
micromachines

Article

Modeling of Microdevices for SAW-Based
Acoustophoresis—A Study of Boundary Conditions

Nils Refstrup Skov and Henrik Bruus *

Department of Physics, Technical University of Denmark, DTU Physics Building 309,
DK-2800 Kongens Lyngby, Denmark; nilsre@fysik.dtu.dk
* Correspondence: bruus@fysik.dtu.dk; Tel.: +45-4525-3307

Academic Editors: Marc Desmulliez, Anne Bernassau and Baixin Chen
Received: 2 August 2016; Accepted: 23 September 2016; Published: 5 October 2016

Abstract: We present a finite-element method modeling of acoustophoretic devices consisting
of a single, long, straight, water-filled microchannel surrounded by an elastic wall of either
borosilicate glass (pyrex) or the elastomer polydimethylsiloxane (PDMS) and placed on top of
a piezoelectric transducer that actuates the device by surface acoustic waves (SAW). We compare the
resulting acoustic fields in these full solid-fluid models with those obtained in reduced fluid models
comprising of only a water domain with simplified, approximate boundary conditions representing
the surrounding solids. The reduced models are found to only approximate the acoustically hard
pyrex systems to a limited degree for large wall thicknesses and but not very well for acoustically
soft PDMS systems shorter than the PDMS damping length of 3 mm.

Keywords: microdevices; acoustofluidics; surface acoustic waves; numeric modeling; hard wall;
lossy wall; polydimethylsiloxane (PDMS); borosilicate glass (pyrex)

1. Introduction

Separation of particles and cells is important in a wide array of biotechnological applications [1–7].
This has traditionally been carried out by bulk processes including centrifugation, chromatography,
and filtration. However, during the last three decades, microfluidic devices have proven to be
a valuable alternative [1,7,8], as they allow for lower sample sizes and decentralized preparations
of biological samples, increasing the potential for point-of-care testing. Microfluidic methods for
separating particles suspended in a medium include passive methods where particle separation is solely
determined by the flow and the size or density of particles [2,9–12], and active methods where particles
migrate due to the application of various external fields each targeting specific properties for particle
sorting [1,3,4,6,13–16]. Acoustophoresis is an active method, where emphasis is on gentle, label-free,
precise handling of cells based on their density and compressibility relative to the suspension medium
as well as their size [17]. Within biotechnology, acoustophoresis has been used to confine, separate, sort
or probe particles such as microvesicles [6,18], cells [1,16,19–22], bacteria [23,24], and biomolecules [25].
Biomedical applications include early detection of circulating tumor cells in blood [26,27] and diagnosis
of bloodstream infections [28].

The acoustic fields used in acoustophoresis are mainly one of the following two kinds: (1) bulk
acoustic waves (BAW), which are set up in the entire device and used in systems with acoustically
hard walls. BAW depend critically on the high acoustic impedance ratio between the walls and the
water. In addition, (2) surface acoustic waves (SAW), which are defined by interdigital electrodes on
the piezoelectric transducer and propagate along the transducer surface. SAW are nearly independent
of the acoustical impedance ratio of the device walls and the microchannel, and this feature makes the
SAW technique versatile. SAW can be used both with hard- and soft-walled acoustophoretic devices,
often in the generic setup sketched in Figure 1, where the fluid-filled microchannel is encased by a solid
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material and is placed directly on top of the piezoelectric substrate to ensure optimal coupling to the
SAW induced in the substrate.

Fluid

Figure 1. (a) Sketch of the generic acoustophoretic device under study. A fluid flows through a long
straight microchannel defined by a surrounding solid wall (pyrex or polydimethylsiloxane (PDMS),
light brown) and placed on top of a piezoelectric substrate (light blue). By actuating the interdigital
transducers (IDTs, dark brown) placed on either side of the device, surface acoustic waves (SAW)
propagate along the surface of the substrate, and when timed properly they form a standing wave;
(b) Sketch in the transverse yz cross-section of the full 2D model consisting of a solid domain with wall
thickness H and a fluid domain of width w and height h; (c) Similar sketch of the reduced 2D model,
which consists solely of the fluid domain in (b), but with boundary conditions (hard wall or lossy wall)
representing in an approximate manner the surrounding solid.

Because SAW-based acoustophoretic microdevices are very promising as powerful and versatile
tools for manipulation of microparticles and cells, numerical modeling of them is important, both for
improved understanding of the acoustofluidic conditions within the devices and to guide proper
device design. In the literature, such modeling has been performed in numerous ways. For many
common elastic materials, the dynamics of the walls are straightforward to compute fully through
the usual Cauchy model of their displacement fields u and stress tensors σ. The coupling to the
acoustic pressure p and velocity v in the microchannel, described by the Navier–Stokes equation,
is handled by the continuity conditions n · σs = n · σf and ∂tu = v of the stress and velocity fields.
This full model is discussed in detail in Section 4. For acoustically hard walls, such as borosilicate
glass (pyrex) with a high impedance ratio (Z̃ = 8.4) relative to water, the full model is often replaced
by a reduced model (exact for Z̃ = ∞) with less demanding numerics, where only the fluid domain
in the microchannel is treated, and where the elastic walls are replaced by the so-called hard-wall
boundary condition demanding zero acoustic velocity at the boundary of the fluid domain [29–31].
For rubber-like polymers such as the often used PDMS, the full device modeling is more challenging.
For large strains (above 40 %), a representation of the underlying macromolecular network of polymer
chains is necessary [32], while for the moderate strains appearing in typical acoustophoretic devices,
standard linear elasticity suffices [33,34]. Some authors argue that the low ratio of the transverse
to longitudinal speed of sound justifies a fluid-like model of PDMS based on a scalar Helmholtz
equation [30,35]. Furthermore, since the acoustic impedance ratio Z̃ = 0.7 between PDMS and water
is nearly unity, the full model has in the literature been replaced by a reduced model, consisting of
only the fluid domain with the so-called lossy-wall boundary condition condition representing in
an approximate manner the acoustically soft PDMS walls [16,36,37].

The main aim of this paper is to investigate to which extent the numerically less demanding
hard- and lossy-wall reduced models compare with the full models for SAW-based acoustofluidic
devices. In the full models, we study the two generic cases of acoustically hard pyrex walls and
acoustically soft PDMS walls, both treated as linear elastic materials. In the reduced models, the pyrex
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and PDMS walls are represented by hard-wall and lossy-wall boundary conditions, respectively. In all
the models, the fluid (water) is treated as a Newtonian fluid governed by the continuity equation and
the Navier–Stokes equation. Our main result is that, for pyrex walls, the reduced model approximates
the full model reasonably well for sufficiently thick walls, but fails for thin walls, while for PDMS
walls, the lossy-wall boundary condition fails regardless of the wall thickness.

2. Results: Comparing the Full and Reduced 2D Models

In the following, we present our results for the numerical simulations of the acoustic fields in the
reduced and full models with SAW actuation, and we compare the two cases. As the microchannels
are long and straight along the x-direction, we assume translational invariance along x and restrict the
calculational domain to the two-dimensional (2D) cross section in the yz plane. The full model consists
of coupled fluid and solid domains, whereas the reduced model consists of a single fluid domain with
boundary conditions that in an approximate manner represent the walls. The principle of our model
approach is illustrated in Figure 1, while the models are described in detail in Section 4.

2.1. Pyrex Devices: Full Model and Reduced Hard-Wall Model

We consider first the full model of a pyrex microdevice, in which a rectangular water-filled channel
of width w and height h is encased by a pyrex wall of height h + H and width w + H (see Figure 1b).
We simulate the case of actuating the system both at the horizontal standing half-wave resonance in
the water fres = c0/2w = 1.24 MHz often exploited in experiments, and at the off-resonance frequency
foff = 6.65 MHz chosen to facilitate comparisons with the literature [36]. An example of a full-model
result for the velocity field −iωu and relative volume change |∇·us| in the pyrex as well as vf and pf
in the water, is shown in Figure 2a,c.

Figure 2. Examples of full model results for h = 125 µm, w = 600 µm, and H = 60 µm (see Figure 1b).
(a) Color plot from 0 mm/s (black) to 2.0 mm/s (white) of the velocity field

∣∣− iωus
∣∣ in the pyrex and∣∣vf

∣∣ in the water obtained in a full-model simulation of a pyrex SAW device actuated at the on-resonance
frequency fres = 1.24 MHz; (b) The same as in (a) but for a full-model PDMS SAW device. The dashed
magenta line indicates the solid-fluid interface; (c) Color plot from 0 (dark blue) to 8× 10−7 (dark red)
of the amplitude of the the relative volume change |∇·us| in the Pyrex and the rescaled pressure∣∣pf
∣∣/( 1

5 Kpyrex
)

in the fluid, of the full model from (a), where Kpyrex is the bulk modulus of Pyrex;
(d) The same as (c) but for the full model from (b) and the rescaled pressure

∣∣pf
∣∣/KPDMS using the bulk

modulus KPDMS of PDMS.

We then investigate to which extent the full model can be approximated by the reduced hard-wall
model often used in the literature [29,38], where only the water domain is considered, while the
pyrex walls are represented by the hard-wall condition. In Figure 3, we show for both off-resonance
(left column) and on-resonance (right column) actuation, a qualitative comparison between the reduced
and the full model, with wall thickness H ranging from 60 to 1800 µm. Considering the resulting
amplitudes |pf| of first-order pressure field pf in the water domain, we note that, for off-resonance
actuation at the frequency foff, the full model with thick walls H = 1500 µm has some features in
common with the reduced model.
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Figure 3. Left column: color plots from 0 kPa (black) to 40 kPa (white) at the off-resonance frequency
foff = 6.65 MHz of the amplitude |pf| of the first-order pressure field pf in the fluid domain of the
reduced hard-wall model and the full pyrex model Figure 1a, but with H = 60, 600, and 1500 µm.
The surrounding pyrex is not shown. Right column: the same as to the left, but at the on-resonance
actuation frequency f = 1.24 MHz and with the color plots ranging from 0 kPa (black) to 80 kPa
(white). Bottom row: off- and on-resonance line plots of the amplitude |us,z(y, h)| of the vertical
displacement along the top fluid-solid interface at z = h normalized by the amplitude u0 of the SAW
actuation displacement for wall thickness H = 60, 600, and 1500 µm.

There are pressure anti-nodes in the corners and an almost horizontal pressure node close to the
horizontal centerline. For decreasing wall thickness H in the full model, the pressure field changes
qualitatively, as the pressure anti-nodes detach from the side walls and shift towards the center of
the fluid domain. When actuated on resonance at the frequency fres, for wall thicknesses as low as
H = 120 µm, the full-model pressure is nearly indistinguishable from that of the hard-wall reduced
model, namely a cosine function with vertical pressure anti-nodal lines along the side walls and
a vertical pressure nodal line in the center. For the smallest wall thickness H = 60 µm, the iso-bars
in the full model tilt relative to vertical. In summary, the correspondence between the full and the
reduced model is overall better for on-resonance actuation, but for a large wall thickness, the reduced
hard-wall model describes the full pyrex model reasonably well. Table 1 shows the values of the
thickness-to-wavelength ratios H/λ.

Finally, in the bottom row of Figure 3, we investigate for the full pyrex model model the
displacement at the upper boundary in units of the imposed displacement amplitude u0 at the
SAW-actuated lower boundary. If the hard-wall condition of the reduced model is good, this
displacement should be very small. However, from the figures it is clearly seen that for the thin
wall H = 60 µm, the upper-wall displacement is significant, with an amplitude of 4u0 at foff and 2u0 at
fres. As the wall thickness H increases, the upper-wall displacement amplitudes decreases towards
u0. Again, this reflects that the reduced hard-wall model is in fair agreement with the full model for
a large wall thickness H, and it is better on resonance, where the specific values at the boundaries are
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less important as the pressure field is dominated by the pressure eigenmode that does in fact fulfill the
hard-wall condition (see Section 3.2).

Table 1. The ratio H/λ for various values of the material thickness H and the different acoustic
wavelengths λ present in the system at the two frequencies fres and foff.

f res = 1.24 MHz f off = 6.65 MHz

λ (µm) H (µm) λ (µm) H (µm)

60 600 1500 60 600 1500

λSAW 600 0.100 1.000 2.500 λSAW 600 0.100 1.000 2.500

λwa 1200 0.050 0.500 1.250 λwa 225 0.267 2.667 6.667

λ
pyrex
T 2745 0.022 0.219 0.546 λ

pyrex
T 515 0.117 1.165 2.913

λ
pyrex
L 4483 0.013 0.134 0.335 λ

pyrex
L 841 0.071 0.713 1.784

λPDMS
T 80 0.750 7.500 18.750 λPDMS

T 15 4.000 40.000 100.000

λPDMS
L 826 0.073 0.726 1.816 λPDMS

L 155 0.387 3.871 9.677

Figure 4. Color plot from 0 kPa (black) to 30 kPa (white) at foff = 6.65 MHz of the amplitude |pf| of
the first-order pressure field pf in the fluid domain of (a) the reduced lossy-wall model and (b–d) the
full PDMS model with wall thickness H = 60, 180, and 1500 µm. The surrounding PDMS is not shown;
(e) line plots of the normalized amplitude |us,z(y, h)|/umax of the vertical displacement along the upper
fluid-solid interface at z = h in the full model (full colored lines) with H = 60, 600, and 1500 µm and
in the reduced lossy-wall model (dashed black line). The normalization unit umax is the maximum
amplitude found in the reduced lossy-wall model.

2.2. PDMS Devices: Full Model and Reduced Lossy-Wall Model

We then move on to show the same comparisons, but where the full model has PDMS walls,
and the reduced model has the lossy-wall boundary condition, which takes deformation in the
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normal direction of the wall into account. The reduced lossy-wall model for PDMS, actuated at the
off-resonance frequency foff = 6.65 MHz, is exactly the one used by Nama et al. [36]. Given the low
impedance ratio Z̃ = 0.7 between PDMS and water, there is no resonance. Results for the full PDMS
model are shown in Figure 2b,d at fres = 1.24 MHz, and results at foff = 6.65 MHz for the reduced
lossy-wall model, and the full PDMS model is shown in Figure 4 with plots similar to the ones in the
left column of Figure 3 for the reduced hard-wall model and the full pyrex model.

Initially, we compare in Figure 4a–d the amplitude |pf| of the first-order pressure field pf of the
reduced lossy-wall model with that of the full PDMS model for the wall thickness H varying from 60 to
1500 µm. Due to the lossy-wall boundary condition (Equation (14)), the ellipsoidal pressure anti-nodes
in Figure 4a traverse the fluid domain upwards during one oscillation cycle. This is in stark contrast to
the pressure structures of the full PDMS model in Figure 4b–d, which are stationary due to the free
stress condition (Equation (12)) imposed on the exterior of the PDMS. Moreover, the pressure structure
of the reduced lossy-wall model consists of only two pressure antinodes, which is much simpler than
the multi-node structure of the full PDMS model. In fact, the only common feature in the pressure
fields is the appearance of a well-defined pressure node along the vertical centerline.

The poor qualitative agreement between the pressure field in the reduced lossy-wall model
and in the full PDMS model is further supported in Figure 4e, where the upper-wall displacement
amplitudes of the models are shown. We introduce the unit umax as the maximum displacement
along the upper-wall in the reduced lossy-wall model, and note that the lossy-wall condition imposes
a broad single-node sinusoidal velocity amplitude of unity magnitude, while each of the four full
model cases (H = 60, 600, and 1500 µm) shows a rippled, multi-peaked displacement amplitude of
relative magnitudes ranging from 2 to 6. The ripples are caused by the small wavelength (15 µm) of
the transverse waves in PDMS at the given frequency (see Table 1).

3. Discussion

3.1. Physical Limitations of the Hard-Wall Condition

As illustrated in Figure 3, there are clear discrepancies between the fields obtained by the reduced
hard-wall model and those found using the full pyrex models. This can likely be attributed to
two factors in particular: the finite stiffness and density of pyrex, and the non-local SAW actuation
imposed along the bottom edge in the model.

The hard-wall condition is physically correct for an infinitely stiff and dense wall, which does
not undergo any deformation or motion regardless of the stress exerted by the fluid. A hard wall thus
reflects all acoustic energy incident on it back into the fluid. However, pyrex has a finite stiffness and
density, and it will thus deform and allow for a partial transmittance of acoustic energy from the fluid.
This aspect is part of the full pyrex model, but not of the reduced hard-wall model.

The specific SAW actuation is also different in the full and the reduced model. The microdevice
rests on top of the piezoelectric substrate, so in the full model, the standing SAW along the surface
of the piezoelectric substrate (typically lithium niobate) will transmit significant amounts of acoustic
energy directly into both the pyrex wall and the water, but only the latter is taken into account
in the reduced hard-wall model. The coupling between lithium niobate and pyrex is strong since
the direction-dependent elastic stiffness coefficients of lithium niobate lies in the range from 53 to
200 GPa [39] and the Young’s modulus of pyrex of 64 GPa lies in the same range [40]. Consequently,
the interface between the pyrex wall and the water will move under the combined action of the acoustic
fields loaded into the pyrex and the water, respectively.
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Table 2. List of parameters used for geometry, materials, and surface acoustic waves (SAW) in the
numerical model. The values for the damping paramters Γ are from Reference [41].

Quantity Symbol Unit Pyrex Polydimethylsiloxane (PDMS) Water SAW
[40] [42,43] [44] [36]

Width 1
2 H or w µm 30–900 30–750 600 -

Height H or h µm 60–1800 60–1500 125 -

Density ρf or ρs kg·m−3 2230 1070 997 -
Bulk modulus Kf or Ks GPa 38.46 1.12 2.23 -
Longitudinal sound speed cL or c0 m·s−1 5591 1030 1496 -
Transversal sound speed cT m·s−1 3424 100 - -
Damping coefficient Γf or Γs 1 0.001 0.001 0.002 0
Acoustic impedance ratio Z̃ = ρscL

ρfc0
1 8.4 0.7 1 -

SAW wavelength λSAW µm - - - 600
SAW displacement amplitude u0 nm - - - 0.1
SAW on-resonance frequency fres =

2w
c0

MHz - - - 1.24
SAW off-resonance frequency foff MHz - - - 6.65

3.2. Acoustic Eigenmodes

Due to the high impedance ratio Z̃ = 8.4 for pyrex relative to water (see Table 2), it is possible in
the full pyrex model to excite a resonance in the device at the frequency fres = 2w/c0 = 1.24 MHz,
which is close to the ideal standing half-wave pressure eigenmode of the reduced hard-wall system.
At this resonance frequency, the pressure amplitude

∣∣pf
∣∣ in the water is several times larger than the

pressure amplitude ρfc0 ωu0 set by the imposed SAW displacement, and the resonance field mainly
depends on the frequency and not significantly on the detailed actuation along the boundary [29].
The full pyrex model and the reduced hard-wall model are therefore expected to be in good agreement
at fres, as is verified by the right column in Figure 3.

In contrast, at off-resonance frequencies, such as foff = 6.65 MHz in the left column of Figure 3,
the detailed actuation does matter. The lower left panel of Figure 3 is an example of this, as it highlights
an aspect that restricts the validity of the reduced hard-wall model. For the full model with 60-µm-thick
pyrex walls, the maximum displacement along the top boundary of the water domain is approximately
four times larger than the displacement amplitude u0 of the imposed SAW boundary condition on the
bottom boundary of the water domain. This indicates that the system is actuated close to a structural
acoustic eigenmode of the pyrex. An amplification is also seen in the lower right panel of Figure 3
although to a smaller degree. This amplification of boundary displacements brought about by the
existence of structural eigenmodes is not taken into account in the reduced hard-wall model.

3.3. Physical Limitations of the Lossy-Wall Condition

The comparison between the reduced lossy-wall model and the full PDMS model in Figure 4
shows a clear mismatch. The most important reasons for this are that the lossy-wall model neglects the
actuation of both the solid and fluid domain, and that it neglects the transverse motion of the PDMS
along the PDMS-water interface.

As for the hard-wall model, the lossy-wall model neglects the strong direct transfer of acoustic
energy from the SAW to the PDMS wall, and the implications are the same: the lossy-wall model
underestimates the deformation and motion of the PDMS-water boundaries due to this. Moreover,
due to the low impedance ratio Z̃ = 0.7, there are no strong resonances in the water domain like the
one at fres for which the detailed boundary conditions do not matter.

In contrast to the reduced hard-wall model, some aspects of the deformation and motion of the
PDMS-water boundaries are taken into account in the reduced lossy-wall model, as it includes the
partial reflection and absorption waves from the water domain with perpendicular incidence on the
PDMS wall. While this approach would be a good description of a planar or weakly curving interface
between two fluids, where all the acoustic excitation takes place in one of the fluids, it is of limited
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use in the present system, for three reasons: (1) as discussed above, the acoustic energy is injected by
the SAW into both the water and the PDMS domain; (2) the PDMS-water boundary is not planar, but
consists of three linear segments joined at right angles; and (3) PDMS is not a fluid, but supports shear
waves, which are neglected in the reduced lossy-wall model. These three aspects are all part of the full
PDMS model, in which PDMS is described as a linear elastic material supporting both longitudinal
and transverse waves.

3.4. Modeling PDMS as a Linear Elastic

When modeling large strains above 0.4 in PDMS, non-linear effects are commonly included using
hyperelasticity models in the form of a constitutive relation for the stress and strain for which the
elastic moduli depends on the stress instead of being constant. For small strains below 0.4, PDMS
becomes a usual linear elastic material [45–49]. The magnitude of the strain in terms of the relative
volume change |∇·us| is shown for our system in Figure 2c,d for H = 60 µm. The maximum value of
|∇·us| for PDMS is seen to be 5.59× 10−6, which justifies the use of linear elastics as the governing
equations of the PDMS walls in our system. Similarly for pyrex, where the maximum value for |∇·us|
is 8.51× 10−7. The use of linear elasticity is further validated in the literature, where linear elastic
models of PDMS yield results comparable to those found when using more complex approaches, such
as a Mooney–Rivlin constitutive model [33], a neo–Hookian approach [34], and a Maxwell–Wiechert
model [50].

Further simplifications based on neglecting the transverse motion of PDMS, such as modeling it
as a fluid [30,35] and applying the lossy wall conditions [36], are not advised, since PDMS does have
a non-zero transverse bulk modulus and does support transverse sound waves [42,48,49].

As characterization results for PDMS are scarce in the literature, we had to combine the material
parameters found in References [42,43] in our simulations.

4. Materials and Methods

Our modeling is based on the generic device design [4,14] illustrated in Figure 1. The device
consists of a long, straight, fluid-filled microchannel surrounded by an elastic solid wall on the sides
and top. The microchannel and walls rest on a piezoelectric substrate, along which a standing SAW is
imposed as a boundary condition. We assume translational invariance along the axial x direction, and
only model the transverse yz plane. We implement 2D numerical models in COMSOL Multiphysics 5.2
(COMSOL, Stockholm, Sweden) [51] using the parameters listed in Table 2. All acoustic fields
are treated using an Eulerian description, and they have a harmonic time-dependence of the form
us(y, z) e−iωt, such that ∂t becomes −iω, where i =

√
−1, while ω = 2π f is the angular frequency

and f the frequency of the imposed SAW. For simplicity, we often suppress the spatial and temporal
variable and write a field simply as us. Finally, following Hahn and Dual [41], we introduce damping
in the fluid and the solid using the complex-valued frequency (1− iΓm)ω, where Γm is the damping
coefficient in the medium with the values listed in Table 2. For simplicity, we used Γs = 0.001 for
both pyrex and PDMS, however this implies a damping length for PDMS longer than the 3 mm given
in [36], so our model is only valid for PDMS devices with walls thinner than 3 mm.

In total, four models are set up, all with the imposed SAW as a boundary condition representing
the actual piezoelectric lithium niobate substrate: (1) the full pyrex model, Figure 5a, where the solid
wall is modeled as a linearly elastic material with the parameters of pyrex, while the fluid is modeled
as water; (2) the reduced hard-wall model, Figure 5b, where only the water is modeled, while hard-wall
boundary conditions replace the pyrex wall; (3) the full PDMS model, Figure 5a, which is the full
pyrex model in which the pyrex parameters are replaced by PDMS parameters; and (4) the reduced
hard-wall model, Figure 5b, where only the water is modeled, while lossy-wall boundary conditions
replace the PDMS wall.
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Fluid Fluid

Figure 5. Sketches of the models used in the study. (a) The full model with a solid domain (pyrex or
PDMS) and a fluid domain (water); and (b) the reduced model with only a fluid domain with boundary
conditions (hard or lossy) representing the surrounding solid (pyrex or PDMS, respectively).

4.1. Governing Equations

The unperturbed fluid at constant temperature T = 298 K in the fluid domain is characterized
by its density ρ0, viscosity η0, and speed of sound c0. The governing equations for the acoustic
pressure pf, density ρf, and velocity vf are the usual mass and momentum equations. The constitutive
equation between the acoustic pressure pf and density ρf is the usual linear expression, pf = c2

0 ρf.
Neglecting external body forces on the fluid, while applying perturbation theory [38] and inserting the
harmonic time-dependence, the governing equations and the constitutive equation are linearized to
the following first-order expressions:

i(1− iΓf)ωpf = ρ0c2
0∇ · vf (1)

− ρ0i(1− iΓf)ωvf = ∇ ·σf (2)

σf = −pf I + η0

[
∇vf +

(
∇vf)

T
]
+ βη0∇

(
∇ · vf

)
I (3)

where we have introduced the Cauchy stress tensor σf, and where superscript ”T” denotes tensor
transpose, β is the bulk-to-shear viscosity ratio, and I is the unit tensor. With appropriate boundary
conditions, the first-order acoustic fields pf, ρf, and vf, can be fully determined by Equations (1)–(3).
The specific model-dependent boundary conditions are presented and discussed in Sections 1 and 4.2.

The dynamics in the solid of unperturbed density ρs is described by linear elastics through
the momentum equation in terms of the displacement field us and the solid stress tensor σs.
The constitutive equation relating displacement and stress is defined using the longitudinal cL,s

and transverse cT,s speeds of sound of the given solid:

− ρs(1− iΓs)
2ω2us = ∇·σs (4)

σs = ρs

[
c2

T,s(∇us +∇uT
s ) + (c2

L,s − 2c2
T,s)(∇·us)I

]
(5)

4.2. Boundary Conditions

For simplicity, the full dynamics of the piezoelectric substrate is not modeled. Instead, the standing
SAW is implemented by prescribing displacements upz =

(
uy,pz, uz,pz

)
in the y- and z-directions,

respectively, on the bottom boundary of our domain using the following analytical expression from
the literature [36,52], where the damping coefficient of 116 m−1 has been neglected given the small
dimensions (<0.002 m) of the microfluidic device [36]:

uy,pz = 0.6u0

{
sin
[
k
( 1

2 w− y
)
+ωt

]
+ sin

[
k
(
y− 1

2 w
)
+ωt

]}
(6)

uz,pz = −u0

{
cos
[
k
( 1

2 w− y
)
+ωt

]
+ cos

[
k(y− 1

2 w) +ωt
]}

(7)
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vf = −iωupz imposed on the fluid at the fluid-SAW interface, (8)

us = upz imposed on the solid at the solid-SAW interface, (9)

where k = 2π/λ is the wavenumber and u0 the displacement amplitude of the SAW.
In the full models, a no-stress condition for σ is applied along the exterior boundary of the

solid. On the interior fluid-solid boundaries, continuity of the stress is implemented as a boundary
condition on σs in the solid domain imposed by the fluid stress σf, while continuity of the velocity is
implemented as a boundary condition on vf in the fluid domain imposed by the solid velocity −iω us.
Along the free surfaces of the solid, a no-stress condition is applied:

ns ·σs = ns ·σf imposed on the solid at the fluid-solid interface, (10)

vf = −iωus imposed on the fluid at the fluid-solid interface, (11)

ns ·σs = 0 imposed on the solid at exterior boundaries. (12)

We have also performed simulations, where the stress-free condition Equation (12) on the
exterior boundaries is changed into a lossy-wall conditions involving high acoustic impedance ratios
(PDMS/air 3600 and pyrex/air 41000). As expected, the resulting fields are almost unchanged: we
observe the same morphology, and, quantitatively, the average value pressure field in the water domain
exhibits relative changes less than 4× 10−5, hence we employ the simpler Equation (12).

In the reduced models, boundary conditions are imposed on the fluid to represent the surrounding
material. Stiff and heavy materials such as pyrex are represented by the hard-wall (no motion) condition
at the boundary of the fluid domain. Soft and less heavy materials such as PDMS are represented
by the lossy-wall condition for partial acoustic transmittance perpendicular to the boundary of the
fluid domain. For both conditions, a no-slip condition is applied on the tangential velocity component.
The specific expression implemented in COMSOL are:

vf = 0 boundary condition representing hard walls, (13)

vf =
pf

csρs
n boundary condition representing lossy walls. (14)

4.3. Numerical Implementation and Validation

We follow our previous work [29,53], and implement the governing equations in weak form in
the commercial software COMSOL Multiphysics 5.2 [51]. To fully resolve the thin acoustic boundary
layer of width δ,

δ =

√
2η0

ρ0ω
= 0.21 µm at ω = 2π× 6.5 MHz (15)

in the water domain near its edges, the maximum mesh size hedge at the solid-fluid boundary is much
smaller than that in the bulk called hbulk. Both of these are controlled by the mesh parameter kp,

hedge =
1
kp
δ hbulk = 50 hedge with kp = 1 in the main runs . (16)

The coarse mesh with kp = 0.1 is shown in Figure 6a. In our largest (full) models using kp = 1,
the implementation resulted in 8.1× 106 degrees of freedom and a computational time of 30 min on
a standard PC work station. The implementation of the model in the fluid domain has been validated
both numerically and experimentally in our previous work [29,53]. The solid domain implementation
was validated by calculating resonance modes for a long rectangular cantilever, clamped at one end and
free at the other, and comparing them successfully against analytically known results. Finally, for both
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the full and the reduced models, we performed a mesh convergence analysis using the relative mesh
convergence parameter C(g) for a given field g(y, z) as introduced in Reference [29]:

C(g) =

√∫
Ω(g− gref)2 dydz∫

Ω(gref)2 dydz
(17)

Here, gref is the solution obtained with the finest possible mesh resolution, in our case the one
with mesh parameter kp = 5. For all fields, our mesh analysis revealed that satisfactory convergence
was obtained with the mesh parameter set to kp = 1. For this value, the relative mesh convergence
parameter was both small, C ≈ 0.01, and exhibited an exponential asymptotic behavior, C ' e−kp ,
as a function of the mesh parameter kp (for two examples, see Figure 6b,c).

     




















     


















Figure 6. (a) The mesh implemented in COMSOL 5.2 (COMSOL, Stockholm, Sweden), here shown in
a coarse version for illustrative purposes with the small value kp = 0.1 for the mesh parameter; (b) For
each of the fields pf, vf, vf,y, and vf,z, the relative mesh convergence parameter C is plotted versus mesh
parameter kp for the reduced lossy-wall model. The dashed line represents C = 0.01; (c) The same as in
(b) but for the water domain in the full PDMS model with the inclusion of the field us.

5. Conclusions

A numerical method has been presented for 2D full modeling of a generic SAW microdevice
consisting of a long, straight, fluid-filled microchannel encased in a elastic wall and resting on
a piezoelectric substrate in which a low-MHz-frequency standing SAW is imposed. We have also
presented reduced models consisting only of the fluid domain, where boundary conditions are used as
simplified representations of the elastic wall. An acoustically hard wall, such as pyrex, is represented
by a hard-wall boundary condition, while an acoustically soft wall, such as PDMS, is represented
by a lossy-wall boundary condition. Our results show that the full pyrex model is approximated
fairly well for thick pyrex walls using the hard-wall model, when the SAW is actuated on a frequency
corresponding to a resonance frequency of the water domain, but less well for thinner walls at
resonance and for any wall thickness off resonance. The reduced lossy-wall model was found to
poorly approximate the full PDMS model for walls thinner than the 3-mm PDMS damping length,
especially regarding the resulting running pressure waves in the reduced lossy-wall model in contrast
the standing waves in the full PDMS model.

Modeling of acoustofluidic devices should thus be performed in full to take into account all
effects relating to the elastic walls defining the microchannel. At higher frequencies or higher acoustic
power levels, even the full model presented here must be extended to take into account thermoviscous
effects in the form of increased heating and temperature-depending effects [44,54]. Finally, to obtain
quantitatively better results for the pressure fields driving acoustophoresis in the water domain,
the piezoelectric substrate should be included in future simulations. Hopefully, such an analysis will
be of interest to experimentalists, who in turn may provide improved experimental data to validate the
model. Moreover, with such an extended model including the dynamics of the piezoelectric substrate,
a study could be carried out for other actuation conditions than the ones studied here, such as bulk
acoustic wave actuation, for which more experimental results exist.
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