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Objective: Deep learning algorithms have long been involved in the diagnosis of
severe neurological disorders that interfere with patients’ everyday tasks, such as
Parkinson’s disease (PD). The most effective imaging modality for detecting the condition
is DaTscan, a variety of single-photon emission computerized tomography (SPECT)
imaging method. The goal is to create a convolutional neural network that can
specifically identify the region of interest following feature extraction.

Methods: The study comprised a total of 1,390 DaTscan imaging groups with PD and
normal classes. The architecture of DenseNet-121 is leveraged with a soft-attention
block added before the final classification layer. For visually analyzing the region of
interest (ROI) from the images after classification, Soft Attention Maps and feature map
representation are used.

Outcomes: The model obtains an overall accuracy of 99.2% and AUC-ROC score
99%. A sensitivity of 99.2%, specificity of 99.4% and f1-score of 99.1% is achieved that
surpasses all prior research findings. Soft-attention map and feature map representation
aid in highlighting the ROI, with a specific attention on the putamen and caudate regions.

Conclusion: With the deep learning framework adopted, DaTscan images reveal the
putamen and caudate areas of the brain, which aid in the distinguishing of normal and
PD cohorts with high accuracy and sensitivity.

Keywords: neural networks, Parkinson’s disease (PD), DenseNet architecture, region of convergence (ROC), area
under the curve

INTRODUCTION

Parkinson’s disease (PD) is recognized as a chronic neurodegenerative condition of the central
nervous system that primarily affects older adults (Pahuja et al., 2019) by Pereira et al. Researchers
recognize the lack of dopaminergic neurons as the major cause of PD (Prediger et al., 2014). In
the etiology of PD, oxidative stress is becoming a key factor in dopaminergic neuron degeneration
(Zhou et al., 2009; Blesa et al., 2015). Loss of dopaminergic neurons is observed in substantia nigra
of the mid-brain and later in loss of dopamine transporters in the striatum (Porritt et al., 2005).
The striatum is the most significant component of the brain’s basal ganglia region, which produces
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is responsible for releasing the dopamine neurons in the mid-
brain. The disease’s progressive nature may be attributed
to the gradual deterioration in the striatum with age
(Shahed and Jankovic, 2007).

Early PD is defined as the time frame before the start of
severe motor symptoms and before the beginning of significant
neurological impairment; yet, there is a scarcity of evidence that
indicates the true potential of early therapy in terms of clinical
and financial results (Zhou et al., 2009). More clarification is
needed to study the true effect of early intervention on these
outcomes. Future research should examine the impact of new
diagnostic tools like genetic biomarkers on a wide range of
medical issues (Porritt et al., 2005; Zhou et al., 2009).

Non-motor symptoms of PD result include anosmia (which
affects the olfactory system), fatigue, disturbed sleep cycle, and
fluctuations in bodyweight, disorders involving in temperament
and cognitive aptitude, coronary artery disorders, bladder and
bowel incontinence and digestive tract disorders. While the
motor symptoms include resting tremor, rigidity, impaired
body balance, slowing and freezing down of body movements
or bradykinesia. As a result of such motor symptoms, the
affected individual suffers from micrographia, dystonia and
overall struggle in daily life activities. One may be able to find
significant traits that are not normally employed in the clinical
diagnosis of PD using machine learning algorithms, and depend
on these alternative measures to diagnose PD in preclinical stages
or atypical forms.

A person’s gait and movement patterns are closely
scrutinized during a medical examination. Parkinson’s disease is
characterized by bradykinesia (slow, tiny movements). Rigidity,
or the quality of being rigid. During a medical exam, we passively
move the patient’s joints to discover this. The arms, legs, and neck
are often rigid in those with Parkinson’s disease. Restless tremors.
While individuals aren’t paying attention or are preoccupied,
these tremors come out, therefore a good opportunity to notice
this is when someone is walking. To diagnose this illness, there
are no biomarkers (tests or assessments). We don’t need to
do imaging or laboratory testing unless we feel that there is a
different reason for the patient’s symptoms. Movement indicators
are just a portion of the picture for Parkinson’s disease, since it
affects every region of the body.

Changes in memory and cognition, difficulty sleeping,
emotional symptoms including worry and sadness, or even
hallucinations, are among the most often reported symptoms.
Patients with Parkinson’s disease are more likely to have issues
with their autonomic nervous system. Controls such as heart rate,
digestion, breathing, pupillary response and urine and sexual
desire are all under the control of this system, which is mostly
unconsciously active (Marine et al., 2019).

Neuroimaging technique in the recent past, particularly
SPECT (single-photon emission computed tomography), have
presented promising potential because of their sensitivity and
specificity in diagnosing early PD. SPECT is proved to be
more accessible to clinicians, being less expensive (Lauretani
et al., 2015; Jinjin et al., 2019). The SPECT method of imaging
avails 123I-FP-CIT, i.e., 123I-Ioupane. This radioligand binds the
dopamine transporters in the striatum and termed as SPECT
DaTSCAN Dopamine transporter levels in the brain may be

seen using the DaTSCAN procedure, a form of Single-Photon
Emission Computed Tomography (SPECT) (Harisudha et al.,
2021). Traditionally, a standardized analysis and detection of
such subject images are carried out by specialized technicians and
radiologists. Notably, smaller putamen and caudate regions (the
dopamine transporters) are observed in the case of PD patients,
mainly because of the steady deficiency of dopaminergic neurons
(Shahed and Jankovic, 2007; Mohammed et al., 2020).

In the healthcare industry, machine learning techniques
are becoming more prevalent. Machine learning allows an
algorithms to learn and extract meaningful representations
from data in a semi-automated way, as the term indicates.
Machine learning models have been used to diagnose Parkinson’s
disease using a variety of data modalities, such as handwriting
trends, gait patterns, and neuroimaging methodologies
(Dhanalakshmi and Venkatesh, 2016; Matesan et al., 2018;
Oláh et al., 2021).

Patients with PD who are diagnosed and treated early have
decreased chance of progression and perhaps cheaper long-
term care expenditures. Computer-Aided Diagnosis models that
sufficiently make use of Artificial Intelligence (AI) techniques,
particularly Deep Learning (DL) methods in the recent past;
have suitably specialized as a reliable diagnostic tool (Matesan
et al., 2018; Oláh et al., 2021). With the advancement in central
processing unit (CPU) and graphics processing unit (GPU),
better availability of reliable databases with ease of access in
online platforms, and rapid improvisation of learning algorithms
(Rumman et al., 2019; Bevilacqua et al., 2020).

Parkinson’s disease is distinct from other disorders in various
ways, including how well it responds to levodopa. PD may
be differentiated using a variety of neuroimaging methods,
according to current scientific research. An imaging study using
positron emission tomography (PET) has revealed a possible
mechanism for the lack of response to PD treatment, as the
study was also used in the preservation of dopamine receptors
in PSP (Brooks et al., 1992). MRI with a high field strength
(1.5 T) and a heavy T2 weighting, [18F]-fluorodopa positron
emission tomography, [11C] raclopride imaging of dopamine
D2 receptors, and single photon emission computed tomography
of striatal dopamine reuptake sites are all possible imaging
investigations (Warren et al., 2007).

MRI is the best structural imaging method that does not use
ionizing radiation when compared to nuclear imaging. In the
early stages of Parkinson’s disease, the vast majority of routine
MRI methods failed to detect disease-specific abnormalities.
Brain parenchyma sonography, a commonly used diagnostic tool
for Parkinson’s disease (Brooks et al., 1992), recently revealed
abnormal hyper echogenicity in both PD and essential tremor
(Warren et al., 2007). As a recent research found that 77%
of levodopa patients first reacted favorably to the medicine,
levodopa has become an essential treatment for Parkinson’s
disease (PD) (Brooks et al., 1992). Levodopa has been argued by
physicians to be detrimental to prognosis since it is not definite
of Parkinson’s disease (Warren et al., 2007). To distinguish
Parkinson’s disease from other Parkinsonian illnesses, Apo
morphine injections have been tried subcutaneously, however,
they are ineffective and contribute very little to the diagnosis of
PD (Brooks et al., 1992).
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Despite promising pre-clinical data, many previously
proposed medicines have failed clinical trials, underscoring the
need of a well-thought-out study plan. Recent advances in our
knowledge of the pathogenic processes and anatomical bases
of Parkinson’s disease (PD) symptoms have opened up new
therapeutic options, and it now seems likely that approaches
to treating the disease will change considerably in the years
ahead. Crediting the recent success of deep learning in medical
image classification, this study relies on a similar motive,
to detect the disease as early as possible, making optimum
use of the convolutional neural network (CNN), a DL based
architectural topology (Tagare et al., 2017; Rui et al., 2020).

In the case of making precise judgments based on large
datasets, deep neural networks are clearly an asset. The
methodology implemented in this research are Deep learning
algorithms in which DenseNet 121 performed well when
compared to other techniques. All previous layers provide extra
input to DenseNet layers, which in turn provide their own feature
maps to all following layers. Instead of adding the activations
generated by one layer to the activations generated by subsequent
levels, the activations are simply concatenated together. As the
layers build upon one another, they share a “collective wisdom.”
In order to maintain some kind of global state, the original
inputs and activations from prior levels are retained at each layer
(or, to be more accurate, between blocks of layers). A smaller
number of parameters for a given depth is the result of this
approach, which facilitates the reuse of existing features. Since
dense networks can handle smaller datasets, they’re especially
well-suited to them. Because there are no duplicate feature maps
to train when DenseNets are connected in this manner, they
need less parameters than a similar classic CNN. Some ResNets
versions have also shown that many layers contribute little and
may be eliminated. As a result, ResNets have a large number
of parameters since each layer has its own weights to learn.
A tiny number of new feature maps is all that DenseNets layers
do, since they are relatively narrow (e.g., 12 filters). There was
also an issue with training in extremely deep networks, due
to the flow of information and gradients stated above. Because
the gradients from the loss function and the original input
picture can be accessed directly by each layer in DenseNets, this
problem is alleviated (Ahlrichs and Lawo, 2013; Minja et al., 2019;
Latha et al., 2020).

RELATED WORKS

Rumman et al. (2019) proposed an image processing and
Artificial Neural Network (ANN) based approach to find the
domain of putamen and caudate as the region of interest from
SPECT images for detecting PD in its early stage. The region
values of the putamen and caudate were then fetched to the ANN
classifier for recognition.

Wolfswinkel et al. (2021) developed a convolutional neural
network called DaTNet-3 to differentiate and classify normal
and PD subjects that underwent the DaTSCAN procedure.
They collected the imaging data from Parkinson’s Progression
Marker Initiative (PPMI) and a hospital-based dataset. Wenzel

et al. (2019) explored variable image characteristics at different
camera settings using FP-CIT SPECT to train the InceptionV3
CNN model for automated classification. Three image settings:
unsmoothed, smoothed, and combination of smooth and
unsmoothed were fed into the neural network.

Dhanalakshmi et al. (2019) introduced the role of isosurface
to extract and collect only the most relevant features from
complex 3D DaTSCAN images. This method was further utilized
to implement CNN architectures such as LeNet and ALexNet
for PD classification. Martínez-Murcia et al. (2017) performed
an exhaustive analysis of DaTSCAN images implementing a
voxel-based logistic lasso model. The model helped to define
the regional voxels in the caudate, putamen, and globus pallidus
area for an informed classification of control and PD categories.
Additionally, another ML technique called logistic component
analysis was utilized for judging feature differences within the
same population or groups.

Ortiz et al. (2019) utilized Alexnet architecture and introduced
an image normalization layer to capture the region of interest
from SPECT images. The model helps achieve high classification
accuracy for classifying PD and control groups. Adams et al.
(Subhrajit et al., 2018) performed a quantitative analysis of DAT
SPECT imaging by combining the baseline score of DAT image
scans with UDPRS_III (motor function scores) as base input
parameters. These features, which included motor function and
DAT scan scores, were then provided as input to the CNN model
for prediction and classification for PD.

Oliveira et al. (Mohammed et al., 2020) assessed certain
features that contribute to dopaminergic degeneration for PD
using [123l] FP-CIT SPECT brain scans. A total of seven
features were calculated and employed for the assessment using
ML classifiers that include Support Vector Machine (SVM),
K-Nearest Neighbours (KNN), and Logistic Regression (LR).
Most accurate results were obtained using the SVM classifier with
the seven features.

Martínez-Murcia et al. (Oliveira et al., 2018) developed and
proposed a 3-D CNN system for a fast feature diagnosis of
PD using SPECT imaging modality. Activation maps were
constructed and visualized for practical feature understanding
of the network. Shiiba et al. (2020) studied and assessed shape
features of SPECT images combined with semi-quantitative
parameters to feed into Machine Learning classifiers. The semi-
quantitative features and the shape features were used to extract
and study the region of interest in classifying PD.

Pianpanit et al. (2021) investigated different model
interpretation methods using SPECT images with deep
learning model approaches. Techniques like SHAP (Shapley
Additive explanations) and guided backpropagation were
explored for their attributes and their performance compared for
distinguishing between normal and PD subjects.

It is critical to diagnose PD at an early stage, given that the
severity of PD and its many phases are essential in determining
when to intervene. Many researchers have suggested a model
predict and diagnose the disease. Deep learning for image analysis
has yielded some of the most impressive progress in recent
years (Adams et al., 2018). Various deep learning and machine
learning approaches have been used to predict PD in multiple

Frontiers in Aging Neuroscience | www.frontiersin.org 3 July 2022 | Volume 14 | Article 908143

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-14-908143 July 8, 2022 Time: 8:54 # 4

Thakur et al. DenseNet Model for PD Classification

studies. Imaging modalities including MRI (Magnetic Resonance
Imaging) and SPECT for detecting PD have raised high interest
in research studies.

Sivaranjini et al. (Adams et al., 2018) attempted to classify
PD and healthy control images from MRI modality by following
the architecture of the transfer learning model, AlexNet. This
model successfully recognizes the structural differences in normal
and PD subjects and yields optimal results. Chakraborty et al.
(Magesh et al., 2020) carried out data pre-processing for
3T T1-Weighted MRI brain scans and designed a 3D CNN
model for extracting complex patterns in the brain images of
normal and PD cohorts.

All studies that employed accuracy in model assessment
obtained a diagnostic accuracy above chance values for each
research. It’s possible certain data types may not be generalizable
enough to forecast how effectively they may help us discriminate
between Parkinson’s disease and other Parkinsonian illnesses,
but the application of machine learning to many various kinds
of data led to great diagnostic accuracy in PD. Data splitting
procedures and cross validation were not described despite the
great diagnostic accuracy and performance reported in many
investigations. When 2D slices are derived from 3D volumes in
data modalities like 3D MRI scans, several slices may be created
for a single patient. Data leakage and an overestimation of model
performance may occur if the same subject is used in the training,
validation, and testing sets. This compromises the repeatability of
reported findings.

In the proposed work the following approaches are taken as
objectives for this study:

1. Taking the PPMI repository’s DaTSCAN SPECT images
as the adequate dataset for usage in the study.
2. Comparing healthy Vs. PD cohorts contour edge
imaging technique.
3. Analyze and train the images on DenseNet-121, CNN
topologies with a soft attention block in addition to it,
influenced by the works of Martínez-Murcia et al. (2017),
Oliveira et al. (2018), and Wolfswinkel et al. (2021).
4. Compare the results with other pre-
trained CNN models.
5. Visualize the successful model results using Soft
Attention Map and Feature Map representation.
6. Analyze the results using statistical metrics.

The paper is structured as follows: The section 3 explains
about the materials and methods followed by section 4 deals with
the methodology in detail along with the results and discussion.
The session 5 concludes the research work.

MATERIALS AND METHODS

Dataset
The data for this research was acquired from the PPMI public
repository, which is a multimodal, prolonged study of radiomic
feature observations, neuroimaging, and biological markers in
PD patients and healthy controls (HC).

Various industries’ scientists, researchers, sponsors, and study
populations have continued to work together to build this
substantial searchable archive to make PD research and therapies
easier and more effective by finding progression biomarkers.

Data Preprocessing
A SPECT scan generates a volumetric image of the basal
ganglia. Typically, a collection of axial view planes is then
created for clinical evaluation. These picture sequences have
been anonymized and exported in PNG format. All images were
created using a single slice that is most typical of the basal ganglia’s
anatomical location.

To begin, the image is first pre-processed and the ROI,
the putamen and caudate area, is segmented. The caudate
and putamen area segmentation areas are computed and given
as features to the Deep learning algorithms. With the help
of the training data, the DL algorithms are trained and the
prediction model may be utilized to distinguish PD patients from
healthy ones. The deep learning algorithms implemented in this
research work are DenseNet 121, Xception, ResNet 50, MobileNet
V2, Inception ResNet V2, ResNet 152V2, EfficientNet B1. The
Figure 1 depicts the suggested procedure using SPECT pictures
from the PPMI database.

Contour Edge Detection
Edge detection is a technique for detecting the borders of objects
in images. It detects brightness disparities in image processing,
computer vision, and machine vision fields. Edge detection is
used to extract images and data. Edge detection are essential in
computer vision since they involve identifying and classifying
objects in images.

In Parkinson’s disease, nigrostriatal loss is often
disproportionate, with greater degradation observed in the
putamen relative to the caudate nucleus. Corresponding with
Parkinson’s disease are aberrant appearances such as symmetrical
loss of uptake in both putamen and total loss in absorption in
the caudate and putamen despite usual functioning. Figure 1
uses canny-edge detection to highlight the putamen and caudate
region in normal and healthy cohorts. Finding a closed form
and drawing the object’s border is the primary goal of contour
detection as shown in Figure 1. It is also possible to employ
contour detection to estimate an object’s form based on such
attributes as its aspect ratio, length, and solidity. The images
are accustomed to working with grayscale images, the first step
is to transform the image to gray. To approximate contours, a
simple threshold is utilized. Smoother contours may be achieved
by using the OPEN and CLOSE technique. A list of contours is
obtained and the final contours are sketched on the color.

Data Augmentation
Figures 2, 3 depict the data augmentation that was performed
on both the subtypes, Health Control and PD patients. Data
augmentation was adopted to correct the balance of the dataset
due to its moderate size and the small number of HC participants
engaged in the screening procedure. The description of the
eight different type of augmentations is mentioned in the
Table 1. The eight augmentation techniques were so chosen
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FIGURE 1 | Edge detection (A) healthy subject (B) PD subject.

FIGURE 2 | Data augmentation for healthy control participants.

manually that the model extracts different spatial representations
throughout the dataset in order to ensure that the final models
function effectively in the event of several limitations like over
fitting conditions. After data augmentation, 1,840 images of HC
participants and 2,002 images of PD patients are generated. The

imaging data selected for this study includes 1,390 DaTscan
SPECT images, which are split into two classes: PD (with 1,160
images) and Healthy Controls (with 230 images), as shown in
Table 2. The PPMI imaging support validated the diagnosis of PD
by confirming that the screening DaT-SPECT (123I FP-CIT) is
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FIGURE 3 | Data augmentation for PD participants.

TABLE 1 | Image augmentation types and its description.

Augmentation type Description

Shift Scale Rotate Shifts along the x/y axis, scale (zoom in/out) and
rotates on a random value

Rotate-90 Rotate by 90 degrees.

Posterize Reduces the number of bits for each color channel

ISO Noise Random sensor noise or Gaussian noise.

Downscale Reduces the overall resolution of the image

Vertical Flip Flip the input vertically around the x-axis.

Sepia Noise Sepia filter is added randomly

Hue Saturation Adds hue saturation to the image

TABLE 2 | Dataset of DaTscan SPECT images.

Study class No. of subjects Average age

Male Female

PD 1160 63.68 ± 62.35 ±

CN 230 61.87 ± 59.26 ±

associated with a DaT deficiency. The network is divided into two
segments during the training phase. The augmentation network
uses two images of the same kind as the input image and outputs
a layer with the same resolution as the input image. This layer
is used to create an “enhanced” version of the original picture.
Finally, the enhanced picture is sent into a second network, which
is called a classification network. An end-of-network drop in
classification accuracy is due to a loss in cross entropy on class
sigmoid. End-to-end, an addition loss is calculated to control
how well augmented images match their input counterparts. As
a result, the total loss is the sum of these two losses.

The overall block diagram of diagnosis of PD using SPECT
images is shown in Figure 4. The SPECT image is pre-
processed, augmented and classified using various Deep learning

algorithms. The performance metrics are compared for with and
without augmented images. The metrics are accuracy, sensitivity,
specificity, precision and F1 score. The SPECT quantitation of
a given picture feature is affected by a wide range of physical
parameters, but three stand out: attenuation, scatter and detector
response (or finite spatial resolution limited by the collimator). As
the image feature size falls, detector response, or limited spatial
resolution, becomes more critical in SPECT quantification.

The detected activity concentration drops with the volume of
features smaller than nearly twice the detector’s spatial resolution.
This is because the SPECT image’s count values are dispersed
across a broader area than the emission source itself. As a result,
the actual concentration is lowered. If a source is big enough, the
dispersion of counts away from that source is counterbalanced to
a greater extent than with smaller sources. Linear deconvolution
filtering, such as Wiener or Metz filters, may be used to adjust
detector response. The detector response will become blurry if the
filter gain is greater than unity at low spatial frequencies. High-
frequency picture noise may be controlled by “rolling-off” the
filter to zero gain. The need for a model to display what location
it is attending to while making a decision/prediction in deep
learning. Various attention mechanisms have been introduced
in the past years. With the development of automated pattern
learning mechanisms, particularly models that can be trained to
focus on specific regions, it is now possible to focus on critical
areas for attention.

METHODOLOGY

DenseNet Architecture
The DenseNet (densely connected convolutional network) is
recognized for having convolutional neural network architecture
that is state-of-art, when validated for classification using the
popular ImageNet dataset. Huang et al. validated the technique
of using direct connections in a feed-forward manner from each
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FIGURE 4 | Overall block diagram of the proposed work.

FIGURE 5 | DenseNet, (A) overall architecture; (B) transition layer; (C) dense layer.

layer to every other layer. Every layer in the model architecture
takes the target input and concatenation of the preceding
layers’ feature maps. It performs non-linear operations such as

batch normalization, ReLU, and convolution or pooling. The
resultant feature maps of each layer are provided as inputs to
the succeeding connected layers after the non-linear function’s
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FIGURE 6 | Soft attention mechanism.

TABLE 3 | DenseNet121 architecture with Soft Attention Block for classification of
PD and HC cases.

Layers Output
shape

Kernel size and details

Convolution 2D 112× 112 7× 7 conv, stride 2 (Rui et al., 2019)

Max Pooling 2D 56× 56 3× 3 max−pool,stride 2

Dense Block (Pahuja et al.,
2019)

56× 56

[
1× 1 conv

3× 3 conv

]
× 6

Transition Layer (Pahuja
et al., 2019)

56× 56 1× 1 conv

28× 28 2× 2 average pool,stride 2

Dense Block (Prediger
et al., 2014)

28× 28

[
1× 1 conv

3× 3 conv

]
× 12

Transition Layer (Prediger
et al., 2014)

28× 28 1× 1 conv

14× 14 2× 2 average pool,stride 2

Dense Block (Blesa et al.,
2015)

14× 14

[
1× 1conv

3× 3conv

]
× 24

Transition Layer (Blesa
et al., 2015)

14× 14 1× 1 conv

7× 7 2× 2 average pool,stride 2

Dense Block (Zhou et al.,
2009)

7× 7

[
1× 1conv

3× 3conv

]
× 16

Soft Attention Block 7× 7 Soft Attention× 1

Classification 1× 1 7× 7 global average pool

Layer 2 Fully Connected Dense Layer, Softmax

computation. If the size of the feature maps changes, the
concatenation procedure is unsuccessful. Hence, the need for
pooling operation is crucial when the size of the feature maps
varies (Chakraborty et al., 2020).

The architecture is organized into distinct blocks, i.e., Dense
blocks (densely connected) to assist in the pooling process. The
layers between dense blocks are transition layers that conduct
the tasks of convolution, batch normalization, and pooling. On
an average note, each function generates K unique feature maps,

a hyper-parameter known as the growth rate which determines
the number of feature maps each layer delivers to the network
(Sivaranjini and Sujatha, 2020). Once updated, the feature maps
may be viewed throughout the network. Unlike other traditional
CNN models, this also waives the need to reproduce one
layer to another.

Each layer in the network reproduces k feature maps and
causes many parameter inputs as shown in Figure 5. As a
solution, to limit the number of input feature maps to 4k, a [1× 1]
size of convolution was employed in the bottleneck layer. Thus,
minimizing the amount of feature mappings at transition layers
is another optimal feature of DenseNet. The number of feature
maps in a dense block with n feature maps results in θn, later in
the transition layer, lying in the factor range of 0 < θ ≤ 1, known
as the compression factor (Gao et al., 2019). DenseNet’s design
provides many advantages in addition to network compactness:
it overcomes the vanishing gradient problem, optimizes feature
transfer, and minimizes the rate of parameters. DenseNet121
network architecture was utilized in this paper.

Soft Attention Block
SPECT DaTSCAN method helps in distinguishing between
Parkinson’s and control subjects by helping to visualize the basal
ganglia region. The dopamine transporters: putamen and caudate
regions are reported to get smaller in size due to the loss of
dopaminergic neurons in the case of PD patients. Soft attention
can be a useful idea to detect the region in the image where
minor to significant distortion is found, which is considered an
abnormality and needs further analysis.

Soft attention takes the robust approach of promoting the
most relevant input (in this case, pixels in an image) while
still allowing a subset of the other information to contribute
to the model’s decision-making as shown in Figure 6. It is
taking inspiration from the good works of Martínez-Murcia et al.
(2017) and Dhanalakshmi et al. (2019), a soft attention block
that utilizes 3D-convolution to attend and identify the essential
features responsible for classification.

This way, the high-level features are first extracted, and
the resultant convolution of ’K’ kernels generates a feature
map (having K attention heads). This feature map is further
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FIGURE 7 | Soft attention map visualisation of PD patients with the ROI highlighted.

normalized to calculate the importance score (or soft attention
score) based on the appropriate location from the extracted
feature map. A 3-D tensor f x

∈ Rhx
×wx
×dx

having a 3-D kernel
of size H ∈ 3 x 3 x nx is input to the convolutional layer that
results in a feature mapf3d ∈ Rhx

×wx
×1.

Such K kernels, work as attention points to generate f3d ∈

Rhx
×wx
×K . These feature maps are further normalized and

averaged to be retained for calculating the importance score (for
dominant locations) or the soft attention score. The equation for
soft attention score denoted by “S” is given below:

S =
K∑

k=1

exp
(

f3dij

)
∑wx

i=1
∑hx

j=1 exp
(

f3dij

) ;where f3d = H
(
f x) (1)

The resultant f x tensor is thereby multiplied with the soft
attention score S, so the value becomesf x

s . A learnable scalar is
assigned to compute the weights, which in this case is y with a

value of 0.01. The total weight is calculated by the equation given
below:

αy = f x
+ yf x

s (2)

The finalized soft attention layer helps the model decide
the specific locations of the feature map that has important
attributes on the whole.

Figure 5 shows the soft attention maps.
Convolution and pooling are the foundation of DenseNet. In

order to get to the classification layer, there are four more dense
blocks followed by transition layers. After that comes a dense
block followed by yet another transition layer. The DenseNet121
architecture with Soft Attention Block for classification of PD and
HC cases is shown in Table 3.

The stride is 2 and the first convolution block comprises 64
filters of size 7 × 7. After that, there’s a MaxPool layer with
3× 3 max pooling and a stride of 2. ReLU activation and the real
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FIGURE 8 | Soft attention map visualisation of HC patients with the ROI highlighted.

Conv2D layer follow BatchNormalization in every convolutional
block. In Table 3, convolutions with 1 × 1 and 3 × 3 kernel
sizes are used in each dense block. This is repeated six times in
dense block 1, twelve times in dense block 2, twenty-four times
in dense block 3, and ultimately sixteen times in dense block 4.
Each 1 × 1 convolution has four times the number of filters in
dense block. As a result, 4 filters are employed, yet only 3 of those
filters are ever used. In addition, the input tensor and the output
tensor must be joined.

The number of channels in the transition layer is to be reduced
to half of the current channels. An average pool layer with a stride
of two is used in conjunction with a 1× 1 convolutional layer. bn
rl conv already has a kernel size of 1× 1, therefore we don’t need
to declare it again.

Half of the channels in the transition layers must be removed.
To figure out how many channels there are, we need to acquire

half of the input tensor x. As a result, we may utilize Keras
backend (K) to produce a tuple with the dimension of x when
given a tensor x. For our purposes, we simply need to know how
many filters there are in that form. So [−1] is added. This number
of filters may be divided by two to reach the desired result.

The dense blocks and transition layers have now been defined.
The thick blocks and transition layers must now be stacked
one on top of the other. Since the repetitions are 6,12,24,16 we
build a “for loop” to go through them. In this way, the loop is
executed four times, each time with a different number from the
range of 6, 12, 24, or 16. The dense blocks and transition layers
are now complete.

There is a final output layer, then Global Average Pooling.
Following Dense Block 4, there is no transition layer between
Dense Blocks 3 and 4, but it goes straight into the Classification
Layer after Dense Block 4. Global Average Pooling is used on the
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FIGURE 9 | Dense Block of DenseNet121 with batch normalization operation.

connection ’d,’ not the one on ’x,’ as was previously stated. To
eliminate the for loop from the above code and stack the levels
one after the other without a transition layer is another option.

RESULTS AND DISCUSSION

Visual Assessment
DenseNet is compared with the other deep earning algorithms
such as ResNet, Inception ResNet, Xception, MobileNet, and
EfficientNet V2. The vanishing gradient issue was solved by
introducing the idea of residual connections in ResNet V2.
Inception ResNet, a ResNet version that employs several size
kernels inside the same layer, is utilized since it is difficult to select
on a ResNet kernel size. For example, Xception proposed the
notion of depth-wise separable convolution in order to minimize
the number of parameters without compromising performance.
There are now between 100 and 1,000 less parameters since
MobileNet has included point wise convolution in addition to
depth wise convolution. The Soft Map visualization for PD and
healthy controls are shown in Figures 7, 8.In soft attention,
instead of utilizing the image x as an input, we use weighted image
characteristics compensated for attention in soft attention. The
areas of the image that get the most attention seem brighter. The
weighted characteristics of the DL algorithms, as well as the PD
and normal it predicted, are shown in the image above. The low
weight of the feature map multiplied by the soft focus discredits
places that aren’t significant. As a result, regions with high levels
of attention retain their original worth while those with low levels
of attention approach zero (become dark in the visualization).

With the “PD and normal patient,” the attention module creates
a new feature map with all areas darkened except the region
of interest area.

In order to know the working of the model, and how it defines
the ROI through its various layers, feature maps visualization
may be useful. Figure 8 shows layers inside the dense block,
including batch normalization and ReLU activation, and how
they influence in the overall classification work of the model.
These feature maps highlighted help in conclusively deciding the
putamen and caudate regions taking the major role in predicting
the desired class.

The Figure 9 represents the DenseNet 121 algorithm
implementing Batch normalization operation. Normalizing
network activations over a mini-batch of a certain size is what
batch normalization is all about. It is possible to normalize a
mini-batch of data by computing the mean and variance for each
characteristic. To get the feature’s standard deviation, remove
the mean and divide the feature by the mini-batch standard
deviation. Batch normalization enhances the model’s training
speed by smoothing the loss function and improving the model’s
parameters. Poorly initialized neural networks are addressed by
batch normalization. Pre-processing may be done at every level
of the network, according to this interpretation. At the start of
training, it compels the activations in a network to take on a unit
Gaussian distribution. One of the most often used techniques for
training deep neural networks (DNNs) is Batch Normalization
(BatchNorm). The gradients are more predictable and steady as a
result of this smoothness, making it easier to train.

Internal covariate shift is no longer an issue. This ensures that
each layer’s input is spread around a common mean and standard
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FIGURE 10 | Dense Block of DenseNet121 with ReLU activation.

deviation. Assume for a moment that we’re training an image
classification model that sorts photos into one of two groups: PD
or NPD. If we just have photographs of PD, these images will
also be distributed in a certain manner. The model’s settings will
be updated as a result of using these photographs. if we get a
fresh batch of photos from people who are not diagnosed with
PD. As a result of this change, the distribution of these new
photos will be somewhat altered. Using these fresh photos, the
model will adjust its parameters. As a result, the distribution of
the concealed activation will shift as well. It’s called an internal
covariate shift, and it’s a change in the concealed activation. Batch
normalization enhances the model’s training speed by smoothing
the loss function and improving the model’s parameters.

Figure 10 represents the DenseNet 121 algorithm
implementing ReLU activation function. It is possible to
increase the learning pace of deep neural networks by using
ReLU activation functions in the hidden layers. Deep neural
networks now employ the rectified linear unit as their typical
activation function. Using ReLU activation function, the
vanishing gradient issue is avoided. This is the reason why
the deep neural network’s learning speed can be improved
by activating ReLU. As a result of avoiding the need to do
exponential and division computations, employing rectified
linear units speeds up computations significantly. Squeezing

values from 0 to the maximum imparts sparsity into the hidden
units, another ReLU feature. ReLUs may readily overfit when
compared to sigmoid functions, although the dropout approach
has been used to mitigate this problem, and deep neural networks
with corrected networks have shown enhanced performance.
Because of its simplicity and dependability, the ReLU and its
derivatives have been included into several deep learning systems.

Quantitative Assessment
The Figure 11A shows the validation accuracy plot having an
accuracy of 99.2% and the validation loss is shown in Figure 11B.
An AUC of 99% is achieved for DenseNet 121 architecture.
Classification methods rely on the AUC-ROC statistic to gauge
their effectiveness is shown in Figure 11C.

Figure 12 shows the performance metrics for DenseNet 121
implemented for with and without augmentation. The accuracy
with augmented images is better than without augmented images.
The AUC-ROC measure gives us a good idea of a model’s ability
to differentiate between different classes. The more AUC a model
has, the better it is judged to be. For every conceivable cut-off for
a test or combination of tests, AUC-ROC curves are widely used
to illustrate the relationship and trade-off between sensitivity and
specificity. The accuracy for with and without implementing soft
attention Map visualization is 95% and 99.62% is achieved.

Frontiers in Aging Neuroscience | www.frontiersin.org 12 July 2022 | Volume 14 | Article 908143

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-14-908143 July 8, 2022 Time: 8:54 # 13

Thakur et al. DenseNet Model for PD Classification

FIGURE 11 | DenseNet, (A) accuracy; (B) loss curve; (C) ROC curve.

A B

FIGURE 12 | (A) Without augmented images; (B) with augmented images.

The ROC curve’s area under the curve provides an indication
of the test’s value in answering the underlying issue. At different
threshold values, AUC—ROC curves may also be used as a
performance evaluation. Using the AUC-ROC to assess the

performance of a classification model is vital. When a model’s
accuracy is improved via the use of this test, its value and
correctness are both increased. In classification issues, the true
positive rate and the predictive value of a predictive model may be
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TABLE 4 | Overall accuracy of DenseNet 121 for PD and control subject.

Without augmented images With augmented images

Class Accuracy Sensitivity Specificity Precision F1-Score Accuracy Sensitivity Specificity Precision F1-Score

PD 94% 92% 91% 88% 88% 99% 99% 99% 99% 99%

CN 91% 89% 88% 86% 87% 99% 99% 98% 99% 99%

Overall Score 92.5% 90.5% 89.5% 87% 87.5% 99% 99% 98.5% 99% 99%

FIGURE 13 | Comparison of DenseNet using soft attention with other deep learning algorithms.

TABLE 5 | Comparison of various deep learning models.

Deep learning algorithms Computational time

Xception 1.5 min

ResNet 50 2.25 min

MobileNet V2 1.7 min

Inception ResNet V2 1.75 min

ResNet 152V2 3.3 min

EfficientNet B1 3.2 min

DenseNet 121 2.15 min

summarized using this technique, which helps us understand the
trade-off between the two. Table 4 compares the augmented and
non-augmented on the scales of accuracy, sensitivity, specificity,
precision and accuracy.

DenseNet 121 gave an improvement of 3.2, 5.2, 7.2, 11.2, 14.2,
and 29.2% in accuracy when compared to other deep learning
algorithms such as Xception, ResNet 50, MobileNet V2, Inception
ResNet V2, ResNet 152V2, and EfficientNet B1 as shown if
Figure 13. DenseNet 121 solves the vanishing-gradient issue and
encouraging feature reuse. DenseNet also decrease the number of
parameters which yields an increase in accuracy.

In Table 5 the comparison of various deep learning techniques
based on the computational time is listed. DenseNet 121 has the
computational time of 2.15 min with an accuracy of 99.2%.

Many researchers have expanded their horizons by employing
numerous deep learning frameworks to detect PD from

normal and other disease categories, which might be used
in future analysis and examinations. Magesh et al. (Adams
et al., 2018) used transfer learning (with VGG16 as the
leading model architecture) for classifying PD from normal
groups. Local Interpretable Model-Agnostic Explainer (LIME)
was selected as an illustratable method to find the region of
interest to analyze PD and normal group DaTscan images.
LIME proved to be vital substitute for explainable-AI based
diagnosis to be used instead of Grad-CAM and saliency
mapping representation.

Chien et al. (2020) reflected the focus on putamen and
caudate region (from SPECT images) and demonstrated the use
of artificial neural network for detecting PD and parkinsonism
caused by other disorders. Sensitivity and specificity of 81.8%
and 88.6% were achieved, though these research classes could be
further investigated for study.

Nazari et al. (2022) tested layer-wise relevance propagation
(LRP) based CNN for classification of normal and reduced
patients. The study achieved a sensitivity and specificity of 92.8%
and 98.7% respectively. Relevance maps were plotted which could
be further investigated for clarity.

Chen et al. (2021) put focus on striatum scanning and
implemented a CNN model based on attenuation correction.
Monte-carlo based simulation results were drawn for a
clearer visual assessment based on voxel-wise, patch-wise
and image-wise imaging methods. Although computationally
expensive, this strategy showed promise as a substitute in
clinical scenario.
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Tufail et al. (2021) attempted at developing 3D-CNN
to extract attributes of Alzheimer’s Disease (AD), PD and
normal classes from both PET and SPECT images. This
multi-classification based experiment helped in establishing
the relationship between AD and PD patients. This study
reflects that 3D CNN models at relatively cheaper cost in
computational levels could be thus developed for voxel based
understanding of 3D SPECT images with explainable-AI based
techniques implemented.

Leung et al. (2021) developed an approach by evaluating
based on mean absolute error (MAE) and mean absolute
percentage error (MAPE) for outcome prediction. The study
was based on a three staged ensemble method to reveal
spatiotemporal attributes, to demonstrate the connection
between imaging and non-imaging information, for predictions
based on motor outcomes.

The limitations of this study are, the selected features have
been specifically tailored to the diagnosis of Parkinson’s disease.
In people with Parkinson’s disease (PD), the illness advances in a
predictable manner: First, the putamen on the side of the patient’s
clinical symptoms begins to decline in DaT concentration,
and subsequently the caudate. Striatum on DaTSCAN loses its
comma-shape and becomes dot-shaped or vanishes completely
when this occurs. It is possible to “force” a pre-defined region into
the form of an exclamation point, resulting in a semi-quantitative
metric that is still high but solely represents caudate binding,
and therefore does not account for putamen dysfunction. When
training, the ReLU may become unstable, resulting in the
death of certain gradients. This is a serious drawback. So
some neurons die and the weight updates don’t activate in
subsequent data points, preventing learning since dead neurons
offer zero activation.

CONCLUSION

This work demonstrates that significant clinical examination
performance may well be attained utilizing deep learning for
SPECT scan interpretation and analyses. In order to accurately
diagnose PD, it may be necessary to use DaTscan imaging
to evaluate pathophysiological changes. Although our method
allows to describe and visualize normal and PD cohorts relatively
explicitly, of DaTscan SPECT images, using soft attention maps,
it cannot be used for clinically analyzing the motor outcomes
from SPECT images. Instead of using Gradient-weighted Class
Activation Mapping (Grad-CAM), soft attention mapping is used
which is cost-effective.

This is possible even with a modest number of participants
by exploiting the strength of huge pre-trained neural networks
through the transfer learning process along with manual
addition of soft-attention block, as was done with DenseNet
architecture in this study. The necessity for an end-to-end
3D CNN architecture should also be noted for future study.
There were five CNN models employed in comparison with
our CNN model: DenseNet 121, Xception 50, Resnet 50,
Mobilenet V2, Inception ResNet V2, and EfficientNet B1. An
AUC of 99% and an accuracy of 99.2 % are achieved in this

system, compared to previously suggested methods. Further
DenseNet-121 with the soft attention block retains features with
low level of complexity.

This was a semi-automatic diagnostic process, not an entirely
automated diagnosis monitoring system. Utilizing the complete
scan volume rather than just a single slice may prove to be
a rewarding topic of future study. If the transfer learning
process is to be employed, this would need the usage of a
properly pre-trained 3-D convolutional neural network. Though
the simulation findings and study are intriguing, they can be
corroborated with much bigger datasets. It is imperative to deal
with the requirement for an end-to-end 3-D CNN model that
can retrieve relevant features from the 3-D SPECT image data
itself for improved clearer outcomes in future. This mandates
that we continue to make progress on our research in deep
learning and explainable-AI methods on Parkinsonism and
related disorders.
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