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Genetic variation of macrophage migration inhibitory factor (MIF) gene has been linked to
coronary artery disease.We investigated an association between the polymorphism ofMIF
gene rs2070766 and acute coronary syndromes (ACS) and the predictive value of MIF
gene variation in clinical outcomes. This study involved in 963 ACS patients and 932
control subjects from a Chinese population. All participants were genotyped for the single
nucleotide polymorphism (SNP) of MIF gene rs2070766 using SNPscan™. A nomogram
model using MIF genetic variation and clinical variables was established to predict risk of
ACS. Major adverse cardiovascular events (MACE) were monitored during a follow-up
period. The frequency of rs2070766 GG genotype was higher in ACS patients than in
control subjects (6.2 vs 3.8%, p � 0.034). Multivariate logistic regression analysis revealed
that individuals with mutant GG genotype had a 1.7-fold higher risk of ACS compared with
individuals with CC or CG genotypes. UsingMIF rs2070766 genotypes and clinical factors,
we developed a nomogram model to predict risk of ACS. The nomogram model had a
good discrimination with an area under the curve of 0.781 (95% CI: 0.759–0.804),
concordance index of 0.784 (95% CI: 0.762–0.806) and well-fitted calibration. During
the follow-up period of 25 months, Kaplan-Meier curves demonstrated that ACS patients
carrying GG phenotype developed more MACE compared to CC or CG carriers (p < 0.05).
GG genotype of MIF gene rs2070766 was associated with a higher risk of ACS in a
Chinese population. The GG genotype carriers in ACS patients had worse clinical
outcomes compared with those carrying CC or CG genotype. Together with
rs2070766 genetic variant of MIF gene, we established a novel nomogram model that
can provide individualized prediction for ACS.
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INTRODUCTION

Acute coronary syndromes (ACS), an acute form of coronary
artery disease (CAD), is the leading cause of death, making a
worldwide health concern (Hyde et al., 2020). ACS describes a
spectrum of clinical manifestations including unstable angina
(UA), ST-segment elevation myocardial infarction (STEMI), and
non-STEMI (NSTEMI) (Mason et al., 2018). As a complex
disease, both genetic and environmental factors contribute to
ACS susceptibility (Roberts and Campillo, 2018). Advances in
exome-wide association study have provided insights into several
candidate genes and pathways that contribute to ACS (Zheng
et al., 2020). Although the technology of percutaneous coronary
intervention (PCI) and drug therapy has been constantly
improved, ACS is still characterized by high morbidity and
unsatisfactory prognosis. Therefore, the molecular mechanisms
involved in the initiation and development of ACS still need to be
explored, which will contribute to better management for ACS
patients.

Ample evidences suggest that ACS is triggered by an
inflammatory response and plaque destabilization as indicated
by increased inflammatory processes at the site of intimal rupture
and elevated circulating levels of inflammatory biomarkers
during the event (Gresele et al., 2011). Macrophage migration
inhibitory factor (MIF) is a pro-inflammatory cytokine expressed
in various mammalian cells (Muller et al., 2012). Numerous
experimental and clinical studies have identified the
involvement of MIF in the progression of vascular
atherosclerosis (Burger-Kentischer et al., 2002; Pan et al., 2004;
Sinitski et al., 2019). Notably, MIF has also been reported to be
associated with plaque instability (Schmeisser et al., 2005). A
number of previous clinical studies examined the predictive value
of the circulating MIF levels for future cardiac events. Boekholdt
et al. reported that the relation between MIF and the risk of MI or
death due to CAD in adults without a history of MI or stroke was
not very strong. However, MIF is involved in the inflammatory
processes that underlie atherosclerosis (Boekholdt et al., 2004).
Makino et al. demonstrated that the high MIF level was an
independent risk factor for future coronary events in CAD
patients with type 2 diabetes mellitus (DM) (Makino et al.,
2010). Later, our experimental and clinical findings indicate
that a single MIF assay at admission could be a useful
biomarker for early prediction of final infarct size and extent
of cardiac remodeling (Chan et al., 2013). A higher admission
MIF level is an independent predictor for in-hospital mortality
and long-term major adverse cardio-and/or cerebrovascular
events (MACCE) in STEMI patients who underwent PCI
(Zhao et al., 2019). Hence, MIF might be a potential
biomarker to predict the risk and severity of CAD.

TheMIF gene, located at chromosome 22q 11.2, is a small gene
consisting of three exons that are 205, 173 and 183 base pairs in
length (Lan et al., 2013). The promoter region MIF gene focused
on the -794 (CATT)5–8 microsatellite (rs5844572) and the
-173 G/C (rs755622) polymorphisms have been extensively
studied for its association with CAD (Lehmann et al., 2006;
Tereshchenko et al., 2009; Valdes-Alvarado et al., 2014; Luo
et al., 2016). Gene reporter assays showed that an increased

transcription of MIF gene rs5844572 with the 5-repeat allele
led to a low expression of MIF, while increase of the 6-, 7-, and 8-
repeat alleles led to a correspondingly higher expression of MIF
(Baugh et al., 2002; Radstake et al., 2005). An association of 6/7
genotype of the MIF -794 (CATT)5–8 polymorphism with
susceptibility to ACS has been observed in Mexican
population (Valdes-Alvarado et al., 2014). A second MIF gene
promoter polymorphism comprises a G-to-C single nucleotide
polymorphism (SNP) at position of -173 (rs755622) has also been
broadly investigated for its association with the severity of CAD
(Lehmann et al., 2006; Tereshchenko et al., 2009; Luo et al., 2016;
Coban et al., 2019). Our previous study showed that MIF gene
rs755622 CC genotype carriers had the highest plasma levels of
MIF than CG and GG genotype carriers in ACS patients (Du
et al., 2020). A recent meta-analysis also demonstrated plenty
evidences for the associations between MIF -173C/G and CAD
susceptibility in different populations (Li et al., 2020).

Except SNPs in the promoter of MIF gene, variation in other
regions i.e. coding region or intron may also have a potential
influence in the risk of CAD. An association between the
variation of MIF gene rs2070766 in the intron and acute lung
injury has been found (Gao et al., 2007). So far, there is no study
focusing on the intron polymorphism of MIF gene in relation to
CAD. The purpose of this study is to investigate whether the
variant rs2070766 located in the intron ofMIF gene is associated
with susceptibility of ACS in a Chinese population. We also assess
the value of MIF gene rs2070766 polymorphism in predicting
clinical outcomes in ACS patients.

MATERIALS AND METHODS

Ethics Approval of Study Protocol
Written informed consents were obtained from all participants.
The study protocol was conducted according to the standards of
the Declaration of Helsinki, and the study was approved by the
Ethics Committee of the First Affiliated Hospital of Xinjiang
Medical University.

Study Design and Participants
This study was divided into two stages (Figure 1). First, a single-
center hospital-based case-control study including ACS patients
and control subjects were recruited from the First Affiliated
Hospital of Xinjiang Medical University from January 2014 to
December 2017. ACS patients were diagnosed and classified
according to the criteria of the American College of Cardiology
including UA, STEMI and NSTEMI (Cannon et al., 2013). The
diagnostic triad included clinical symptoms, electrocardiogram
changes and alterations in cardiac biomarkers (creatine kinase;
creatine kinase-MB isoenzyme and troponine I). All ACS
patients underwent coronary angiography to identify the culprit-
vessel, i.e., ≥ 50% luminal stenosis in at least one coronary artery or
major branch segments. The findings of coronary angiography were
interpreted by at least two experienced cardiologists. All ACS
patients received 300mg of aspirin and a 300 mg loading dose
of clopidogrel at admission and 70 U/kg of standard intravenous
heparin before the PCI. After PCI, all patients received dual
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antiplatelet therapy: 100 mg aspirin daily, and 75mg clopidogrel
daily for at least 1 year. Other cardiac medications were given at the
discretion of the attending physicians. During the same period, age
and sex matched control participants who suffered from atypical
chest pain and admitted into hospital but with normal coronary
angiogram and showed no clinical evidence of ischemic heart
disease were also recruited. Therefore these control subjects were
not healthy individuals, indicating that the control group was also
exposed to the same risk factors of ACS. As per past medical history,
individuals who had regional wall motion abnormalities, valvular
abnormalities in echocardiograms, previous MI received coronary
artery bypass grafting, previous heart transplants, chronic
inflammation established by clinical, laboratory, or image
investigations, malignant tumors, type 1 diabetes, chronic kidney
disease (stages 3–5, estimated glomerular filtration rate <60ml/
min/1.73 m2), or liver enzyme elevation exceeding three times the
upper limit of normal were excluded. Second, we followed up ACS
patients who received PCI, it was a single-center, prospective cohort
study designed to assess influence of different genotypes of MIF
gene rs2070766 on long-term prognosis of ACS.

Blood Collection and Laboratory Test
Venous blood samples were drawn at the catheter laboratory
before angiography from ACS patients and from control subjects
during medical examination. Full blood examination and
biochemical assays were performed using the commercially
available automated platform in the Central Laboratory of the
First Affiliated Hospital of Xinjiang Medical University. These
tests included white blood cell count (WBC), platelet (PLT), urea
nitrogen (BUN), creatinine (CR), triglyceride (TG), total
cholesterol (TC), high-or low-density lipoprotein-cholesterol
(HDL-C, LDL-C).

Deoxyribonucleic Acid Extraction
Deoxyribonucleic acid (DNA) extraction from venous blood was
performed after laboratory test. Venous blood samples with

ethylene diamine tetra acetic acid (EDTA) as the anticoagulant
were centrifuged at 4,000 × g for 5 min to separate plasma and
blood cells. DNA was extracted from the peripheral leukocytes
using a whole-blood genome extraction kit (Beijing Bioteke
Corporation, China) following the manufacturer’s instruction
(Adi et al., 2020). DNA samples were stored at −80°C for
genotyping.

Genotyping of Migration Inhibitory Factor
Gene
Sample DNA (10 ng) were amplified by polymerase chain
reaction (PCR) according to the manufacturer’s
recommendations. The SNP genotyping work was performed
using a custom-by-design 50-Plex SNPscan™ Kit (Genesky
Biotechnologies Inc., Shanghai, China). For quality control,
repeated analyses were done for 4% of randomly selected
samples with high genotyping quality. Variants of MIF gene
rs2070766 were classified into three genotypes, CC, CG, and
GG. The dominant model is defined as the wild homozygous
genotype (CC) versus heterozygous genotype (CG) plus mutant
homozygous genotype (GG), a recessive model is defined as
mutant homozygous genotype (GG) versus wild homozygous
genotype (CC) plus heterozygous genotype (CG) and an additive
model is defined as heterozygous genotype (CG) versus wild
homozygous genotype (CC) plus mutant homozygous
genotype (GG).

Definition of Cardiovascular Risk Factors
Body mass index (BMI) was calculated by dividing body weight
(in kg) by the height in meters squared to determine the risk of
obesity. Persons reporting regular tobacco use in the previous
6 months were considered as current smokers. Drinker was
defined as consuming 100 g at least once alcoholic beverage
per week in the past month. Hypertension was defined as
systolic BP (SBP) 140 mmHg, and/or diastolic BP (DBP)

FIGURE 1 | The flow chart of study design. PCI, percutaneous coronary intervention; SNP, single nucleotide polymorphism; ACS, acute coronary syndromes;
MACE, major adverse cardiovascular events.
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90 mmHg, and/or use of antihypertensive medicine within
2 weeks, based on 2018 ESC/ESH Guideline (Heizhati et al.,
2020). DM was defined as fasting plasma glucose levels
≥7.0 mmol/L (126 mg/dl), glucose levels ≥11.1 mmol/L
(200 mg/dl) 2 h after the administration of a 75 g oral glucose
load, a history of diabetes or patients with a history of anti-
diabetic medication use. Concentrations of TG ≥ 2.26 mmol/L
(200 mg/dl), TC ≥ 6.22 mmol/L (240 mg/dl), HDL-C <
1.04 mmol/L (40 mg/dl) and LDL-C ≥ 4.14 mmol/L (160 mg/
dl) were defined as hypertriglyceridemia, hypercholesterolemia,
hypo-HDL-C and hyper-LDL-C respectively. Dyslipidemia was
defined as anyone of the four lipids abnormalities above or self-
reported use of antihyperlipidemic medication (Pan et al., 2013).

Study Endpoints During the Follow-Up
Period
During hospitalization and after discharge, major adverse
cardiovascular events (MACE) (Zhao et al., 2019) including
re-hospitalization owing to recurrent angina, re-hospitalization
owing to heart failure, target lesion revascularization, cardiac
death, non-fatal MI and stent thrombosis were monitored as the
study endpoint. Follow-up protocol included phone interview,
outpatient visiting and in-hospital clinical records of patients who
were rehospitalized. Information of deceased patients was
obtained from hospital records or phone contact with relatives
of the patients. The frequency of contact was every 3 months for
the first year, later every 6 months for later follow-up period.
During the follow-up duration, an independent group of clinical
physicians carefully checked and verified all events. To obtain
high-quality data, all attending investigators were trained and
data entry was performed by two investigators.

Statistical Analyses
Data were collected using Epidata 3.1 (Odense, Denmark) and
double checked. Analyses were carried out using Stata 15.0
software (Stata Corp LP, College Station, TX, United States).
Continuous variables with a Gaussian distribution are presented
as mean ± standard deviation (SD), and those with a non-
Gaussian distribution are presented as median values with
corresponding 25th to 75th percentiles. The differences
between groups were evaluated using Student’s unpaired t test
or the Mann-Whitney rank test. Categorical variables were
expressed as numbers or frequencies and the difference
between groups was detected by Chi-square test. Chi-square
test was also used to calculate Hardy-Weinberg equilibrium of
the frequencies of genotype between ACS and control subjects.
Logistic regression analyses with effect ratios (odds ratio [OR]
and 95% confidence interval [CI]) were used to assess the
contribution of the major risk factors. Kaplan-Meier plots
were generated and the log-rank test was used to compare the
survive curve among the different genotype carriers. p value <
0.05 was considered statistically significant.

By applying multivariate logistic regression, we established an
ACS risk predictive model of nomogram. The scoring system in
the nomogram was generated by the RMS (Regression Modeling
Strategies) package (available at the website: https://cran.r-

project.org/web/packages/rms/index.html) based on R-language
(version 3.5.3) (available at the website: https://www.r-project.
org) (Figure 3A). The nomogram was expressed as the total score
(point) for each nodule (individual variable) (Zhou et al., 2020).
The total points scale is added including all independent variables
which are converted to predicted probabilities. In detail, for
categorical variables (yes/no, GG/CC + CG genotypes) and
continuous variables, according to this calculate method, the
length of individual horizontal line represents a degree of its
contribution to the ACS risk. The vertical points at the end of
horizontal line corresponding to a specific value on the point scale
(top) (Figure 3A). The nomogram model was evaluated from
three aspects: discrimination ability (Figure 4A), calibration
ability (Figure 4B), and clinical effectiveness (Figure 4C).
First, receiver operation characteristic curve (ROC) was used
to evaluate the discrimination. The value of area under curve
(AUC) exists between 0.5 and 1. A value of the AUC closer to 1
indicates a good performance of the predictive model (Harrell
et al., 1982). Discrimination was quantified using Harrell’s
concordance index (C-index), in which an absolute value close
to 1 indicated that the model had strong predictive ability. The
C-index is equivalent to the area under the receiver operating
characteristic curve, and it is used to measure how well a model
predicts the disease risk. C-index > 0.7 was considered to have
excellent discrimination (Kim et al., 2018) (Figure 4A). Second,
calibration plots were developed to assess the predictive accuracy
and agreement between predicted and observed severity. The 45°

diagonal line in the plot indicates a perfect calibrated curve which
has a best predictive capability for the actual risk of disease. The
calibration capability was evaluated through the calibration chart
and the Hosmer-Lemeshow test (Kramer and Zimmerman, 2007)
(Figure 4B). If the smaller the Chi square value of the statistics is,
the larger the corresponding p value is, the better the calibration
of the predictive model will be. If the test results show statistical
significance (p < 0.05), indicating a certain difference between the
predicted value of the model and the actual observed value, and
the model calibration is poor (Kramer and Zimmerman, 2007).
The nomogram was further internally validated by the bootstrap
method with 1,000 resamples to measure the AUC value,
C-index, and calibration curve (Schomaker and Heumann,
2018). Third, a decision curve analysis (DCA) was used to
evaluate the clinical usefulness of the nomogram based on its
net benefits at different threshold probabilities (Kerr et al., 2016)
(Figure 4C). The net benefit was calculated by subtracting the
proportion of patients with false-positive results from the
proportion of patients with true-positive results and by
weighing the relative risk of an intervention compared with
the adverse effects of an unnecessary intervention.

RESULTS

Characteristics of Study Participants
Demographic and clinical characteristics of the study
participants are shown in Table 1. In total, 963 ACS patients
(68.2% men) and 932 control subjects (65.2% men) were
recruited in the present study. No significant differences were
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observed in age, sex, BMI, drinking and plasma level of BUN
between the two groups. Nevertheless, WBC, PLT and plasma
levels of CR, TG, TC and LDL-C were higher in ACS patients
than that in controls (all p < 0.05). In addition, the plasma level
of HDL-C was higher in controls compared with ACS patients
both in male and female (p < 0.05). The prevalence of smoking,
hypertension, diabetes and dyslipidemia were greater in ACS
patients than in controls (all p < 0.05). To explore the gender
difference, male and female participants in both ACS and
control groups were separated. In male participants, no
significant differences were observed in age, BMI, plasma
levels of BUN, CR and TG and prevalence of drinking and
hypertension between the two groups. Whilst, WBC, PLT,
plasma levels of TC, LDL-C and the prevalence of smoking,
diabetes and dyslipidemia were notably higher in ACS than in
control males (all p < 0.05). In female participants, age, BMI and
plasma levels of BUN and LDL-C were comparable between the
two groups. There were significant differences in WBC, PLT,
plasma levels of CR, TG, TC and HDL-C and the prevalence of
hypertension, diabetes and dyslipidemia between ACS and
control females (all p < 0.05).

The Frequency of Mutant GG Genotype
Were Significantly Higher in Acute Coronary
Syndromes Patients
Distribution of MIF gene rs2070766 variation was in Hardy-
Weinberg equilibrium in both the ACS and control groups (data
not shown). The frequencies of genotypes and alleles ofMIF gene
rs2070766 are presented in Table 2. The results showed that the
mutant GG genotype (p � 0.034 for all participants) and recessive
model (GG vs CC + CG) in all participants (p � 0.019) and in
females (p � 0.028) were more frequent in the ACS patients than
in the control subjects. While, there was no significant difference

in distribution of dominant and additive models and alleles in
rs2070766 between ACS and control groups (all p > 0.05).

Migration Inhibitory Factor GeneMutant GG
Genotype Was Associated With a Higher
Risk of Acute Coronary Syndromes
Univariate regression analysis showed that the GG genotype in
rs2070766 was a risk factor for ACS (Table 3, GG genotype vs CC
+ CG genotypes, OR 1.654, 95% CI: 1.083–2.526; p � 0.020).
Moreover, smoking, hypertension, diabetes, WBC, TC and LDL-
C were risk factors for ACS. HDL-C was a protect factor for ACS.
Multivariate logistic regression analysis revealed five independent
factors for ACS: diabetes, mutant GG genotype, WBC, TC and
HDL-C. After adjustments of smoking, hypertension, diabetes,
WBC, TC, HDL-C and LDL-C, individuals with mutant GG
genotype had a higher risk of ACS compared with individuals
with CC or CG genotypes (Table 3, OR 1.739, 95% CI:
1.022–2.962; p � 0.042). In addition, diabetes, WBC, TC were
independent risk factors, while HDL-C was a protective factor
for ACS.

Angiography Findings and Stent Implant
As PCI will have significant influence in clinical outcomes and
prognosis, we analyzed PCI data in ACS patients and the
details are presented in Table 4. Of 963 ACS patients, 548
(56.9%) received PCI procedures. Left anterior descending
(LAD) artery lesion was more often than lesions in left
circumflex (LCX), right coronary (RCA) or left main (LM)
artery and 69.6% ACS patients had multivessel diseases (≥2).
The majority of ACS patients (78.1%) received one stent
implanted. In subgroups of ACS patients with GG genotype
compared with CC and CG genotypes, no significant
differences were observed in the rate of PCI, culprit artery

TABLE 1 | Demographic and clinical characteristics of the study population.

Total Male Female

ACS Control p Value ACS Control p Value ACS Control p Value

Number, n 963 932 657 608 306 324
Age (years) 56.1 ± 10.2 55.8 ± 9.2 0.621 53.4 ± 9.4 52.6 ± 9.3 0.117 61.7 ± 9.4 61.9 ± 5.0 0.732
Male, n (%) 657 (68.2%) 608 (65.2%) 0.167 - - - - - -
BMI (kg/m2) 25.9 ± 3.4 26.3 ± 3.7 0.079 26.0 ± 3.3 26.5 ± 3.5 0.097 25.4 ± 3.7 26.0 ± 4.0 0.184
Smoking, n (%) 430 (44.8) 338 (36.3) <0.001 421 (64.3) 338 (55.6) 0.002 9 (2.9) 0 (0.0) -
Drinking, n (%) 291 (30.3) 273 (29.3) 0.638 284 (43.4) 273 (44.9) 0.581 7 (2.3) 0 (0.0) -
Hypertension, n (%) 476 (49.4) 404 (43.4) 0.008 280 (42.6) 261 (42.9) 0.911 196 (64.1) 143 (44.1) <0.001
Diabetes, n (%) 251 (26.1) 112 (12.0) <0.001 150 (22.8) 62 (10.2) <0.001 101 (33.0) 50 (15.4) <0.001
WBC, 109/L 9.42 ± 3.56 6.81 ± 2.12 <0.001 10.07 ± 3.69 7.01 ± 1.98 <0.001 8.05 ± 2.81 6.46 ± 2.32 <0.001
PLT, 109/L 233.95 ± 65.01 217.09 ± 56.21 <0.001 232.68 ± 65.55 212.73 ± 52.62 <0.001 236.68 ± 63.86 225.05 ± 61.54 0.024
BUN (mmol/L) 5.48 ± 1.88 5.43 ± 1.55 0.508 5.57 ± 1.86 5.55 ± 1.56 0.868 5.29 ± 1.90 5.19 ± 1.50 0.480
CR (umol/L) 73.36 ± 20.05 71.51 ± 16.85 0.032 78.16 ± 19.71 77.54 ± 15.07 0.538 62.81 ± 16.44 59.96 ± 13.80 0.022
TG (mmol/L) 1.63 (1.11–2.44) 1.56 (1.04–2.26) 0.025 1.63 (1.09–2.50) 1.65 (1.06–2.42) 0.759 1.64 (1.12–2.42) 1.39 (1.02–1.96) 0.001
TC (mmol/L) 4.47 ± 1.29 4.16 ± 0.94 <0.001 4.46 ± 1.29 4.11 ± 0.93 <0.001 4.49 ± 1.29 4.27 ± 0.95 0.021
HDL-C (mmol/L) 0.95 (0.80–1.14) 1.06 (0.87–1.27) <0.001 0.91 (0.78–1.08) 0.98 (0.82–1.19) <0.001 1.07 (0.90–1.29) 1.20 (0.99–1.39) <0.001
LDL-C (mmol/L) 2.75 (2.17–3.40) 2.58 (2.05–3.16) <0.001 2.76 (2.23–3.41) 2.58 (2.04–3.13) <0.001 2.74 (2.05–3.37) 2.59 (2.10–3.21) 0.317
Dyslipidemia, n (%) 653 (73.9) 494 (57.9) <0.001 483 (79.1) 374 (66.6) <0.001 170 (62.3) 120 (41.1) <0.001

Continuous variables are expressed as mean ± SD, or median (25th-75th percentiles). Categorical variables are expressed as number and percentage. Abbreviations: ACS, acute
coronary syndromes; BMI, body mass index; WBC, white blood cells; PLT, platelet; BUN, blood urea nitrogen; CR, creatinine; TG, triglycerides; TC, total cholesterol; HDL-C, high-density
lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol.
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and the number of diseased artery between two subgroups.
Patients with rs2070766 GG genotype had greater gensini
score than those with CC and CG genotypes, but it did not
reach to statistical significance. Compared to CC and CG
genotypes, ACS patients with GG genotype had more stents
(≥3) implanted (p < 0.001).

Major Adverse Cardiovascular Events
During the Follow-Up Period
During hospitalization and after discharge, we followed up 548
ACS patients who received PCI to explore the potential influence
of MIF gene rs2070766 variation in long-term outcomes. During
the 25-months (range 12–60 months) follow-up period, 4 (0.7%)

TABLE 2 | Distribution of genetic variation of MIF gene rs2070766 in the study population.

Total Male Female

ACS, n (%) Control, n (%) p ACS, n (%) Control, n (%) p ACS, n (%) Control, n (%) p

Genotype CC 586 (60.9) 559 (60.0) 0.034 404 (61.5) 361 (59.4) 0.214 182 (59.5) 198 (61.1) 0.087
CG 317 (32.9) 337 (36.2) 218 (33.2) 224 (36.8) 99 (32.4) 113 (34.9)
GG 60 (6.2) 36 (3.8) 35 (5.3) 23 (3.8) 25 (8.2) 13 (4.0)

Dominant model CC 586 (60.9) 559 (60.0) 0.698 404 (61.5) 361 (59.4) 0.442 182 (59.5) 198 (61.1) 0.675
GG + CG 377 (39.1) 373 (40.0) 253 (38.5) 247 (40.6) 124 (40.5) 126 (38.9)

Recessive model GG 60 (6.2) 36 (3.8) 0.019 35 (5.3) 23 (3.8) 0.189 25 (8.2) 13 (4.0) 0.028
CC + CG 903 (93.8) 896 (96.2) 622 (94.7) 585 (96.2) 281 (91.8) 311 (96.0)

Additive model CG 317 (32.9) 337 (36.2) 0.138 218 (33.2) 224 (36.8) 0.172 99 (32.4) 113 (34.9) 0.503
CC + GG 646 (67.1) 595 (63.8) 439 (66.8) 384 (63.2) 207 (67.6) 211 (65.1)

Allele C 1,489 (77.3) 1,455 (78.1) 0.581 1,026 (78.1) 946 (77.8) 0.862 463 (75.7) 509 (78.6) 0.221
G 437 (22.7) 409 (21.9) 288 (21.9) 270 (22.2) 149 (24.3) 139 (21.4)

ACS, acute coronary syndromes.

TABLE 3 | Multivariate logistic regression analysis.

Unadjusted Adjusted for clinical variables

Or (95% CI) p Value Or (95% CI) p Value

Age 1.002 (0.993–1.012) 0.621 --
Gender 0.874 (0.722–1.058) 0.168 --
BMI 0.968 (0.933–1.004) 0.079 --
Smoking 1.423 (1.183–1.711) <0.001 1.023 (0.695–1.213) 0.284
Hypertension 1.277 (1.066–1.531) 0.008 1.171 (0.934–1.469); 0.172
Diabetes 2.581 (2.022–3.295) <0.001 2.263 (1.683–3.044) <0.001
GG vs CC + CG 1.654 (1.083–2.526) 0.020 1.739 (1.022–2.962) 0.042
WBC 1.443 (1.378–1.512) <0.001 1.491 (1.413–1.574) <0.001
TC 1.273 (1.168–1.388) <0.001 1.227 (1.023–1.472) 0.027
HDL-C 0.307 (0.219–0.431) <0.001 0.359 (0.241–0.534) <0.001
LDL-C 1.291 (1.160–1.437) <0.001 1.084 (0.762–1.301) 0.704

BMI, body mass index; WBC, white blood cells; TC, total cholesterol; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol.

TABLE 4 | Interventional data in ACS patients and recessive model subgroups.

Total GG genotype CC + CG genotype p Value

PCI, n (%) 548 (56.9) 34 (56.7) 514 (56.9) 0.969
LAD lesion, n (%) 796 (82.7) 47 (78.3) 750 (83.0) 0.350
LCX lesion, n (%) 563 (58.5) 33 (55.0) 530 (58.8) 0.567
RCA lesion, n (%) 630 (65.5) 35 (58.3) 595 (65.9) 0.229
LM lesion, n (%) 81 (8.4) 6 (10.0) 76 (8.3) 0.649
Single-vessel disease, n (%) 293 (30.4) 19 (31.7) 274 (30.3) 0.829
Multivessel diseases (≥2), n (%) 670 (69.6) 41 (68.3) 629 (69.7)
Gensini score 46 (24–81) 50 (30–82) 36 (16–78) 0.510
Stent number per patient, n (%)
1 428 (78.1) 21 (61.7) 407 (79.1) <0.001
2 102 (18.6) 8 (23.5) 94 (18.3)
≥3 18 (3.3) 5 (14.7) 13 (2.6)

Gensini score is expressed as median (25th - 75th percentiles), other values are expressed as number and percentage. ACS, acute coronary artery syndromes; PCI, percutaneous
coronary intervention; LAD, left anterior descending artery; LCX, left circumflex artery; RCA, right coronary artery; LM, left main coronary artery.
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patients died in hospital after PCI, 197 patients developed MACE
including re-hospitalization owing to recurrent angina or heart
failure, target lesion revascularization, cardiac death, non-fatal
MI, and stent thrombosis (Table 5). Kaplan-Meier curves showed
that the prevalence of MACE was significantly higher in ACS
patients carrying GG genotype than those with CC or CG
genotypes during the follow-up period (Figure 2, p < 0.05).

Predictive Nomogram for Acute Coronary
Syndromes
According to the method described in statistical section, using
MIF rs2070766 genotypes and clinical variables (diabetes, WBC,
TC and HDL-C), we developed a nomogram model to predict
risk of ACS (Figure 3A). For an example of the clinical utility of
the nomogram, a person with diabetes (9.2 points),
rs2070766 GG genotype (5.9 points), WBC of 8.9 × 109/L
(28.6 points), TC of 5.6 mmol/L (8.2 points), HDL-C of
1.25 mmol/L (30.14 points), nomogram total points scale is
82.04, would have an estimated 85.2% chance of experiencing
ACS. In addition, the nomogram total points and risk of ACS
levels were significantly higher in individuals with GG genotype
than individuals who carrying CC and CG genotypes (Figures
3B,C), the total point of GG genotype carriers was 68.66
(63.63–81.61), CC + CG genotype carriers was 62.37
(55.15–73.15), the GG genotype carriers risk of ACS is 62.20
(50.63–84.74), CC + CG genotype carriers risk of ACS is 47.67
(31.62–71.48), the GG genotype carriers had higher total points
and risk of ACS (p < 0.05).

Validation of the Nomogram
Validation of this nomogrammodel was based on discrimination,
calibration and DCA. This nomogram was validated internally by
bootstrap method with 1,000 resamples. This predicting
nomogram possessed a good discriminative ability, as shown
in Figure 4A, the AUC value was 0.781 (95% CI: 0.759–0.804; p <
0.001) and the C-index was 0.784 (95% CI: 0.762–0.806; p <
0.001), respectively, indicating the model with good predictive
power. The calibration of the predictive model and the calibration
curve (Figure 4B) were obtained. In calibration curve of the
nomogram model (Figure 4B), the Hosmer-Lemeshow test (p �
0.515), demonstrated that the predicted probability was highly
consistent with the actual probability. As shown in Figure 4C, the
DCA indicated that when the threshold probabilities ranged
between 0.30 and 0.95, the use of the nomogram to predict
likelihood of ACS risk provided a greater net benefit than the

“treat all” or “treat none” strategies, which indicates a clinical
usefulness of the nomogram.

DISCUSSION

ACS is a complex disorder that involves multiple environmental
and genetic factors. Compelling evidence from family history and
epidemiological studies suggests a genetic basis contributing to
the development of ACS (Morgan et al., 2007). Since the
traditional environment and lifestyle factors reflects only a
small part of mechanisms related to the development of ACS,
genetic influence in ACS was not fully addressed. Discovery of
genetic risk factors is of great interest in clinical practice, and will
help improving the management of ACS. In the present study, we
found the frequency of GG variant of MIF gene rs2070766 was
higher in ACS patients than those with CC or CG genotype. Based
on logistic regression analysis and clinical characteristics, a
nomogram was developed to help for identifying patients who
might develop ACS. Moreover, during the follow-up period of 25
months, ACS patients carrying GG phenotype developed more
MACE compared to CC and CG carriers.

MIF is a pleotropic cytokine involving in a variety of
inflammatory disorders (Morand et al., 2006; Zernecke et al.,
2008). Diverse inflammatory stimuli can trigger MIF secretion to
produce pro-inflammatory and pro-atherogenic action (van der
Vorst et al., 2015). The role of MIF in the progress of
atherosclerosis has drawn intensive attention. Previous studies
documented that MIF was produced abundantly by various cells
in all types of human atherosclerotic lesions (Noels et al., 2009).
MIF enhances oxidized LDL uptake by macrophages (Ayoub
et al., 2008). A correlation between the MIF expression and lipid
deposition in atherosclerotic plaques indicates an important role
in plaque development and lesion progression. Clinical studies
found a high MIF level in patients with ACS (Muller et al., 2012)
and heart failure (Luedike et al., 2018). White et al. also reported a

TABLE 5 | Major adverse cardiovascular events (MACE) in ACS patients during
hospitalization and the 25-months follow-up period after discharge.

MACE (total n = 197) N (%)

Re-hospitalization owing to recurrent angina 87 (44.0)
Re-hospitalization owing to heart failure 39 (20.0)
Target lesion revascularization 33 (17.0)
Cardiac death 22 (11.0)
Non-fatal myocardial infarction 8 (4.0)
Stent thrombosis 8 (4.0)

FIGURE 2 | Kaplan-Meier curves showing the prevalence of major
adverse cardiovascular events in patients with differentMIF genotypes during
25 months (12–60 months) follow-up period.
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proinflammatory role of MIF in acute myocardial infarction
(White et al., 2013). These results clearly demonstrated an
essential role of MIF in the development and progression of
atherosclerosis and ischemic heart disease.

Five polymorphisms of the human MIF gene have been
reported including one 5-8- CATT tetranucleotide repeat at
the position of -794 CATT5-8 (rs5844572) and four SNPs at
positions of -173 G/C (rs755622), +254 T/C (rs2096525),
+656 C/G (rs2070766) and rs1007888 (C/T) (Lehmann et al.,
2006; White et al., 2013; Valdes-Alvarado et al., 2014; Tilstam
et al., 2017; Jankauskas et al., 2019). Rs5844572 and rs755622
are located in the promoter region and rs1007888 located in the

3′ flanking region of the MIF gene. The +254 (rs2096525) and
+656 (rs2070766) SNPs are located in introns and, thus, do not
affect the coding sequence of the MIF gene. Albeit the
polymorphism of rs2070766 gene is located introns and do
not affect the coding sequence of the MIF gene, rs2070766 is
very close to the third exon, only 5 bases away, may induce
splicing mutations, a new splicing site is formed at the mutation
point, which affects the expression and function of the protein
level (Wang et al., 2015). In the present study, we investigated
the relationship betweenMIF gene rs2070766 polymorphism in
introns and ACS. In this age and gender matched case-control
study, variation of MIF gene rs2070766 was classified into three

FIGURE 3 |Nomogram to predict the risk of ACS. (A) a nomogramwas generated by using a number of clinical variables including diabetes, WBC, white blood cell
count; TC, total cholesterol; HDL-C, high-density lipoprotein cholesterol. (Figure was created by R software, https://www.r-project.org/). An individual participant value is
located on each variable axis, and a line is drawn upward to determine the number of “Points scale” received for each variable value. The sum of these numbers is located
on the “Total Points scale” axis to determine the risk of ACS. (B,C), comparisons of the nomogram total points and risk of ACS levels between persons who carrying
CC + CG genotypes and GG genotype ***p < 0.0001.
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genotypes, CC CG and GG. We found that the detected
frequency of rs2070766 GG genotype was significantly higher
in ACS patients than in control subjects. When analyzing men
and women separately, there was only an association between
the SNP rs2070766 recessive model (GG vs CC + CG) and ACS
in women, but not in men. After adjusting for other
confounders, logistic regression analysis showed a significant
difference remained in recessive model (GG vs CC + CG). This
result indicates an association between GG genotype of MIF
gene rs2070766 and risk of ACS. The mechanisms which link
the genetic variant of MIF to ACS are largely unclear. The
possible pathophysiological rationales may be that MIF could
increase CAD susceptibility by affecting the metabolism of
glycolipid, obesity and inflammation. Herder et al. (2006)
found that the elevation of systemic MIF concentrations
preceded the onset of type 2 diabetes. Nishihira and Sakaue
(2012) found that a tetranucleotide CATT repeat located at
position -794 CATT5-8 (rs5844572) affects MIF mRNA
expression, and is considered to be associated with adiposity.
The pro-inflammatory function of MIF has previously been
reported in many inflammatory diseases such as arthritis
(Calandra and Roger, 2003), septic shock (Bernhagen et al.,
1993), colitis and atherosclerosis (Schober et al., 2008).
Chemokine-like function of MIF (Schober et al., 2008) and
its ability to promote other cytokines production (White et al.,
2013) play important role in the evolvement of atherosclerotic
lesions.

Nomograms have been shown to be more accurate than
conventional systems for predicting outcomes in cardiovascular
diseases (Wu et al., 2018). To explore the potential of MIF gene
variation, we established a nomogram composed of MIF
rs2070766 genotypes, diabetes, WBC, TC and HDL-C to
predict the risk of ACS. In light of the AUC value and
C-index >0.7 combined with the calibration plots, the
discrimination and calibration capacity of this nomogram
model showed good practical values. DCA is a novel method

for evaluating prediction models like nomograms (Mo et al.,
2018). DCA in this study showed that the nomogram is useful to
predict ACS, and is able to visualize the net benefit of clinical
consequences according to the threshold probability. Taken
together, this nomogram may be able to help cardiologists
stratifying patients according to their risk of developing ACS.
During the 25 months follow-up, Kaplan-Meier analysis
identified that ACS patients carrying GG phenotype
developed more MACE than CC or GG phenotype carriers.
In another case-control study including 363 CAD patients and
1980 healthy controls, Christian et al. also found that carriers of
the minor alleles rs755622 C and rs2070766 G in women had a
higher risk of CAD during the 10.3 years follow-up period
(Herder et al., 2008). Thus, analysis of certain MIF gene
polymorphism would help to identify individuals with
potential ACS risk, and identification of targeted MIF gene
variation in patients with ACS may also benefit in risk
stratification and management.

There are some limitations in this study. First, this study is a
single-center study and the sample size of the study is relative
small. Therefore, future studies with larger sample sizes and
multi-center cohorts are warranted to validate our results.
Second, internal random verification was used for the model
validity, the generalisability (external validity) of the study is still
unclear. Third, all participants are fromChina, the findings in this
study require further confirmation in other populations.

In conclusion, our results demonstrated an association
between the intron genetic variation of MIF gene rs2070766
and risk of ACS. The GG genotype carriers of ACS patients
had a worse clinical outcome evidenced by a higher incidence
of MACE during the follow-up period. We established an
early warning model incorporating clinical characteristics
and MIF gene variation that may be useful as a predictive
method to further stratify the risk of ACS patients, which will
help for a better management for this emergent event
of CAD.

FIGURE 4 | Different parameters to validating the nomogram. (A), receiver operation characteristic curve (ROC) for validating the discrimination power of the
nomogram. (B), calibration plot of the nomogram (p � 0.515). The diagonal red line represents a perfect prediction by an ideal model. The diagonal 45° red line indicates a
perfect calibration that the predictive capability of the model perfectly matches the actual risk of ACS. The black line represents the performance of the nomogram, of
which a closer fit to the diagonal red line represents a better prediction. (C), decision curve analysis (DCA) of the nomogram. The x-axis indicates the threshold
probability. The threshold probability is where the expected benefit of treatment is equal to the expected benefit of avoiding treatment. The y-axis measures the net
benefit calculated by adding true positives and subtracting false positives. The gray line displays the net benefit of the strategy of treating all ACS patients. The black line
illustrates the net benefit of the strategy of treating no ACS patients. The red line indicates the nomogram.
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