly lower than the density of immunogold particles for both
the receptor and effector channel in the same compartments (10–
40/μm2) suggesting that less than 1% of the channels are open
upon receptor activation. Even if we consider the low open proba-
bility of the activated channels (0.119, Chen and Johnston, 2005),
the coupling of receptor and channel appears to be inefficient in
both interneurons (Booker et al., 2013) and principal cells.

A finding of major interest is the high GABABR/Kir3 con-
ductance density on the distal apical dendrites of hippocampal

principal cells. This is at odds with results from layer 5 of
the somatosensory cortex (Breton and Stuart, 2012), which
suggested that GABABR effects are mediated by inhibition of
voltage-sensitive calcium channels, but not Kir3 channels in distal
dendrites. Our data show that this hypothesis cannot be extended
to the hippocampus, as the highest expression of Kir3 channels,
and the largest conductances were detected in the distal apical
dendrites. In fact, this canonical postsynaptic signaling cascade
was present along the entire somatodendritic axis of hippocampal
PCs. However, this finding does not preclude that receptors inter-
act with other effectors. On the contrary, the apparently inefficient
coupling of receptor and Kir3 channels could be explained by
divergent signaling cascades. Furthermore, it is plausible that acti-
vation of Kir3 channels and inhibition of L-type calcium channels
act synergistically to control dendritic electrogenesis and plastic-
ity in distal apical dendrites (Palmer et al., 2012; Larkum, 2013;
Pérez-Garci et al., 2013).

The current results raise questions about the high membrane
expression of GABAB1 in the absence of high Kir3 channel expres-
sion, as seen on basal dendrites in str. oriens or the perisomatic
domain of CA1 PCs. What the function of this enrichment in
GABABR compared to the effector is, remains unclear. The sim-
plest explanation could be that a larger number of GABABRs are
needed to ensure high fidelity inhibition. Indeed, on PC dendrites
in str. oriens only ∼3% of synaptic contacts are inhibitory (Megías
et al., 2001), suggesting a low availability of GABA in the extrasy-
naptic space. Alternatively, GABABRs may couple to other effector
systems, such as calcium channels (Carter and Mynlieff, 2004;
Chalifoux and Carter, 2011; Breton and Stuart, 2012). Further-
more, GABABRs have been shown to inhibit NMDA receptor
mediated calcium influx (Chalifoux and Carter, 2010) and to
enhance activity of group 1 mGluRs (Hirono et al., 2001) and
GABAAR (Connelly et al., 2013; Tao et al., 2013); all perhaps
explaining the excess of GABABRs in str. oriens. Furthermore,
GABABRs have been shown to stimulate the transcription factors
CREB2 and ATFx (Nehring et al., 2000; White et al., 2000); this
could explain the presence of surface localized somatic GABAB1,
but not Kir3.2 in all hippocampal principal cells.

FUNCTIONAL IMPLICATIONS FOR LAMINAR SPECIFIC DIFFERENCES IN
FUNCTIONAL GABABR-MEDIATED CURRENTS
We have observed GABABR, Kir3 channels and their functional
currents in all somatodendritic regions of hippocampal princi-
pal cells. This will have substantial repercussions for the activity
of the hippocampal microcircuit, by providing slow inhibition
which shapes the excitability of dendrites and modulates synaptic
plasticity (Kohl and Paulsen, 2010). The presence of large func-
tional currents on distal apical dendrites, which receive input
from the perforant path, is particularly pertinent, as this pathway
lacks strong presynaptic GABABR-mediated inhibition (Lanthorn
and Cotman, 1981). Thus, at distal dendritic locations, GABABR-
mediated inhibition mostly arises from postsynaptic receptors. By
comparison, the Schaffer collateral pathways are strongly inhib-
ited by GABABR activation (Lanthorn and Cotman, 1981; Ault
and Nadler, 1982). Therefore, excitatory transmission in these
pathways is subjected to strong pre- and postsynaptic GABABR-
mediated inhibition in str. radiatum, whereas in str. oriens
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presynaptic effects will dominate. In view of the differential affin-
ity of pre- and postsynaptic GABABRs to GABA (Dugladze et al.,
2013), differences along the somatodendritic axis have profound
effects on synaptic integration and activation of principal cells
as a function of GABA levels. Furthermore, synaptic plasticity is
likely to be modulated differentially at these inputs by GABABRs,
as presynaptic inhibition, postsynaptic membrane hyperpolariza-
tion and inhibition of NMDA receptors have negative impact on
Hebbian plasticity (Magee and Johnston, 1997). This issue, how-
ever, is confounded by disinhibitory effects, produced via GABABR
activation in inhibitory interneurons (Buhl et al., 1996; Mott et al.,
1999; Booker et al., 2013), which enhances LTP (Mott et al., 1989,
1990; Davies et al., 1991). In good agreement with this proposi-
tion, LTP is larger in CA1 str. oriens than in str. radiatum (Haley
et al., 1996; Bradshaw et al., 2003).

Finally, the presence of GABABR-mediated currents over the
entire somatodendritic axis of hippocampal principal cells sug-
gests that inhibitory interneurons, with axon projecting to any
lamina, can contribute to GABABR IPSCs through volume trans-
mission (Isaacson and Nicoll, 1993; Scanziani, 2000; Booker et al.,
2013). This conclusion is in conflict with the hypothesis that cer-
tain types of interneuron, neurogliaform and ivy cells, are the
source of GABABR-mediated inhibition (Williams and Lacaille,
1992; Price et al., 2005, 2008; Olah et al., 2009). Therefore it seems
likely, that although interneurons with dense, focal axon among
dendrites are capable of producing large GABABR currents, all
interneurons could contribute to these responses.

In conclusion, we have shown that the GABABR-Kir3 signaling
cascade is present along the entire somatodendritic axis of hip-
pocampal principal cells, but show region- and lamina-specific
distributions. These differences will impact dendritic integra-
tion, synaptic plasticity and the emerging principal cell activity
for inputs from the various afferent pathways during heightened
GABAergic activity.
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