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Abstract: The immune system responds to acute tissue damage after myocardial infarction (MI)
and orchestrates healing and recovery of the heart. However, excessive inflammation may lead to
additional tissue damage and fibrosis and exacerbate subsequent functional impairment, leading to
heart failure. The appreciation of the immune system as a crucial factor after MI has led to a surge
of clinical trials investigating the potential benefits of immunomodulatory agents previously used
in hyper-inflammatory conditions, such as autoimmune disease. While the major goal of routine
post-MI pharmacotherapy is to support heart function by ensuring appropriate blood pressure
and cardiac output to meet the demands of the body, several drug classes also affect a range of
immunological pathways and modulate the post-MI immune response, which is crucial to take
into account when designing future immunomodulatory trials. This review outlines how routine
post-MI pharmacotherapy affects the immune response and may thus influence post-MI outcomes
and development towards heart failure. Current key drug classes are discussed, including platelet
inhibitors, statins, β-blockers, and renin–angiotensin–aldosterone inhibitors.
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1. Introduction

Heart failure (HF) defines the inability of the heart to meet the metabolic demands of the body
and is a common consequence of myocardial infarction (MI). A recent study shows that 62.7% of
patients with a hospital diagnosis of acute MI (AMI) developed HF in the following six years [1].
Local hypoxia after MI causes cardiomyocyte death and the immune system is recruited to remove
necrotic debris and initiate scar formation [2]. Severe tissue damage may, however, cause a strong
inflammatory response and result in excessive fibrosis, ongoing immune autoreactivity and adverse
remodeling towards HF [3]. Preclinical and clinical agents targeting immunological pathways have
been explored for post-MI benefits and the most promising candidates include inhibitors of early
inflammatory mediators and pro-inflammatory cytokines. In a recent systematic review, we provide
a thorough overview of established and novel immunomodulatory treatments post-MI and during HF
and show that, despite promising outcomes in selected trials, heterogeneous patient populations and
inconsistent trial design complicate analysis. A final conclusion about the true clinical benefit of these
novel agents is therefore still lacking [4].

Importantly, standard drugs currently used in the post-MI therapeutic regimen also affect the
immune system [5] (Figure 1; Table 1). This needs to be considered carefully when designing future
immunomodulatory therapies, and it is feasible that immunomodulation may in fact contribute to the
cardioprotective effects of current post-MI therapy.
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Here we discuss the immunological effects of routinely prescribed post-MI drugs, including
platelet inhibitors, statins, β-blockers, and drugs targeting the renin–angiotensin–aldosterone system,
including angiotensin converting enzyme (ACE) inhibitors, angiotensin receptor blockers, angiotensin
receptor–neprilysin inhibitors, and aldosterone antagonists. We illustrate that potential interactions of
existing and emerging immunomodulatory interventions with routine pharmacotherapy should be
considered when designing patient therapeutic regimens.

Table 1. Post-myocardial-infarction (MI) and anti-heart-failure drugs and their
immunomodulatory properties.

Drug Class Example Reported Immunological Effect

Platelet inhibitor

Cyclooxygenase enzyme
inhibitors Aspirin

Decrease ROS formation [6]
Decrease leukocyte activation [6]
Decrease hs-CRP [7]
Decrease IL-6 [7]

P2Y12 inhibitors
Clopidogrel

Prasugrel
Ticagrelor

Decrease hs-CRP [8]
Decrease platelet degranulation [6]
Decrease pro-inflammatory cytokines [6]
Decrease leukocyte activation [6]

GP IIb/IIIa inhibitors Tirofiban Decrease CRP levels [9]

Statins HMG-CoA reductase and
intracellular GTPase inhibitors

Atorvastatin
Rosuvastatin
Simvastatin

Decrease T cell activation [10–13]
Increase FoxP3 in Treg cells [14–16]
Decrease IL-2 and TNF-α [17]

β-blockers

Selective β1-blockers
Bisoprolol
Nebivolol

Metoprolol

Decrease TNF-α and restore cytokine
network in DCM [18]
Decrease TNF-α, IL-6, IL-10, sIL-2R, MCP-1,
IL-18 in CHF [19]
Decrease statin-mediated CRP decrease [20]

Nonselective β-blockers Propranolol
Decrease statin-mediated CRP decrease [20]
Increases IL-1β and IL-6 6 h after MI [21]
Increase NK cell activity [22]

β1-β2-α-blockers Carvedilol

Decrease HLA-DR+ and cytotoxic T-cell
activation [23]
Decrease ROS production [24]
Decrease CCL2 [25]

Drugs targeting
the RAAS system

Angiotensin converting
enzyme inhibitors

Captopril
Enalapril
Ramipril

Decrease TNF-α and MCP-1 [26,27]
Decrease T cell activation [26,27]

Angiotensin receptor blockers
Azilsartan

Candesartan
Losartan

Decrease IL-6, TNF-α and IL-1β [28–31]
Decrease oxidative stress [31]
Decrease MCP-1 expression [31,32]
Increase IL-10 levels [33]

Angiotensin
receptor–neprilysin inhibitors

Entresto
(Sacubitril/Valsartan)

Decrease IL-6 and IL-1β [34]
Decrease collagen deposition [34]

Aldosterone antagonists Eplerenone
Spironolactone

Decrease PAI-1 levels [35]
Decrease collagen deposition [36]

ROS, reactive oxidative species; hs-CRP, high sensitivity C-reactive protein; CRP, C-reactive protein; IL,
interleukin; TNF-α, tumour necrosis factor-α; FoxP3, forkhead box P3; Treg, T regulatory cell; DCM, dilated
cardiomyopathy; NK, natural killer cell; CCL2, chemokine ligand 2; HLA-DR, human leukocyte antigen–DR
isotype; MCP, monocyte chemoattractant protein; PAI-1, plasminogen activator inhibitor-1; HMG-CoA, β-Hydroxy
β-methylglutaryl-coenzyme A.
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Figure 1. Immunomopharmacology of commonly used post-MI and heart failure drugs. The immune 
system is involved in all post-MI processes, including platelet activation immediately after vessel 
occlusion, early immune activation leading to leukocyte extravasation into the heart, and immune-
mediated tissue damage. Currently used post-MI drugs with immunomodulatory effects include 
platelet inhibitors (A), statins (B), beta-blockers (C), and drugs targeting the renin–angiotensin–
aldosterone system (D), including angiotensin converting enzyme (ACE) inhibitors, angiotensin 
receptor blockers, angiotensin receptor–neprilysin inhibitors and aldosterone antagonists. DAMPs; 
danger associated molecular patterns, ROS; reactive oxygen species, MMP; metalloproteinase.  
decrease,  increase. 

2. Platelet Inhibitors 

Antithrombotic drugs are administered post-MI to reduce the risk of thrombus formation, thus 
decreasing the risk of MI reoccurrence [37]. Pharmacological agents used to achieve this are 
antiplatelet drugs, anticoagulants, and thrombolytic drugs, with platelet inhibitors being the most 
prominent antithrombotic drug class in routine long-term use for secondary prevention of MI. 

Platelet and monocyte counts increase with MI severity and platelets continue to be activated in 
HF, irrespective of therapy [38]. However, platelets have important roles beyond haemostasis. They 
interact with the endothelium and leukocytes to promote activation, adhesion, and extravasation of 
monocytes, neutrophils, and lymphocytes and thereby contribute not only to thrombotic occlusion 
and microembolisation of coronary arteries, but also to inflammation [38]. Cyclo-oxygenase (COX) 
inhibitors (e.g., aspirin) and adenosine diphosphate receptor (P2Y12) antagonists (e.g., clopidogrel, 
ticagrelor, prasugrel) are routinely prescribed platelet inhibitors post-MI [39]. 

2.1. COX Inhibitors 

COX inhibition irreversibly blocks platelet aggregation [40]. The most prominent COX inhibitor, 
aspirin, has been shown to block reactive oxygen species (ROS) formation and platelet and leukocyte 
activation [6]. Monitoring inflammatory markers of 310 AMI patients in the warfarin–aspirin re-
infarction study (WARIS-II, 2003) showed that 160 mg/day of aspirin reduced high-sensitivity C-
reactive protein (hs-CRP) at both three months and four years and Interleukin (IL)-6 was also 
significantly reduced at a four-year follow-up, compared to warfarin alone [7]. 

Figure 1. Immunomopharmacology of commonly used post-MI and heart failure drugs. The immune
system is involved in all post-MI processes, including platelet activation immediately after
vessel occlusion, early immune activation leading to leukocyte extravasation into the heart,
and immune-mediated tissue damage. Currently used post-MI drugs with immunomodulatory
effects include platelet inhibitors (A), statins (B), beta-blockers (C), and drugs targeting the
renin–angiotensin–aldosterone system (D), including angiotensin converting enzyme (ACE) inhibitors,
angiotensin receptor blockers, angiotensin receptor–neprilysin inhibitors and aldosterone antagonists.
DAMPs; danger associated molecular patterns, ROS; reactive oxygen species, MMP; metalloproteinase.
↓ decrease, ↑ increase.

2. Platelet Inhibitors

Antithrombotic drugs are administered post-MI to reduce the risk of thrombus formation, thus
decreasing the risk of MI reoccurrence [37]. Pharmacological agents used to achieve this are antiplatelet
drugs, anticoagulants, and thrombolytic drugs, with platelet inhibitors being the most prominent
antithrombotic drug class in routine long-term use for secondary prevention of MI.

Platelet and monocyte counts increase with MI severity and platelets continue to be activated in
HF, irrespective of therapy [38]. However, platelets have important roles beyond haemostasis. They
interact with the endothelium and leukocytes to promote activation, adhesion, and extravasation of
monocytes, neutrophils, and lymphocytes and thereby contribute not only to thrombotic occlusion
and microembolisation of coronary arteries, but also to inflammation [38]. Cyclo-oxygenase (COX)
inhibitors (e.g., aspirin) and adenosine diphosphate receptor (P2Y12) antagonists (e.g., clopidogrel,
ticagrelor, prasugrel) are routinely prescribed platelet inhibitors post-MI [39].

2.1. COX Inhibitors

COX inhibition irreversibly blocks platelet aggregation [40]. The most prominent COX inhibitor,
aspirin, has been shown to block reactive oxygen species (ROS) formation and platelet and leukocyte
activation [6]. Monitoring inflammatory markers of 310 AMI patients in the warfarin–aspirin
re-infarction study (WARIS-II, 2003) showed that 160 mg/day of aspirin reduced high-sensitivity
C-reactive protein (hs-CRP) at both three months and four years and Interleukin (IL)-6 was also
significantly reduced at a four-year follow-up, compared to warfarin alone [7].
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2.2. P2Y12 Antagonists

P2Y12 receptors play a primary role in haemostasis and platelet aggregation upon adenosine
diphosphate (ADP) binding [41]. Examples of P2Y12 inhibitors include clopidogrel, ticagrelor,
and prasugrel, which are routinely prescribed post-MI [37]. P2Y12 inhibitors can suppress
degranulation, platelet–leukocyte aggregate formation, and expression of pro-inflammatory
cytokines [6]. In a clinical trial with 120 patients undergoing percutaneous coronary intervention (PCI),
both prasugrel and clopidogrel significantly reduced hs-CRP levels [8].

2.3. Glycoprotein (GP) IIb/IIIa Inhibitor

The platelet receptor GPIIb/IIIa binds fibrinogen, thus bridging adjacent platelets for
aggregation [42]. A GPIIb/IIIa inhibitor, tirofiban, has been shown in a small study by Ercan et al.
(2004) to significantly reduce C-reactive protein (CRP) in non-ST elevation MI (NSTEMI) patients when
prescribed for 48 h following MI [9].

Due to the various pro-inflammatory effects of activated platelets, their inhibition also suppresses
inflammatory chemokine, cytokine, and adhesion molecule expression. Although not their intended
primary function, platelet inhibitors may therefore possess potent anti-inflammatory effects.

3. Statins

Statins inhibit the liver enzyme β-hydroxy β-methylglutaryl-coenzyme A (HMG-CoA) reductase,
which is involved in the production of low-density lipoprotein–cholesterol (LDL–C). Reducing LDL–C
levels is anticipated to reduce atherosclerotic plaque formation and protect from re-infarction [43].
Statins are the most commonly prescribed lipid-lowering agent worldwide [44]. However, statins
exert additional advantageous cardiovascular effects, which are independent of their lipid-lowering
effects, including improvement of endothelial function, antithrombotic effects, antioxidant effects,
antiproliferative effects on smooth muscle cells, and anti-inflammatory effects [45,46]. Previous
meta-analyses have shown that the use of statins during preloading in patients undergoing PCI
significantly reduced the rates of periprocedural MI and Major Adverse Cardiovascular events
(MACE) [47,48]. In non-ischaemic HF, atorvastatin significantly improves patients’ left ventricular
ejection fraction (LVEF), which is thought to be due to attenuation of adverse left ventricular (LV)
modelling [49].

Recent studies have suggested that their favourable clinical outcomes could be in part due
to their immunomodulatory properties affecting immune cell proliferation and migration [50].
Statins modulate the T cell repertoire by blocking antigen-specific T cell activation and inducing
an anti-inflammatory and regulatory T (Treg) cell phenotype. Porcine studies reported a 25-fold
reduction in major histocompatibility (MHC) class II molecule expression on vascular endothelial
cells following statin administration [10]. Alongside MHC class II, reduced expression of MHC class
I, and co-stimulatory molecules CD28 and CD40 have been described [11]. MHC class II is found
constitutively on antigen-presenting cells and is essential for antigen-dependent T cell activation.
Multiple cell types, including endothelial cells, monocytes, and macrophages, can be stimulated by
interferon (IFN)-γ to express MHC class II molecules on their cell surface to activate the adaptive
immune system, but statins can intercept this process [12]. Statins further block intracellular GTPases,
which impairs protein antigen uptake and subsequently dampens T cell activation [13].

Statins also directly promote immune tolerance by increasing the expression of transcription factor
forkhead box P3 (FoxP3) in Treg cells, along with immune regulatory cytokines IL-10 and tumour
growth factor-β (TGF-β) in atherosclerotic plaques [14]. Treg cell migration and differentiation via
the C-C motif ligant-1 (CCL1) chemokine is influenced by statin administration [15] and, clinically,
an increase in FoxP3 mRNA levels has been observed in male patients following one month of statin
use [16].
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Simvastatin administered to ST-elevation MI (STEMI) patients reduced the levels of the
inflammatory cytokines IL-2 and tumour necrosis factor (TNF)-α in a dose-dependent manner, with
a significant but transient drop in CRP in the first week, compared to placebo treatments. Although
CRP returned to normal by day 30, the flow-mediated dilation of the brachial artery was proportional
to the initial statin dose [17]. This study indicates that the timing and dose of statin therapy influence
the inflammatory and endothelial responses following MI.

Considering the detrimental effect of post-MI adaptive immune-autoreactivity and beneficial
effect of Treg cells in heart regeneration [51], it is feasible that these striking effects on the adaptive
immune system may play an important role in the observed clinical effects of statins in slowing the
post-MI progression to heart failure.

4. β-Blockers

β-Blockers are used post-MI to reduce heart rate and blood pressure (BP). They constitute
a heterogeneous group of drugs blocking the adrenoreceptors of the sympathetic nervous system.
They can be selective inhibitors of β1-adrenoreceptors (e.g., metoprolol, bisoprolol, low concentrations
of nebivolol), nonselective blockers of both β1- and β2-adrenoreceptors (e.g., propranolol, high
concentrations of nebivolol), and a third generation of nonselective β-blockers/α1 blockers
(e.g., carvedilol). Nebivolol, atenolol, and bisoprolol are the main treatment options after acute
coronary syndrome (ACS), largely due to their superior cardioselectivity when compared to other
β-blockers [52]. β-Blockers have infarct-reducing properties, improve cardiac function, and can help to
prevent future infarcts [53]. Their immunological effects vary and may prove beneficial or detrimental,
depending on the exact setting.

4.1. Selective β1 Antagonists

Bisoprolol reduces circulating TNF-α levels and helps to restore the dysregulated cytokine
network in dilated cardiomyopathy (DCM) patients [18]. Similarly, metoprolol lowers plasma levels
of TNF-α, IL-6, IL-10, soluble IL-2 receptor (sIL-2R), monocyte chemoattractant peptide-1 (MCP-1),
and IL-8 in chronic HF (CHF) patients [19]. Post-MI, however, metoprolol may in fact attenuate the
anti-inflammatory effects of statins, as assessed by CRP level [20]. Metoprolol is available in two
formulations, immediate-release metoprolol tartrate (MT) and slow-release metoprolol succinate (MS),
of which only MS is recommended for the treatment of heart failure [54].

4.2. Non-Selective β-Blockers

Propranolol strongly upregulated IL-1β and IL-6 gene expression in the myocardium 6 h after
MI in a rat model [21]. Similar to metoprolol, propranolol may also attenuate the anti-inflammatory
effects of statins [20]. However, it is noted that propranolol is thought to increase the activity of NK
cells [22], which may modulate the inflammatory milieu in a positive manner [55].

4.3. Nonselective β-Blockers/α1 Blockers

Carvedilol reduces the levels of HLA-DR positive lymphocytes and cytotoxic T cells in the blood of
CHF patients [23] and is therefore of particular interest. The presence of these cells has been implicated
in myocardial dysfunction, cytotoxicity, and increased risk of severe post-MI HF [56]. Carvedilol has
also been shown to decrease the production of ROS, such as H2O2, which is responsible for driving
calcium overload in HF [24]. In a study on experimental infection with Trypanosoma cruzi, carvedilol
decreased CCL2 levels and increased the levels of the anti-inflammatory cytokine IL-10, resulting in
decreased inflammatory infiltration in cardiac muscle [25].

Depending on the drug type and timing of administration, β-blockers may thus have strikingly
distinct immunological consequences. They might interfere with the resolution of inflammation in
AMI, yet the blocking of adaptive autoreactivity during CHF may be a significant positive contributor
to the beneficial effects of β-blockers in these patients.
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5. Drugs Targeting the Renin–Angiotensin–Aldosterone System

The Renin–Angiotensin–Aldosterone System (RAAS) is involved in regulating BP, blood volume,
and sodium concentration. In response to a BP drop, the kidneys release renin, which cleaves
angiotensinogen into angiotensin I. The angiotensin converting enzyme (ACE) then converts
angiotensin I into angiotensin II (ATII). ATII binds to AT1 receptors, causing systemic vasoconstriction,
resulting in increased systemic arterial pressure and restoration of BP. ATII thus stimulates cardiac
hypertrophy and myocardial fibrosis [57]. Notably, ATII signalling also increases the release of
inflammatory cytokines TNF-α and MCP-1 and upregulates T cells activation [26,27].

5.1. ACE Inhibitors (ACEi)

ACE inhibitors (ACEi) reduce plasma ATII concentrations and ATII-mediated vasoconstriction.
This reduces pre- and afterload on the heart and decreases the risk of heart failure [58]. Blocking the
pro-inflammatory effects of ATII with ACEi might improve the inflammatory environment in the
heart [59]. Murine studies demonstrate that the ACEi enalapril reduced ATII-dependent monocyte
recruitment from the spleen into the myocardium and increased ejection fraction by 14% [60]. Enalapril
following MI also resulted in a significant reduction in the plasma levels of MCP-1 [61], a potent
monocyte chemotactic agent [62].

5.2. Angiotensin II Type-1 Receptor Blockers (ARB)

Angiotensin II type-1 receptor blockers (ARB) block the AT1 receptor and similarly optimise
cardiac output, and are often used when the side effects of ACEi cannot be tolerated [53]. ARB and
ACEi have similar immunological effects, and clinical and preclinical studies have demonstrated that
following MI, ARB reduce levels of pro-inflammatory cytokines IL-6 and TNF-α, while enhancing
anti-inflammatory cytokine production [28,29]. ARB-mediated reduction of MCP-1 expression
results in fewer monocytes and macrophages infiltrating the damaged myocardium, limiting cardiac
remodelling and fibrosis [32]. Furthermore, ARB decrease the degree of ischaemic injury, infarct
size, cardiomyocyte damage, and blood flow impairment [28]. A clinical trial comparing ramipril
(ACEi) and olmesartan (ARB) showed a consistent reduction in infarct size, macrophage infiltration,
and associated IL-1β and IL-6 levels for both dugs. However, olmesartan improved physiological
parameters to a greater extent [30]. ARB also improve vascular inflammation by reducing oxidative
stress, MCP-1 levels, macrophage and monocyte infiltration, vessel wall NADPH, and TNF-α in
perivascular fat [31], and increase IL-10 levels [33].

5.3. Angiotensin Receptor–Neprilysin Inhibitors (ARNi)

The neutral endopeptidase neprilysin catalyses the degradation of atrial and brain natriuretic
peptides (ANP, BNP), bradykinin and ATII. Inhibition of neprilysin results in natriuretic and
antiproliferative effects and vasodilation [63]. The most prominent ARNi is entresto, a combination of
sacubitril (neprilysin inhibitor) and valsartan (ARB), which is used as an alternative to or alongside
ACEi and ARB in patients with symptomatic chronic heart failure with low ejection fraction [64].
The European Society of Cardiology HF guidelines recommend sacubitril/valsartan as a replacement
for an ACEi to further reduce the risk of HF hospitalisation and death in ambulatory patients with HF
with reduced ejection fraction (EF) who remain symptomatic despite optimal treatment with an ACEi,
a β-blocker, and a mineralocorticoid receptor antagonists (MRA) [65]. Entresto decreases aldosterone
release, fibrosis, and ventricular hypertrophy [66].

In experimental AMI, entresto suppressed pro-inflammatory cytokines IL-1β and IL-6 and
extracellular matrix degradation by macrophages [34]. In diabetic mice with established heart failure,
entresto reduced fibrosis by suppressing TGF-β [67].
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5.4. Aldosterone Antagonists (AA)

Aldosterone antagonists (AA) reduce sodium and fluid retention, thus lowering blood volume
and preload on the heart [53]. They dampen the detrimental effects of high plasma aldosterone
concentrations post-MI, including progressive myocardial fibrosis, increased plasminogen activator
inhibitor-1 (PAI-1) concentration, and decreased noradrenaline uptake [35]. Medical intervention
is time-dependent, with optimal outcomes when administered within seven days after infarct [68].
Spironolactone, a competitive MRA, blocks the aldosterone receptors present on endothelial cells and
monocytes, thus suppressing the downstream inflammatory cascade, which would otherwise lead to
myofibroblast differentiation, collagen deposition, and fibrosis [36].

Fortuitous blocking of pro-inflammatory factors in the RAAS, thus, has immunomodulatory
effects and may contribute to improved post-MI outcomes after treatment.

6. Conclusions and Future Perspectives

Immunological interventions are increasingly becoming integrated into everyday medical practice
in various settings and are a promising expanding area of science. However, we still have a long way to
go until a new immunomodulatory drug is used clinically in post-MI pharmacotherapy. Considering
immunopharmacology of routine drugs, as well as their possible synergistic or antagonistic effects,
with new therapies is a first step towards improved patient care and future trial design.

Clinical trials specifically targeting the post-MI immune response: A great number of clinical trials
have aimed at immunomodulation post-MI, ranging from broad immunosuppressive approaches using
corticosteroids, methotrexate or cyclosporine A, to more refined approaches targeting specific pathways
and factors, including ROS, complement, mast cells, leukocyte infiltration, inflammatory cytokines IL-1,
TNF-α and IL-6, and the inhibition of adaptive B and T lymphocytes [4]. The most promising target
to date is IL-1. IL-1 inhibitors, including anakinra and canakinumab, which were initially developed
for use in systemic inflammatory conditions, such as rheumatoid arthritis, have recently been tested
in patients following AMI and show a significant benefit in the secondary prevention of subsequent
cardiac events [69,70]. However, despite an enormous amount of effort and resources invested in
these immunomodulatory trials, practical challenges, dealing with a highly diverse patient population,
and striking heterogeneity in trial design mean that firm evidence in support of immunomodulatory
treatment is still missing.

Therapeutic window: The post-MI immune response is highly dynamic and the pre-MI and
the periprocedural clinical situation during PCI affect the degree of cardiac damage and therefore
long-term complications, including the development towards HF. Some of the drug classes mentioned
above are also administered perioperatively in patients undergoing PCI.

Most prominently, antithrombotic agents, such as heparin and bivalrudin, are part of the acute
pharmacological treatment regime of STEMI patients to restore blood flow. Heparin significantly
reduced CRP levels when administered before reperfusion [71] and low-molecular-weight heparin
(enoxaparin) significantly decreased IL-6 levels [72]. Bivalrudin, a direct thrombin inhibitor, is currently
recommend by both EU and US guidelines for use during primary PCI instead of heparin plus
platelet inhibitors [73]. Heparin has established anti-inflammatory effects [74], but studies on the
immunological effects of bivalrudin are still missing.

Another example, administration of the β-blocker metoprolol before reperfusion in patients
undergoing PCI for STEMI, resulted in improved LVEF at six months follow-up, and a reduced
occurrence of the prespecified composite of death, heart failure admission, re-infarction, and malignant
arrhythmias at a median follow-up of two years, therefore indicating a possible long-term benefit
of periprocedural β-blockers [75]. Immunological factors were not measured in this trial and it is
therefore unclear if immunomodulation plays a role in these effects.

However, it is important to appreciate that any treatment to improve and accelerate reperfusion
during AMI will affect the ensuing inflammatory response and downstream development to HF, which
does not allow conclusions about specific immunomodulatory effects in a periprocedural setting.
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New treatment strategies: The reality that despite potent post-MI pharmacotherapy, recurrent
ischaemic events are common, drives the ongoing search for additional and better post-MI drugs.
In particular, improved antithrombotic strategies seem warranted. Combinations of nonvitamin K
antagonist oral anticoagulant (NOAC) with antiplatelet therapy have shown promising outcomes in
large phase II and III randomised trials, suggesting that the use of NOAC in addition to standard
antiplatelet therapy reduces the rate of recurrent ischaemic events. However, this comes at the price of
increased risk for major bleeding [76].

Another recent addition to post-MI pharmacotherapy is ivabradine, a selective inhibitor of cardiac
pacemaker cells in the sinus node of the right atrium, which controls the heart rate. Beyond its current
use in treating stable angina [77], increasing evidence suggests ivabradine decreases cardiac structural
remodelling and alleviates the risks of developing HF post-MI [78]. Immunological effects have been
suggested by a study showing an increase in circulating numbers of myeloid dendritic cells (mDC)
after six months of ivabradine treatment [78]. mDC negatively correlate with HF progression [79,80].
The same study showed a significant reduction in TNF-α concentrations [78]. A significant decrease in
hsCRP levels was further recorded in patients treated with ivabradine for 30 days [81] which could
be another plausible mechanism through which ivabradine reduces HF risk. In conclusion, despite
a paucity of clinical trials, evidence suggests ivabradine has immunomodulatory effects.

Combination therapy: The immune response is a crucial player in post-MI restoration of tissue
integrity. However, while immunomodulation may prevent ongoing damage, it is unlikely to replace
tissue that has been lost already. Combining immunomodulation with regenerative therapies, such
as biomaterial-based strategies or cell therapies aiming to replace damaged cardiomyocytes, seems
the most promising future strategy [3]. Numerous studies have evaluated the effect of stem cell
mobilisation, recruitment or transplantation into the myocardium [82,83]. While both fields are still
in their infancy, once initial hurdles are overcome, the outlook for cardiac regeneration post-MI
is promising.

Complications of immunotherapies: Potential side effects need to be carefully considered before
the administration of immunosuppressive drugs post-MI. The immune system needs to be tightly
regulated to ensure efficient responses against infections and cancers, while preventing autoreactivity.
Suppressing the immune system post-MI may impact wound healing and regenerative processes,
weaken defences against infectious diseases, and undermine the ability of the immune system to detect
and destroy malignant growth early on. Chronic immunosuppressive treatment using methotrexate,
cyclosporine or anti-TNF reagents is known to carry an increased risk of lymphoma, due to decreased
immunosurveillance [84].
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