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Abstract: Sodium-glucose co-transporter-2 inhibitors (SGLT2is) not only have antihyperglycemic
effects and are associated with a low risk of hypoglycemia but also have protective effects in organs,
including the heart and kidneys. The pathophysiology of diabetes involves chronic hyperglycemia,
which causes excessive demands on pancreatic β-cells, ultimately leading to decreases in β-cell mass
and function. Because SGLT2is ameliorate hyperglycemia without acting directly on β-cells, they are
thought to prevent β-cell failure by reducing glucose overload in this cell type. Several studies have
shown that treatment with an SGLT2i increases β-cell proliferation and/or reduces β-cell apoptosis,
resulting in the preservation of β-cell mass in animal models of diabetes. In addition, many clinical
trials have shown that that SGLT2is improve β-cell function in individuals with type 2 diabetes. In
this review, the preclinical and clinical data regarding the effects of SGLT2is on pancreatic β-cell mass
and function are summarized and the protective effect of SGLT2is in β-cells is discussed.
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1. Introduction

In 2021, 540 million people around the world between the ages of 20 and 79 were
estimated to have diabetes, and this number is expected to increase further [1]. Most of
these individuals have type 2 diabetes (T2D). The pathophysiology of T2D is characterized
by insulin resistance and a reduction in insulin secretion, with the latter playing important
roles in both the onset and progression of the disease [2–5]. The progressive decrease in
insulin secretion is the result of pancreatic β-cell failure, involving a loss of β-cell mass and
an impairment in β-cell function [6–8]. Therefore, the prevention of β-cell failure by the
preservation of β-cell mass and function would prevent the progression of T2D.

Sodium-glucose co-transporter-2 inhibitors (SGLT2is) are oral antihyperglycemic
agents that reduce the blood glucose concentration by inhibiting glucose reabsorption
in the proximal tubules of the kidney and promoting its excretion, causing glucosuria [9].
In addition, their use is associated with a low risk of hypoglycemia, and they have pro-
tective effects in organs, including the heart and kidneys [9]. Since the publication of the
findings of the EMPA-REG OUTCOME trial in 2015, randomized controlled trials and
meta-analyses have shown that treatment with an SGLT2i has secondary preventive effects
on major cardiovascular events in individuals with T2D, and has preventive effects on
hospitalization for heart failure (HF) and the progression to end-stage renal disease in indi-
viduals with T2D, regardless of the presence or absence of atherosclerotic cardiovascular
disease (ASCVD) or a history of HF [10–14]. Therefore, the Standards of Medical Care in
Diabetes by the American Diabetes Association state that an SGLT2i is an appropriate initial
therapy for individuals with T2D who are at high risk for ASCVD, HF, and/or chronic
kidney disease [15].

This review summarizes the published preclinical and clinical data regarding the
effects of SGLT2is on pancreatic β-cell mass and function and discusses the use of SGLT2is
for the protection of β-cells.
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2. SGLT2is Protect Pancreatic β-Cells

Chronic hyperglycemia is associated with macrovascular and microvascular complica-
tions in diabetes. Multifactorial interventions targeting blood pressure and the circulating
lipid profile, and glycemic control, are important means of preventing and slowing the
progression of macrovascular complications, including ASCVD [16–18]. On the other hand,
intensive glycemic control itself delays the onset and slows the progression of microvascu-
lar complications, such as diabetic retinopathy and diabetic kidney disease [19–21], which
implies that chronic hyperglycemia significantly contributes to the injury of the organs
affected by microvascular complications.

Chronic hyperglycemia also affects pancreatic β-cells (Figure 1). Under normal cir-
cumstances, when the blood glucose concentration increases, insulin secretion by β-cells is
increased, which reduces the blood glucose concentration. However, if the hyperglycemia is
chronic, β-cells become overloaded, resulting in decreases in β-cell mass and function [22].
Because insulin is the only hormone that reduces the blood glucose concentration, if the
secretion of insulin is insufficient, chronic hyperglycemia results. Persistently high concen-
trations of glucose have deleterious effects on β-cell mass and function, ultimately resulting
in β-cell failure and further hyperglycemia (Figure 1). This vicious cycle is thought to
mediate the progressive decline in β-cell mass and function that is an important feature of
the pathophysiology of T2D.
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A number of mechanisms have been proposed to explain how chronic hyperglycemia
induces β-cell failure, but it is thought that metabolic stress, including oxidative stress and
endoplasmic reticulum stress, plays an important role [22–25]. β-cells not only in db/db
mice, which represent a slightly extreme model of obesity and T2D, but also in individuals
with diabetes show a progressive reduction in mass that is associated with oxidative stress
when exposed to long-term hyperglycemia [23,24,26]. A number of biochemical pathways
through which hyperglycemia may cause excessive production of reactive oxygen species
(ROS), which cause oxidative stress, have been identified. When metabolites of glucose
are subjected to oxidative phosphorylation, ROS are produced at the same time as ATP
is generated by the mitochondrial respiratory chain. Therefore, in glucose excess, the
production of ROS increases. Additionally, some of these metabolites enter alternative
pathways, such as hexosamine metabolism and sorbitol metabolism, which also result in
ROS production [24,25]. ROS accumulation leads to β-cell failure through mitochondrial
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injury and lower expression of β-cell-associated transcription factors [27,28]. The role of
metabolic stress induced by excessive glucose metabolism has been demonstrated using
a transgenic mouse model of β-cell-specific genetic activation of glucokinase, the rate-
limiting enzyme of glycolysis, the first step in glucose metabolism in β-cells. These mice
develop β-cell failure as a result of greater metabolic stress and DNA damage [29]. In
addition, mice with a heterozygous mutation that results in the activation of glucokinase in
β-cells exhibit long-term glucose intolerance and lower β-cell mass [30]. These findings
are consistent with the importance of excess glucose metabolism for the development of
β-cell failure.

A reduction in the glucose overload of β-cells might break the vicious cycle de-
scribed above (Figure 2). One strategy would be to reduce glucose metabolism in β-
cells. To assess the potential for this approach, we generated db/db mice with glucokinase
haploinsufficiency [31]. In these mice, the β-cell deficiency of glucokinase prevented the
progressive decline in β-cell mass and function by reducing metabolic stress. Specifically,
they showed higher expression of β-cell-associated transcription factors, such as Mafa and
Nkx6.1, which results in improvements in insulin secretion and glucose tolerance [28,31].
Another strategy is to reduce excessive glucose influx into β-cells. SGLT2is have long-term
antihyperglycemic effects [9]. The mechanism of action of SGLT2i is to promote the ex-
cretion of glucosuria via suppression of renal glucose reabsorption by inhibiting SGLT2.
SGLT2 is one of the glucose transporters expressed in the proximal tubules of the kidney.
In pancreatic β-cells, the glucose transporter (GLUT) family, such as GLUT1 and GLUT2, is
responsible for glucose uptake into cells, and SGLT2 is not expressed [32–37]. Additionally,
SGLT2is do not directly affect insulin secretion in the islets of rodents and humans [34,36].
Therefore, SGLT2is might reduce the excessive influx of glucose indirectly, and thereby
prevent β-cell failure by reducing local glucose overload (Figure 2).
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3. Findings Obtained from Animal Models Regarding the Effects of SGLT2is on
Pancreatic β-Cell Mass and Function

As described above, although db/db mice represent a slightly extreme model of obesity
and T2D, they demonstrate decreases in β-cell mass and function with advancing age [38],
and therefore represent a good model in which to determine the protective effects on
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β-cell mass and the function of pharmacological interventions. Jurczak et al. established
SGLT2 knockout mice on a db/db background [39], and found that their glucose tolerance,
glucose-stimulated insulin secretion during a hyperglycemic clamp, and β-cell mass were
higher than those of control db/db mice. These findings are consistent with a beneficial
effect of SGLT2is on β-cell function. Indeed, several SGLT2is have been shown to have
protective effects on β-cell mass and function in db/db mice [40–43] and in Zucker diabetic
fatty rats, which also show similar progressive decreases in β-cell mass and function with
age [44–46].

β-cell mass is determined by the levels of β-cell proliferation, apoptosis, and dediffer-
entiation that occur [47]. In db/db mice, SGLT2 deficiency or treatment with luseogliflozin
increases β-cell proliferation and/or reduces β-cell apoptosis, which results in the preser-
vation of β-cell mass [39,42,43]. Gene expression profiling studies have consistently shown
that the expression of β-cell-associated transcription factors, such as Mafa, Pdx1, and Nkx6.1,
is significantly higher in the islets of db/db mice treated with luseogliflozin, empagliflozin,
and ipragliflozin than in those of untreated db/db mice [42,43,48–50]. Given that the expres-
sion of these transcription factors is lower in db/db mice than in wild-type mice and that
they are involved in β-cell proliferation and apoptosis [27,51–55], the restoration of their ex-
pression by SGLT2i treatment may play an important role in the maintenance of β-cell mass
induced by these drugs. Regarding dedifferentiation, in our study of db/db mice, there were
no differences in the expression of markers of islet progenitor cells, including neurogenin 3
and aldehyde dehydrogenase 1a3, between luseogliflozin-treated and untreated mice [43].
Consistent with this, the SGLTi phloridzin does not reduce β-cell dedifferentiation in db/db
mice [56]. However, one study has recently reported that treatment with dapagliflozin
promotes α- to β-cell conversion and duct-derived β-cell neogenesis [57]. Thus, more
detailed studies are needed to better define the effects of SGLT2is on the differentiation
status of β-cells.

The effects of SGLT2is on metabolic stress, including oxidative stress, are considered
to play a major role in the upstream mechanism, whereby the expression of the above-
mentioned β-cell-associated transcription factors is restored [27,51,58,59]. SGLT2is likely
reduce metabolic stress in β-cells, at least in part by reducing glucose overload (Figure 2),
which leads to the restoration of the expression of these transcription factors. In fact,
treatment with luseogliflozin and empagliflozin has been shown to increase the expression
of the antioxidant gene Gpx1 and to reduce that of c-Jun, which is located upstream of
Mafa and induced by oxidative stress, in the islets of db/db mice [43,48,49]. Furthermore, in
rodents with streptozotocin-induced type 1 diabetes, treatment with empagliflozin reduces
ROS production and apoptosis in their β-cells [60]. Taken together, these findings are
consistent with the above mechanism.

From a clinical point of view, when should the administration of SGLT2is be started
during the course of T2D? To attempt to answer this question with respect to β-cell status,
luseogliflozin was administered to db/db mice from various ages (6, 10, 14, or 24 weeks) for
4 weeks, and the β-cell mass of the mice was compared with those of mice that had not
been administered luseogliflozin. The untreated db/db mice showed a decrease in β-cell
mass with age, but treatment with luseogliflozin for 4 weeks increased the β-cell mass of
the mice at all the assessed ages. However, treatment at a younger age preserved more of
the initial β-cell mass [38]. Similarly, the effects of luseogliflozin treatment for 2 weeks on
the β-cell mass and function of db/db mice during the early and advanced stages of diabetes
were assessed. In this study, the insulin secretory capacity and β-cell mass of mice were
preserved better when they were treated early (at 7–9 weeks of age) than when they were
treated at an advanced stage (at 16–18 weeks) [49]. The results of these two studies imply
that the protective effects of SGLT2is on β-cell mass and function are more marked during
the earlier stages of diabetes. Another research group also investigated the importance
of the duration and timing of treatment with dapagliflozin for the preservation of β-cell
mass in db/db mice, and found that early long-term treatment is associated with superior
protective effects [61]. Interestingly, when the mice were grouped into two groups with the
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same treatment period but with different starting times for the treatment with dapagliflozin,
a β-cell protective effect was observed in mice in the early treatment group compared with
mice in the late treatment group.

Because SGLT2is have similar molecular structures [62], the effect of these inhibitors on
pancreatic β-cells is considered to be a class effect. However, it may be necessary to consider
the effect of these inhibitors on pancreatic α-cells. SGLT2 has been reported to be expressed
in α-cells and its inhibition secretes glucagon from α-cells [33] while other reports have
shown that SGLT2 is not expressed in α-cells [34–36]. Therefore, the expression and role of
SGLT2 in α-cells is highly controversial [63]. A recent report suggested that heterogeneity
in SGLT2 expression and function in human α-cells was associated with interindividual
variability [37]. Additionally, SGLT1 is expressed in α-cells and could contribute to the
regulation of glucagon secretion from α-cells [35,64]. The finding that SGLT1 knockout
mice fed a glucose-deficient fat-enriched diet showed altered islet morphology, including
decreased insulin-expressing islet cells [65], suggested that the SGLT2 selectivity of SGLT2is
affects β-cell mass and function via SGLT1 in α-cells (Figure 2). Future studies on a direct
comparison of these inhibitors with different SGLT2 selectivity are required.

4. Clinical Findings Regarding the Effects of SGLT2is on Pancreatic β-Cell Function

Several clinical studies have investigated the effects of SGLT2is on β-cell function,
although it is difficult to assess the direct effects on β-cell mass in individuals. Ferrannini
et al. evaluated the responses to acute or chronic treatment with the SGLT2i empagliflozin
in 66 individuals with T2D in a mechanistic single-arm study. In this study, β-cell glucose
sensitivity, which was estimated using the data from a meal tolerance test, was compared
as a β-cell function modeling. Both acute (single dose) and chronic (4-week administration)
treatment with empagliflozin significantly increased the individuals’ β-cell glucose sensi-
tivity versus baseline (prior to treatment) [66]. In addition, a randomized, double-blind,
placebo-controlled phase 3 study of treatment with canagliflozin monotherapy and add-on
therapy for 26 weeks showed improvements in β-cell glucose sensitivity and the insulin
secretion rate versus placebo [67]. In a study of 24 individuals with T2D who were ad-
ministered dapagliflozin or placebo for 2 weeks and underwent an oral glucose tolerance
test and an euglycemic insulin clamp before and after treatment, not only β-cell glucose
sensitivity but also the insulin secretion/insulin resistance index were significantly im-
proved in the dapagliflozin group compared with the placebo group [68]. Furthermore, the
β-cell function was investigated using the gold-standard hyperglycemic clamp technique
in a single-arm study of 15 individuals with T2D who were administered empagliflozin
for 2 weeks. This study also showed significant improvements in β-cell glucose sensitivity
and the insulin secretion/insulin resistance index [69]. Finally, in a single-arm study of the
effects of a 4-week treatment with ipragliflozin followed by a 1-week washout, in Japanese
individuals with T2D, the insulin secretion/insulin resistance index significantly increased
not only after the treatment for 4 weeks but also after a subsequent washout for 1 week
compared with that before the treatment [70]. Taken together, these findings are consistent
with a beneficial effect of SGLT2is on the β-cell function of individuals with T2D.

A high circulating concentration of proinsulin has been used as a marker of β-cell
dysfunction [71]. The fasting proinsulin concentration is related to the level of glucose
tolerance and can be measured in a single fasting blood sample, making it a convenient
and clinically useful index [72,73]. In single-arm studies, the administration of ipragliflozin
was shown to significantly reduce the proinsulin/C-peptide ratio in individuals with
T2D [74,75]. This ratio was improved by canagliflozin monotherapy in similar individuals
in two randomized, double-blind, placebo-controlled studies [76,77]. Given that a high
circulating proinsulin concentration is indicative of a high β-cell workload [78], SGLT2is
may prevent β-cell dysfunction by reducing the load on β-cells.

In addition to investigating the effects of empagliflozin on the β-cell function of
individuals with diabetes, they have been investigated in individuals with impaired fast-
ing glucose. Similar to the effects described above, treatment with empagliflozin for
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2 days or 2 weeks significantly improved β-cell function, evaluated using the insulin secre-
tion/insulin resistance index, in individuals with impaired fasting glucose [79]. In addition,
a recent pooled analysis of data from the DAPA-HF and DAPA-CKD trials showed that
treatment with dapagliflozin prevents the onset of diabetes in individuals with chronic
kidney disease and HF [80]. Given that many of the individuals included in this analysis
had prediabetes, the effect of SGLT2is to improve β-cell function may have contributed to
the prevention of diabetes.

5. Comparison and Combination of SGLT2is and Other Antihyperglycemic Agents

Comparisons of the effects of SGLT2is and other antihyperglycemic agents and analy-
ses of their concomitant effects on β-cell function have been made in several preclinical and
clinical studies. To determine whether a reduction in metabolic demand induced by the
antihyperglycemic effects or the insulin-sensitizing effects of the drugs are responsible for
the improvements in β-cell function, 8-week-old db/db mice were treated for 4 weeks with
liraglutide, a glucagon-like peptide 1 receptor (GLP-1R) agonist, alone or in combination
with dapagliflozin, or rosiglitazone, a thiazolidinedione, alone or in combination with da-
pagliflozin. The results indicated that both combinations had synergistic effects to improve
β-cell function, as evaluated in perifused isolated islets and using β-cell gene expression
analysis [81].

The expression of GLP-1R in islets is downregulated in hyperglycemia and its ex-
pression is restored by correction of the hyperglycemia by treatment with phlorizin
and luseogliflozin [49,82], and therefore it is reasonable to expect that therapy with
a combination of an SGLT2i and an incretin-related agent would have a positive effect
on β-cell function. In fact, combination treatment with empagliflozin and linagliptin for
2 weeks was significantly more effective at preserving β-cell mass and function than either
drug when administered as a monotherapy in 7-week-old db/db mice [83]. In a clinical
mechanistic study of individuals with T2D, glucose-stimulated insulin secretion, evaluated
using an intravenous glucose load and a subsequent hyperglycemic clamp, was increased
by treatment with empagliflozin, and a further increase was obtained after the addition of
linagliptin [84]. In addition, a 24-week randomized placebo-controlled study showed that
the proinsulin/C-peptide ratio in individuals with T2D was significantly reduced by the
administration of canagliflozin as an add-on therapy to teneligliptin [85]. Finally, Ali et al.
investigated the effect of treatment with canagliflozin, liraglutide, or a combination of
these 2 agents on the β-cell function of individuals with T2D, and found that 16 weeks
of monotherapy with canagliflozin or liraglutide improved β-cell glucose sensitivity, as-
sessed by an oral glucose tolerance test. However, the combination therapy did not have
an additional effect [86], which may be related to the lack of an additive antihyperglycemic
effect of this combination.

Whether β-cell mass and function could be preserved by other agents with similarly
sustained antihyperglycemic effects remained unclear. Therefore, 6-week-old db/db mice
were treated with dapagliflozin alone, insulin glargine alone, or both for 8 weeks. In this
study, the glucose tolerance was improved to the same extent in the three treatment groups
compared with the control group. However, β-cell mass and function were preserved in the
dapagliflozin and combination groups but not in the insulin glargine group [87]. The reason
why β-cell mass and function were not preserved in mice treated with insulin glargine
alone cannot be explained, despite the fact that all three treatment groups showed similar
reductions in blood glucose concentrations. Although there were no differences in the lipid
profiles of the three treatment groups, marked hepatic fat accumulation was present only in
the mice treated with insulin glargine alone [87]. Given that hepatic steatosis is associated
with β-cell dysfunction [88–90], this hepatic fat accumulation may have contributed to the
difference in the effects of the treatments on β-cell mass and function. Further studies are
needed to confirm this.
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6. Future Prospects

As described above, many basic and clinical studies have demonstrated that SGLT2is
preserve β-cell mass and function. In the future, the mechanism of the β-cell protective
effect of SGLT2is should be studied in more detail. In particular, it is important to verify the
effect of SGLT2i treatment on glucose metabolism and mitochondrial function in β-cells, to
determine whether or not this treatment is consistent with the concept of a reduction in
glucose metabolism overload, as discussed above. In addition, it is important to determine
whether the β-cell protective effect of SGLT2is is solely because of a lowering of blood
glucose. Recently, one study has reported that serum from mice treated with luseogliflozin
increases β-cell proliferation not only in mouse islets but also in human islets [91]. These
findings suggest that humoral factors other than blood glucose concentration may mediate
the response of pancreatic β-cell mass to treatment with SGLT2is.

Clinically, it should be determined whether β-cell function can be maintained by long-
term treatment with an SGLT2i and whether the effects of treatment can be maintained
even after the discontinuation of the drug. It would also be interesting to investigate the
effect of these drugs on the β-cell mass of humans using imaging techniques and also in
individuals with prediabetes.
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