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Objective: This study was conducted to test the efficiency of genomic selection for milk 
production traits in a Korean Holstein cattle population.
Methods: A total of 506,481 milk production records from 293,855 animals (2,090 heads 
with single nucleotide polymorphism information) were used to estimate breeding value 
by single step best linear unbiased prediction. 
Results: The heritability estimates for milk, fat, and protein yields in the first parity were 0.28, 
0.26, and 0.23, respectively. As the parity increased, the heritability decreased for all milk 
production traits. The estimated generation intervals of sire for the production of bulls (LSB) 
and that for the production of cows (LSC) were 7.9 and 8.1 years, respectively, and the estimated 
generation intervals of dams for the production of bulls (LDB) and cows (LDC) were 4.9 and 
4.2 years, respectively. In the overall data set, the reliability of genomic estimated breeding 
value (GEBV) increased by 9% on average over that of estimated breeding value (EBV), and 
increased by 7% in cows with test records, about 4% in bulls with progeny records, and 13% 
in heifers without test records. The difference in the reliability between GEBV and EBV was 
especially significant for the data from young bulls, i.e. 17% on average for milk (39% vs 22%), 
fat (39% vs 22%), and protein (37% vs 22%) yields, respectively. When selected for the milk 
yield using GEBV, the genetic gain increased about 7.1% over the gain with the EBV in the 
cows with test records, and by 2.9% in bulls with progeny records, while the genetic gain 
increased by about 24.2% in heifers without test records and by 35% in young bulls without 
progeny records.
Conclusion: More genetic gains can be expected through the use of GEBV than EBV, and 
genomic selection was more effective in the selection of young bulls and heifers without test 
records.
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INTRODUCTION 

With the development of DNA analysis technology and the reduced cost of single nucleotide 
polymorphism (SNP) chip analysis, a lot of research has been conducted on the genomic 
selection of dairy cattle [1-7]. Gengler et al [8] proposed an algorithm that could predict 
genomic information about individuals without genomic information, and VanRaden [9] 
developed methods to calculate the genomic relationship matrix and to estimate the genomic 
estimated breeding value (GEBV). Misztal et al [10] later proposed a new algorithm by com-
bining existing pedigree information and genomic information. Recently, Liu et al [11] 
developed the SNP single-step genomic model and presented methods for estimating effects 
of SNPs directly from the analysis model. The use of the GEBV of dairy cattle was formalized 
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from August, 2010 in Germany, and young bulls without 
daughters can be selected as ‘proven’ bulls, while those that 
have been selected by GEBV are called ‘genomic’ bulls [12]. 
  In the USA and Canada, young bulls have been evaluated 
using genomic information since 2009. For individuals eval-
uated in these countries without phenotypic information, it 
has been reported that the GEBV estimated using genomic 
information was more reliable than the estimated breeding 
value (EBV) estimated from the conventional best linear un-
biased prediction (CBLUP) method [13]. In Japan, a reference 
population of about 4,000 young bulls was established and 
genomic information has since been applied in the juvenile 
selection of young bulls and heifers in the Japanese population 
[14]. 
  Schaeffer [15] proposed the multiple-trait across country 
evaluation (MACE) project, in which 35 countries, including 
the Republic of Korea, are now participating [12]. Sullivan and 
VanRaden [16] proposed the genomic MACE (GMACE) pro
ject, which uses genomic information in the evaluation of 
cattle and has been in operation since 2014. Korea is currently 
establishing the reference populations and accumulating the 
genomic data it needs to participate in GMACE. The purpose 
of the present study was to test the efficiency of genomic se-
lection for milk production traits in the domestic population 
of dairy cattle in Korea.

MATERIALS AND METHODS 

Single nucleotide polymorphism data
A total of 2,090 head of cattle, consisting of both bulls (507 
head) and cows (1,583 head), were genotyped using a Bovine 
SNP50k chip (Illumina, San Diego, CA, USA), through which 
50,908 SNPs were identified. To ensure the quality of the ge-
notypic data obtained, SNPs were excluded from analyses if 
they were found on the sex chromosomes, lacked chromo-
somal information, had missing rates with higher than 10%, 
lacked polymorphism (all homo- or heterozygous), had a mi-
nor allele frequency less than 1%, or were found with a chi-
squared value of the Hard-Weinberg disequilibrium greater 
than 23.9 (p<1.0×10–6). Animals with SNP missing rates greater 
than 10% were also excluded from analyses. After the quality 
control tests, 2,007 individuals and 41,837 SNPs were used in 
the following analysis (Supplementary Table S1).

Milk production data
Based on the test records for the dairy cows calved from 2002 
to 2016, individuals were excluded from analyses if their re-
cords exceeded the following bounds: 305-days milk yield 
outside the range of 2,500 to 16,000 kg, 305-days fat yield out-
side the range of 70 to 600 kg, 305-days protein yield outside 
the range of 80 to 500 kg, for cows exceeding third parity. Ad-
ditionally, data from cows were not used for analyses for whom 

less than 5 records were recorded within one herd-year-season 
(HYS), or whose calving ages were outside the range of 17 to 
31 months in the first parity, 31 to 45 months in the second 
parity, or 45 to 59 months in the third parity. These elimina-
tions were due to the potential outliers or ambiguous parity. 
Therefore, a total of 506,481 milk production records from 
293,855 animals were used for the final analyses (Supplemen-
tary Table S2).

Statistical model
The HYS and parity×month of age at calving (PA) were in-
cluded as fixed effects in a statistical analysis that used the 
following model:

  yi = Xibi+Ziai+ei

  Where yi = n×1 vector of observation in the ith parity, bi = 
p×1 vector of the fixed effect, ai = q×1 vector of the additive 
random genetic effect, ei = n×1 vector of the residual effect, 
and Xi(n×p), Zi(n×q), and Wi(n×q) were known incidence 
matrices corresponding to bi, and ai, respectively. The total 
numbers of HYS, PA, and animals within pedigree values in-
cluded in the analysis using this model, were 62,287, 75, and 
384,406 head, respectively. Since there were no observed val-
ues comparable each parity by trait value, the value of the 
covariance matrix was set equal to zero in the matrix of the 
error variance and covariance shown below:
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Estimated breeding value and genomic estimated 
breeding value
The overall regression coefficient estimates between EBV and 
GEBV for all milk production data analyzed were 0.9075 for 
milk, 0.9202 for fat, and 0.9012 for protein yields. The regres-
sion coefficient estimates between EBV for GEBV for the cows 
with test records and bulls with progeny records were in the 
ranges of 0.9210 to 0.9511 and 0.9378 to 0.9519, respectively, 
while those for bulls without progeny records were the lowest 
and in the range of 0.5348 to 0.6047 (Supplementary Table 
S3). 

Reliability
When genomic information was used, the reliability of trait 
selection increased by 9% on average in the overall data set 
when compared to the method using only pedigree informa-
tion; the reliability was similarly increased by using genetic 
information by 7% for cows with test records, 4% for bulls 
with progeny records, 13% for heifers without test records, 
and 17% for young bulls without progeny records (Table 3).

Genetic gain
When selected using genetic information, the genetic gains in 
milk yield for the cows with test records increased by about 
7.1%, over the gains achieved with CBLUP methods, and gains 
similarly increased by about 2.9% for bulls with progeny re-
cords, 24.2% for heifers without test records, and 35% for bulls 
without progeny records (Table 4). Compared with the CBLUP 
method, the genetic gains in fat yield were increased by about 
7.7% in cows with test records and 2.7% in bulls with progeny 

Table 1. Generation intervals in Holstein dairy cattle population

Pathway No. of pairs
Generation interval (yr)

Mean±STD Skewness Median Mode

Sire → offspring (LSO) 810,391 8.10 ± 1.99 1.21 7.85 6.92
Sire → Bull (LSB) 5,694 7.93 ± 2.59 1.12 7.46 6.32
Sire → Cow (LSC) 804,697 8.10 ± 1.98 1.12 7.86 6.92

Dam → offspring (LDO) 780,239 4.20 ± 2.02 1.97 3.76 2.00
Dam → Bull (LDB) 5,340 4.94 ± 2.31 1.52 4.56 2.25
Dam → Cow (LDC) 774,899 4.19 ± 2.02 1.97 3.75 2.00

Parent →offspring (LPO) 1,590,630 6.19 ± 2.80 0.55 6.55 2.00

STD, standard deviation; Lso, generation interval from sire to offspring, etc.

Table 2. Heritabilities, standard errors, genetic and phenotypic correlations among between parities for milk production traits in a Korean Holstein cattle population

Parity 

Milk production traits (kg)

Milk Fat Protein

1 2 3 1 2 3 1 2 3

1 0.28 0.51 0.43 0.26 0.52 0.44 0.23 0.51 0.42
2 0.91 0.20 0.48 0.94 0.23 0.49 0.91 0.18 0.50
3 0.88 0.99 0.16 0.90 0.99 0.20 0.85 0.98 0.15

Diagonal, heritability; upper triangle, phenotypic; lower triangle, genetic correlation.
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records, while gains increased by about 23.6% for heifers with-
out test records and 33.3% for bulls without progeny records 
(Supplementary Table S4). The genetic gains in protein yield 
increased by about 8.57% in cows with test records and 2.8% 
in bulls with progeny records over gains with the CBLUP me
thod, while gains were increased by about 23.4% for heifers 
without test records and 34.6% for bulls without progeny re-
cords (Supplementary Table S5). 

DISCUSSION 

The heritability estimates for milk, fat, and protein yields in the 

first parity in this study were 0.28, 0.26, and 0.23, respectively; 
these results have been reported to Interbull. As the parity 
increased, the heritability decreased for all milk production 
traits. The genetic correlation coefficients among parities for 
milk, fat and protein yields were in the range of 0.85 to 0.99, 
while the phenotypic correlation coefficients among parities 
were lower than the genetic correlation coefficients and in the 
range of 0.42 to 0.52. Similar results to these were previously 
reported in other countries [18,19].
  In the Korean dairy cattle population examined, the esti-
mated LSB, LSC, LDB, and LDC were 7.9, 8.1, 4.9, and 4.2 years, 
respectively. For the Holstein population in the USA, the gen-

Table 3. Reliabilities on GEBVs (EBVs) and standard deviations of animals with SNP information for milk production traits (kg) in each group

Groups Traits
Parity

1 2 3

Overall Milk 0.50 (0.41) ± 0.16 0.47 (0.39) ± 0.15 0.46 (0.37) ± 0.15
Fat 0.50 (0.41) ± 0.16 0.49 (0.40) ± 0.15 0.47 (0.38) ± 0.15
Protein 0.48 (0.39) ± 0.16 0.45 (0.37) ± 0.15 0.43 (0.34) ± 0.15

Cows with record Milk 0.52 (0.45) ± 0.06 0.49 (0.43) ± 0.07 0.47 (0.41) ± 0.07
Fat 0.52 (0.45) ± 0.06 0.51 (0.44) ± 0.07 0.49 (0.42) ± 0.07
Protein 0.49 (0.42) ± 0.06 0.47 (0.40) ± 0.07 0.44 (0.37) ± 0.07

Sires with progeny Milk 0.75 (0.71) ± 0.18 0.70 (0.66) ± 0.18 0.68 (0.64) ± 0.18
Fat 0.74 (0.71) ± 0.19 0.72 (0.68) ± 0.18 0.69 (0.65) ± 0.18
Protein 0.72 (0.69) ± 0.19 0.68 (0.64) ± 0.19 0.64 (0.60) ± 0.18

Heifer without record Milk 0.38 (0.25) ± 0.06 0.36 (0.23) ± 0.06 0.34 (0.22) ± 0.06
Fat 0.38 (0.25) ± 0.06 0.37 (0.24) ± 0.06 0.35 (0.23) ± 0.06
Protein 0.36 (0.24) ± 0.06 0.34 (0.22) ± 0.06 0.32 (0.21) ± 0.06

Bull without progeny Milk 0.39 (0.22) ± 0.07 0.37 (0.20) ± 0.07 0.35 (0.19) ± 0.07
Fat 0.39 (0.22) ± 0.08 0.37 (0.21) ± 0.07 0.36 (0.20) ± 0.07
Protein 0.37 (0.21) ± 0.08 0.35 (0.19) ± 0.07 0.33 (0.18) ± 0.07

GEBVs, genomic estimated breeding values; EBVs, estimated breeding values; SNP, single nucleotide polymorphisms.

Table 4. Genetic gains of milk yield (kg) per year by the selection method and group
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Cows with record 1 669 0.2 0.72(0.67) 4.2 23.0 (21.4) 7.5 
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Figure 1. Relationship between breeding value (EBV) and genomic breeding value (GEBV) for milk, fat protein yields (left; milk, center; fat, right; protein) in each group 
(from top to bottom; overall, cows with record, sires with progeny, heifers without record and bulls without progeny).
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eration intervals for the LSB, and LSC reported in 2010 (before 
genomic selection was applied) were about 7 years, and those 
for the LDB and LDC were about 4 years. After genomic selec-
tion had been applied for 5 years, the generation intervals for 
the LSB, LSC, LDB, and LDC were reported to decrease to about 
3, 5, 3, and 3.6 years, respectively [5]. In Canada, the average 
generation interval for Holstein cattle was 7 years in the 1970s, 
and since then it has decreased to about 5.8 years. For LDC it 
was 4.2 years and remained stable around this value [20]. 
  When the regression coefficients between GEBV estimated 
from the single-step best linear unbiased prediction (ssBLUP) 
method and EBV estimated from the CBLUP method were 
compared, the coefficients estimated for young bulls without 
progeny records were the lowest, and in the range of 0.54 to 
0.61. It can thus be concluded that genomic selection was more 
efficient in heifers and in young bulls without test records [21].
  The reliability of GEBV was higher than that of EBV, es-
pecially for animals without phenotypic data. These results 
agreed with those of Forni et al [22], who reported that the 
accuracy of selection was increased by using genomic infor-
mation compared with that using only pedigree information. 
In this study it was found that selection was relatively more 
accurate in young bulls and heifers without phenotypic data, 
and the accuracy of selection increased even more when ge-
nomic information was used. 
  The reason for the increased accuracy resulting from using 
genomic information might be due to the fact that when doing 
this the pedigree coefficient matrix used in the CBLUP method 
was replaced by a genomic relationship matrix, which was 
derived from the genotype similarity calculated for all mark-
ers and considering Mendelian sampling [23,24]. In the overall 
data set, the reliability of GEBV increased by 9% on average 
over that of EBV, and increased by 7% in cows with test re-
cords, about 4% in bulls with progeny records, and 13% in 
heifers without test records. The difference in the reliability 
between GEBV and EBV was especially great for data from 
young bulls, as this increased by 17% on average for milk (39% 
vs 22%), fat (39% vs 22%), and protein (37% vs 22%) yields. 
Similar results were obtained by VanRaden et al [13] who 
reported that in the USA’s Holstein population combined 
genomic predictions had realized reliabilities that were 23% 
greater than reliabilities of parent averages (50% vs 27%) when 
averaged across all traits. These results suggested that genomic 
selection was more effective in the selection of young bulls 
and heifers without test records [21].
  In other studies that compared the reliability of genomic 
and conventional selection methods for the estimation of 
breeding values, the reliability of GEBV was comparable to 
that of either the parent average or the pedigree index method 
[25-27]. These types of comparisons are possible since the 
reliability of genomic selection is very high for the selection 
of young bulls without test records for their daughters. Com-

pared with conventional selection methods, genomic selection 
can accelerate the improvement of animals, since the reli-
ability of genomic selection is relatively high and it can be 
used to reduce generation intervals. Therefore, genomic se-
lection can be efficiently used for the juvenile selection of 
dairy cattle. 
  For the selection of proven bulls in Korea, first about 40 
head of young bulls are selected and then 2 of them are fur-
ther selected on the basis of the progeny test records from 20 
of their daughter heifers. For the selection of young heifers, 
pedigree information is used. Therefore, the selection rate of 
young bulls is 5% and the selection intensity (i) is 2.06, while 
for young heifers the selection rate is 90% (9 out of 10) and 
the selection intensity (i) is 0.20 [28].
  When selected for the milk yield using GEBV, the genetic 
gain increased in this study by about 7.1% over the gain with 
the EBV method in cows with test records, and by 2.9% in bulls 
with progeny records, while it increased by about 24.2% in 
heifers without test records and by 35% in young bulls without 
progeny records. Therefore, the application of genomic selec-
tion to gene introgression can help to speed up the process 
of introgression of a gene while simultaneously increasing the 
genetic gain [3].
  Since the selection intensity actively used in the domestic 
population in Korea was applied in the present study, more 
genetic gains to this population can be expected through the 
use of genomic selection, since more young bulls and heifers 
can be selected to improve desirable traits. 
  Wiggans et al [26] reported that during the genomic selec-
tion of cattle conducted in 2011 in the USA, the reliability of 
the selection of milk yield increased by 34.0% over the parent 
average, and that of fat and protein yields increased by 33.8% 
and 24.9%, respectively, indicating that reliabilities can be in-
creased even more than those we obtained in our study. The 
smaller improvements we found might have been due to the 
relatively very small reference population we used [29,30]. 
When genomic selection is applied in the selection of dairy 
cattle in the domestic population, the size of the reference 
population will increase continuously and potentially result 
in greater improvements, but this will take time. 
  Therefore, through the participation of Korea in interna-
tional genetic performance evaluation programs using genomic 
information, or by sharing data with overseas dairy cattle pop-
ulations related to the genetic resources of domestic dairy 
cattle populations, the improvement of dairy cattle can be 
facilitated. Also, the efficiency of data utilization should be 
increased and the introduction of new technologies should 
be accelerated in Korea to facilitate dairy cattle improvement. 
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